exp function using c++ - c++

I can't figure out why I keep getting the result 1.#INF from my_exp() when I give it 1 as input. Here is the code:
double factorial(const int k)
{
int prod = 1;
for(int i=1; i<=k; i++)
prod = i * prod;
return prod;
}
double power(const double base, const int exponent)
{
double result = 1;
for(int i=1; i<=exponent; i++)
result = result * base;
return result;
}
double my_exp(double x)
{
double sum = 1 + x;
for(int k=2; k<50; k++)
sum = sum + power(x,k) / factorial(k);
return sum;
}

You have an integer overflow in your factorial function. This causes it to output zero. 49! is divisible by 2^32, so your factorial function will return zero.
Then you divide by it causing it to go infinity. So the solution is to change prod to double:
double prod = 1;

Instead of completely evaluating the power and the factorial terms for each term in your expansion, you should consider how the k'th term is related to the k-1'th term and just update each term based on this relationship. That will avoid the nasty overflows in your power and factorial functions (which you will no longer need). E.g.
double my_exp(double x)
{
double sum = 1.0 + x;
double term = x; // term for k = 1 is just x
for (int k = 2; k < 50; k++)
{
term = term * x / (double)k; // term[k] = term[k-1] * x / k
sum = sum + term;
}
return sum;
}

you should just reduce max of k form 50 to like 30 it will work;
and one question your code work just near 0 ?

Related

Instructions inside a condition between long long unsigned integers doesn't execute

In the following code I'm trying to find find the highest p (p is integer) number where 45^p is a divisor of n! (n is integer).
int n = 14;
long long unsigned int fact = 1;
for(int i = 1; i <= n; i++){
fact *= i;
}
bool until = true;
int ans;
// for goes until x is greater half of factorial
for(int i = 1; until; i++){
long long unsigned int x = 1;
for(int j = 1; j <= i; j++){
x *= 45;
}
if(fact/2 < x){
until = false;
}
else{
if(fact % x == 0){
ans = i;
}
}
}
cout << ans;
}
However, when I'm trying to end the loop at where x is greater than the half of factorial, it just keeps going on until 45^7 for some reason and it should stop at 45^5, where the number is lesser than half of n!. Why does this happen?
P.D: I'm not saying the program doesn't return the number I want (it returns ans = 2, which is true), but it's just pointless to keep on calculating x.
If you need the biggest value, starting from x = 45 and with x > fact / 2 the only way out of the loop, you have to get to at least the logarithm in base 45 of n! / 2.
And that's a limit of 7 because 45**6 <= 14! / 2 and 45**7 > 14! / 2.
Pen and pencil as suggested by #Raymond Chen is the way to go.

