C++ Segmentation Fault on Differential Solver - c++

I have written a program to approximate the solutions to ordinary differential equations using Adam's Method.
Running the program with gdb gives me:
Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_PROTECTION_FAILURE at address: 0x00007fff5f3ffff8
0x0000000100003977 in std::vector<double, std::allocator<double> >::push_back (this=0x100005420, __x=#0x100005310) at stl_vector.h:604
604 this->_M_impl.construct(this->_M_impl._M_finish, __x);
Clearly something is wrong with my treatment of vector.push_back, but I do not know where to begin looking. I can not think of a case where modifying a vector is illegal.
Call differentiate() to begin. Mathematics is done in step(). Adaptive time advancing across an interval with advance(). Check the chosen time step with checkdt() before running step() again.
Sorry for the huge code dump. I am sure many improvements can be made purely from the standpoint of C++, without knowledge of the mathematics:
//============================================================================
// Description : An Adam's Method Ordinary Differential Equation Approximation
// Disclaimer : Posted to StackOverflow for help on a segmentation fault
//============================================================================
#include <iostream> //IO
#include <vector> //std::vector
#include <cmath> //abs, pow, sqrt
#include <numeric> //accumulate
using namespace std;
/* Terminology:
* f(t, y) = the ordinary differential equation that will be solved
* y(t) = solution of f at point t.
* told = the previous point at which f was evaluated and solved
* tnow = the current point at which f is evaluated and solved
* tnew = the new (interesting) point at which f will be evaluated and solved
*
* Yold = the corrected solution of the differential equation at told
* Ynow = the corrected solution of the differential equation at tnow
* Ynew = the corrected solution of the differential equation at tnew
*
* fold = the value of the given differential equation at told
= f(told, Yold)
* fnow = the value of the given differential equation at tnow
= f(tnow, Ynow)
* fnew = the value of the given differential equation at tnew
= f(tnew, Ynew)
*
* Pnew = prediction for the value of Ynew
* dt = abs(tnew - tnow)
* dtold = abs(tnow - told)
*/
//Information storage
struct simTime {
double told;
double tnow;
double tnew;
double dt;
double dtold;
double tol;
double agrow;
double ashrink;
double dtmin;
double dtmax;
double endTime;
double fold;
double fnow;
double fnew;
double Yold;
double Ynow;
double Ynew;
double Pnew;
int stepsSinceRejection;
int stepsRejected;
int stepsAccepted;
} test;
//Define global variables
std::vector<double> errorIndicators(0);
std::vector<double> solutions(0);
std::vector<double> differencesDDY(0);
std::vector<double> differencesDDYSquared(0);
std::vector<double> timesTNew(0);
//Function declarations
void step(double fnow, double fold, double Ynow, double tnew, double tnow,
double dtold, double dt, double(*f)(double t, double y), double told);
void advance();
void shiftvariables();
void printvector(std::vector<double>& vec);
void differentiate(double(*f)(double t, double y), double y0, double a,
double b);
double f(double t, double y);
void checkdt();
int main() {
differentiate(f, 0, 1, 5);
cout << "Time values:" << endl;
printvector(timesTNew);
cout << "Solutions:" << endl;
printvector(solutions);
cout << "Differences between Prediction and Solution:" << endl;
printvector(differencesDDY);
return 0;
}
//Shift back all the variables to make way for the new values
void shiftvariables() {
test.tnow = test.tnew;
test.dtold = test.dt;
test.Yold = test.Ynow;
test.Ynow = test.Ynew;
test.fold = test.fnow;
test.fnow = test.fnew;
advance();
}
//Ordinary differential equation to be solved
double f(double t, double y) {
return pow(t, 2);
}
//Calculate the predicted and corrected solution at a chosen tnew
void step(double fnow, double fold, double Ynow, double tnew, double tnow,
double dtold, double dt, double(*f)(double t, double y), double told) {
//The calculation for Ynew requires integration. I first thought I would need to
// use my project 1 code to calculate the integration, but now I see in class we
// solved it analytically such that integration is not required:
//Linear prediction of Ynew using Ynow and fnow
double Pnew = Ynow + (dt * fnow) + (dt * dt / (2 * dtold)) * (fnow - fold);
test.Pnew = Pnew;
//Predict the value of f at tnew using Pnew
double fnew = f(tnew, Pnew);
test.fnew = fnew;
//Calculate the corrected solution at tnew
double interpolationFactor = fnew - (fnow + dt * (fnow - fold) / dtold);
double integration = (dt / 6) * (2 * dt + 3 * dtold) / (dt + dtold);
double Ynew = Pnew + interpolationFactor * integration;
test.Ynew = Ynew;
//Update the variables for the next round
shiftvariables();
}
//Check the previous solution and choose a new dt to continue evaluation
void advance() {
//The error indicator is the l2-norm of the prediction minus the correction
double err_ind = sqrt(
std::accumulate(differencesDDYSquared.begin(),
differencesDDYSquared.end(), 0));
errorIndicators.push_back(err_ind);
// Case where I reject the step and retry
if (err_ind > test.tol && test.dt > test.dtmin) {
++test.stepsRejected;
test.stepsSinceRejection = 0;
test.dt = test.dt * 0.5;
test.tnew = test.tnow + test.dt;
checkdt();
}
// Cases where I accept the step and move forward
else {
++test.stepsAccepted;
++test.stepsSinceRejection;
solutions.push_back(test.Ynew);
differencesDDY.push_back(abs(test.Pnew - test.Ynew));
differencesDDYSquared.push_back(pow((test.Pnew - test.Ynew), 2));
//Decrease dt
if (err_ind >= 0.75 * test.tol) {
test.dtold = test.dt;
test.dt = (test.dt * test.ashrink);
test.tnew = test.tnow + test.dt;
checkdt();
}
//Increase dt
else if (err_ind <= test.tol / 4) {
if ((test.stepsRejected != 0) && (test.stepsSinceRejection >= 2)) {
test.dt = (test.dt * test.agrow);
test.tnew = test.tnow + test.dt;
checkdt();
} else if (test.stepsRejected == 0) {
test.dt = (test.dt * test.agrow);
test.tnew = test.tnow + test.dt;
checkdt();
}
}
}
}
//Check that the dt chosen by advance is acceptable
void checkdt() {
if ((test.tnew < test.endTime) && (test.endTime - test.tnew < test.dtmin)) {
cout << "Reached endTime." << endl;
} else if (test.dt < test.dtmin) {
test.dt = test.dtmin;
test.tnew = test.tnow + test.dt;
timesTNew.push_back(test.tnew);
step(test.fnow, test.fold, test.Ynow, test.tnew, test.tnow, test.dtold,
test.dt, f, test.told);
} else if (test.dt > test.dtmax) {
test.dt = test.dtmax;
test.tnew = test.tnow + test.dt;
timesTNew.push_back(test.tnew);
step(test.fnow, test.fold, test.Ynow, test.tnew, test.tnow, test.dtold,
test.dt, f, test.told);
} else if ((test.tnew + test.dt) > test.endTime) {
test.dt = test.endTime - test.tnew;
test.tnew = test.tnow + test.dt;
checkdt();
} else if (((test.tnew + test.dt) < test.endTime)
&& ((test.tnew + 2 * test.dt) > test.endTime)) {
test.dt = (test.endTime - test.tnew) / 2;
test.tnew = test.tnow + test.dt;
checkdt();
}
//If none of the above are satisfied, then the chosen dt
// is ok and proceed with it
else {
timesTNew.push_back(test.tnew);
step(test.fnow, test.fold, test.Ynow, test.tnew, test.tnow, test.dtold,
test.dt, f, test.told);
}
}
//meta function to solve a differential equation, called only once
void differentiate(double(*f)(double t, double y), double y0, double a,
double b) {
//Set the starting conditions for the solving of the differential equation
test.fnow = f(a, y0);
test.endTime = b;
test.Ynow = y0;
//solutions.push_back(y0);
timesTNew.push_back(a);
//Set the constants
test.ashrink = 0.8;
test.agrow = 1.25;
test.dtmin = 0.05;
test.dtmax = 0.5;
test.tol = 0.1;
//Set fold = fnow for the first step
test.fold = test.fnow;
test.tnow = a;
test.told = a - test.dtmin;
test.dtold = abs(test.tnow - test.told);
//Create the first prediction, which will then lead to correcting it with step
advance();
}
// Takes a vector as its only parameters and prints it to stdout
void printvector(std::vector<double>& vec) {
for (vector<double>::iterator it = vec.begin(); it != vec.end(); ++it) {
cout << *it << ", ";
}
cout << "\n";
}
Thank you.