Anderson Darling Test in C++

I am trying to compute the Anderson-Darling test found here. I followed the steps on Wikipedia and made sure that when I calculate the average and standard deviation of the data I am testing denoted X by using MATLAB. Also, I used a function called phi for computing the standard normal CDF, I have also tested this function to make sure it is correct which it is. Now I seem to have a problem when I actually compute the A-squared (denoted in Wikipedia, I denote it as A in C++).
Here is my function I made for Anderson-Darling Test:
void Anderson_Darling(int n, double X[]){
sort(X,X + n);
// Find the mean of X
double X_avg = 0.0;
double sum = 0.0;
for(int i = 0; i < n; i++){
sum += X[i];
}
X_avg = ((double)sum)/n;
// Find the variance of X
double X_sig = 0.0;
for(int i = 0; i < n; i++){
X_sig += (X[i] - X_avg)*(X[i] - X_avg);
}
X_sig /= n;
// The values X_i are standardized to create new values Y_i
double Y[n];
for(int i = 0; i < n; i++){
Y[i] = (X[i] - X_avg)/(sqrt(X_sig));
//cout << Y[i] << endl;
}
// With a standard normal CDF, we calculate the Anderson_Darling Statistic
double A = 0.0;
for(int i = 0; i < n; i++){
A += -n - 1/n *(2*(i) - 1)*(log(phi(Y[i])) + log(1 - phi(Y[n+1 - i])));
}
cout << A << endl;
}
Note, I know that the formula for Anderson-Darling (A-squared) starts with i = 1 to i = n, although when I changed the index to make it work in C++, I still get the same result without changing the index.
The value I get in C++ is:
-4e+006
The value I should get, received in MATLAB is:
0.2330
Any suggestions are greatly appreciated.
Here is my whole code:
#include <iostream>
#include <math.h>
#include <cmath>
#include <random>
#include <algorithm>
#include <chrono>
using namespace std;
double *Box_Muller(int n, double u[]);
double *Beasley_Springer_Moro(int n, double u[]);
void Anderson_Darling(int n, double X[]);
double phi(double x);
int main(){
int n = 2000;
double Mersenne[n];
random_device rd;
mt19937 e2(1);
uniform_real_distribution<double> dist(0, 1);
for(int i = 0; i < n; i++){
Mersenne[i] = dist(e2);
}
// Print Anderson Statistic for Mersenne 6a
double *result = new double[n];
result = Box_Muller(n,Mersenne);
Anderson_Darling(n,result);
return 0;
}
double *Box_Muller(int n, double u[]){
double *X = new double[n];
double Y[n];
double R_2[n];
double theta[n];
for(int i = 0; i < n; i++){
R_2[i] = -2.0*log(u[i]);
theta[i] = 2.0*M_PI*u[i+1];
}
for(int i = 0; i < n; i++){
X[i] = sqrt(-2.0*log(u[i]))*cos(2.0*M_PI*u[i+1]);
Y[i] = sqrt(-2.0*log(u[i]))*sin(2.0*M_PI*u[i+1]);
}
return X;
}
double *Beasley_Springer_Moro(int n, double u[]){
double y[n];
double r[n+1];
double *x = new double(n);
// Constants needed for algo
double a_0 = 2.50662823884; double b_0 = -8.47351093090;
double a_1 = -18.61500062529; double b_1 = 23.08336743743;
double a_2 = 41.39119773534; double b_2 = -21.06224101826;
double a_3 = -25.44106049637; double b_3 = 3.13082909833;
double c_0 = 0.3374754822726147; double c_5 = 0.0003951896511919;
double c_1 = 0.9761690190917186; double c_6 = 0.0000321767881768;
double c_2 = 0.1607979714918209; double c_7 = 0.0000002888167364;
double c_3 = 0.0276438810333863; double c_8 = 0.0000003960315187;
double c_4 = 0.0038405729373609;
// Set r and x to empty for now
for(int i = 0; i <= n; i++){
r[i] = 0.0;
x[i] = 0.0;
}
for(int i = 1; i <= n; i++){
y[i] = u[i] - 0.5;
if(fabs(y[i]) < 0.42){
r[i] = pow(y[i],2.0);
x[i] = y[i]*(((a_3*r[i] + a_2)*r[i] + a_1)*r[i] + a_0)/((((b_3*r[i] + b_2)*r[i] + b_1)*r[i] + b_0)*r[i] + 1);
}else{
r[i] = u[i];
if(y[i] > 0.0){
r[i] = 1.0 - u[i];
r[i] = log(-log(r[i]));
x[i] = c_0 + r[i]*(c_1 + r[i]*(c_2 + r[i]*(c_3 + r[i]*(c_4 + r[i]*(c_5 + r[i]*(c_6 + r[i]*(c_7 + r[i]*c_8)))))));
}
if(y[i] < 0){
x[i] = -x[i];
}
}
}
return x;
}
double phi(double x){
return 0.5 * erfc(-x * M_SQRT1_2);
}
void Anderson_Darling(int n, double X[]){
sort(X,X + n);
// Find the mean of X
double X_avg = 0.0;
double sum = 0.0;
for(int i = 0; i < n; i++){
sum += X[i];
}
X_avg = ((double)sum)/n;
// Find the variance of X
double X_sig = 0.0;
for(int i = 0; i < n; i++){
X_sig += (X[i] - X_avg)*(X[i] - X_avg);
}
X_sig /= (n-1);
// The values X_i are standardized to create new values Y_i
double Y[n];
for(int i = 0; i < n; i++){
Y[i] = (X[i] - X_avg)/(sqrt(X_sig));
//cout << Y[i] << endl;
}
// With a standard normal CDF, we calculate the Anderson_Darling Statistic
double A = -n;
for(int i = 0; i < n; i++){
A += -1.0/(double)n *(2*(i+1) - 1)*(log(phi(Y[i])) + log(1 - phi(Y[n - i])));
}
cout << A << endl;
}
Let me guess, your n was 2000. Right?
The major issue here is when you do 1/n in the last expression. 1 is an int and ao is n. When you divide 1 by n it performs integer division. Now 1 divided by any number > 1 is 0 under integer division (think if it as only keeping only integer part of the quotient. What you need to do is cast n as double by writing 1/(double)n.
Rest all should work fine.
Summary from discussions -
Indexes to Y[] should be i and n-1-i respectively.
n should not be added in the loop but only once.
Minor fixes like changing divisor to n instead of n-1 while calculating Variance.
You have integer division here:
A += -n - 1/n *(2*(i) - 1)*(log(phi(Y[i])) + log(1 - phi(Y[n+1 - i])));
^^^
1/n is zero when n > 1 - you need to change this to, e.g.: 1.0/n:
A += -n - 1.0/n *(2*(i) - 1)*(log(phi(Y[i])) + log(1 - phi(Y[n+1 - i])));
^^^^^

Convert string to float, C++ implementation

VS minimum double value = 2.2250738585072014e-308. atof function converts string to double value such as when you look at this value in the debugger you get original string representation.
double d = atof("2.2250738585072014e-308"); // debugger will show 2.2250738585072014e-308
As we can see, double value is not denormalized (there is no DEN)
I try to achieve the same precision when converting string to double. Here is the code:
double my_atof(char* digits, int digits_length, int ep)
{
int idot = digits_length;
for (int i = 0; i < digits_length; i++)
{
if (digits[i] == '.')
{
idot = i;
break;
}
}
double accum = 0.0;
int power = ep + idot - 1;
for (int i = 0; i < digits_length; i++)
{
if (digits[i] != '.')
{
if (digits[i] != '0')
{
double base_in_power = 1.0;
if (power >= 0)
{
for (int k = 0; k < power; k++) base_in_power *= 10.0;
}
else if (power < 0)
{
for (int k = 0; k < -power; k++) base_in_power *= 0.1;
}
accum += (digits[i] - '0') * base_in_power;
}
power--;
}
else power = ep - 1;
}
return accum;
}
Now, let's try:
char* float_str = "2.2250738585072014";
int float_length = strlen(float_str);
double d = my_atof(float_str, float_length, -308);
Debugger shows that d = 2.2250738585072379e-308. I tried to substitute
for (int k = 0; k < -power; k++) base_in_power *= 0.1;
with
for (int k = 0; k < -power; k++) base_in_power /= 10.0;
but it results in denormalized value. How to achieve the same precision as VS does, such that debugger will show the same number?
The problem is with double representation of the 0.1 constant, or the division by 10.0, which produces exactly the same result: negative powers of ten have no exact representation in floating-point numbers, because they have no exact representation as a sum of negative powers of 2.
When you compute negative powers of ten by repeated multiplication, you accumulate the error. First few negative powers come out right, but after about 0.000001 the difference becomes visible. Run this program to see what is happening:
double p10[] = {
0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001, 0.00000001, 0.000000001, 0.0000000001
};
int main(void) {
double a = 1;
for (int i = 0 ; i != 10 ; i++) {
double aa = a * 0.1;
double d = aa - p10[i];
printf("%d %.30lf\n", aa == p10[i], d);
a = aa;
}
return 0;
}
The output looks like this:
1 0.000000000000000000000000000000
1 0.000000000000000000000000000000
1 0.000000000000000000000000000000
1 0.000000000000000000000000000000
1 0.000000000000000000000000000000
0 0.000000000000000000000211758237
0 0.000000000000000000000026469780
0 0.000000000000000000000001654361
0 0.000000000000000000000000206795
0 0.000000000000000000000000025849
Demo.
The first few powers match exactly, but then some differences start appearing. When you use powers that you compute to compose the number during your string-to-float conversion, the accumulated errors make it into the final result. If the library function uses a look-up table (see this implementation for an example), the result that you get would be different from result that they get.
You can fix your implementation by hard-coding a table of negative powers of ten, and referencing this table instead of computing the powers manually. Alternatively you could construct a positive power of ten by consecutive multiplications, and then do a single division 1 / pow10 to construct the corresponding negative power (demo).

Combinations of large number in c++

How to compute combination for large number in c++? (eg. nCr n=1000 and r=500) Requirement is of last 9 digits of combination. I tried using long long int variable but still my code is able to solve and display last 9 digits of 50C19 but not more than that.
const long int a = 1000000000;
long long int ncr(int n,int r)
{
long long int fac1 = 1,fac2=1,fac;
for(int i=r;i>=1;i--,n--)
{
fac1 = fac1 * n;
if(fac1%i==0)
fac1 = fac1/i;
else
fac2 = fac2 * i;
}
fac = fac1/fac2;
return fac%a;
}
Just store the factors of the numerator in an array and divide out each factor of the denominator where possible. Finally take the product of the reduced numerators mod 10^9.
Here is some code for your specific example. You need to write a gcd() function.
int a[] = { 1000,999,...,501 }; // numerator factors
for (int b = 2; b <= 500; b++) {
int x = b;
for (int i = 0; i < 500; i++) {
int d = gcd(x, a[i]);
if (d > 1) {
x = x / d;
a[i] = a[i] / d;
if (x <= 1) break;
}
}
}
// take the product of a[] mod 10^9
int ans = 1;
for (int i = 0; i < 500; i++) {
ans = (ans * a[i]) % 1000000000;
}
// ans = C(1000,500) mod 10^9
A good discussion of other techniques is available here:
http://discuss.codechef.com/questions/3869/best-known-algos-for-calculating-ncr-m

Function to differentiate a polynomial in C++

I've been trying to get this solved but without luck.
All I want to do is to differentiate a polynomial like P(x) = 3x^3 + 2x^2 + 4x + 5
At the end of the code, the program should evaluate this function and gives me just the answer.
The derivative of P(x) is P'(x) = 3*3x^2 + 2*2x + 4*1. If x = 1, the answer is 17.
I just don't get that answer no matter how I alter my loop.
/*
x: value of x in the polynomial
c: array of coefficients
n: number of coefficients
*/
double derivePolynomial(double x, double c[], int n) {
double result = 0;
double p = 1;
int counter = 1;
for(int i=n-1; i>=0; i--) //backward loop
{
result = result + c[i]*p*counter;
counter++; // number of power
p = p*x;
}
return result;
}
//Output in main() looks like this
double x=1.5;
double coeffs[4]={3,2.2,-1,0.5};
int numCoeffs=4;
cout << " = " << derivePolynomial(x,coeffs,numCoeffs) << endl;
The derivative of x ^ n is n * x ^ (n - 1), but you are calculating something completely different.
double der(double x, double c[], int n)
{
double d = 0;
for (int i = 0; i < n; i++)
d += pow(x, i) * c[i];
return d;
}
This would work, assuming that your polinomial is in the form c0 + c1x + c2x ^ 2 + ...
Demonstration, with another function that does the derivation as well.
Edit: alternative solution avoiding the use of the pow() function, with simple summation and repeated multiplication:
double der2(double x, double c[], int n)
{
double d = 0;
for (int i = 0; i < n - 1; i++) {
d *= x;
d += (n - i - 1) * c[i];
}
return d;
}
This works too. Note that the functions that take the iterative approach (those which don't use pow()) expect their arguments (the coefficients) in reverse order.
You need to reverse the direction of the loop. Start at 0 and go to n.
At the moment when you compute the partial sum for the n-th power p is 1. For the last one x^0 you your p will contain x^n-1 th power.
double derivePolynomial(double x, double c[], int n) {
double result = 0;
double p = 1;
int counter = 1;
for(int i=1; i<n; i++) //start with 1 because the first element is constant.
{
result = result + c[i]*p*counter;
counter++; // number of power
p = p*x;
}
return result;
}
double x=1;
double coeffs[4]={5,4,2,3};
int numCoeffs=4;
cout << " = " << derivePolynomial(x,coeffs,numCoeffs) << endl;