Since you're using recursion, could it be possible that you are running out of stack memory, thus causing the segfault? This could happen if either your app recurses too many times or if some bug causes it to recurse infinitely.
Note, as sth suggests in a comment, a debugger may help you decide whether or not this is the case.

Related

BOOST:ODEINT Sudden Iteration stop

I'm new in the world of C++ and I'm having some trouble with the boost library. In my problem I want to solve a ODE-System with 5 equations. It isn't a stiff problem. As iterative method I used both integreate(rhs, x0, t0, tf, size_step, write_output) and integreate_adaptive(stepper, sys, x0, t0, tf, size_step, write_output). Both these method actually integrate the equations but giving me non-sense results changing the size of the step from 0.001 to 5 almost randomly. The equations and data are correct. What can I do to fix this problem? Here is the code:
#include <iostream>
#include <vector>
#include <boost/numeric/odeint.hpp>
#include <fstream>
#include <boost/array.hpp>
using namespace std;
using namespace boost::numeric::odeint;
//DATA
double Lin = 20000; // kg/h
double Gdry = 15000; // kg/h
double P = 760; // mmHg
double TinH2O = 50; // °C
double ToutH2O = 25; // °C
double Tinair = 20; // °C
double Z = 0.5; // relative humidity
double Cu = 0.26; // kcal/kg*K
double CpL = 1; // kcal/kg*K
double DHev = 580; // kcal/kg
double hga = 4000; // kcal/m/h/K
double hla = 30000; // kcal/m/h/K
double A = -49.705; // Pev 1st coeff mmHg vs °C
double B = 2.71; // Pev 2nd coeff mmHg vs °C
double Usair = 0.62*(A + B*Tinair) / P;
double Uair = Z*Usair;
double Kua = hga / Cu;
double L0 = 19292; // kg/h
typedef vector< double > state_type;
vector <double> pack_height;
vector <double> Umidity;
vector <double> T_liquid;
vector <double> T_gas;
vector <double> Liquid_flow;
vector <double> Gas_flow;
void rhs(const state_type& x , state_type& dxdt , const double z )
{// U Tl Tg L G
double Ti = (hla*x[1] + hga*x[2] + Kua*DHev*(x[0] - 0.62*A / P)) / (hla + hga + Kua*DHev*0.62*B / P);
double Ui = 0.62*(A + B*Ti) / P;
dxdt[0] = Kua*(Ui - x[0]) / Gdry / 100;
dxdt[1] = hla*(x[1] - Ti) / x[3] / CpL / 100;
dxdt[2] = hga*(Ti - x[2]) / Gdry / Cu / 100;
dxdt[3] = Kua*(Ui - x[0]) / 100;
dxdt[4] = Kua*(Ui - x[0]) / 100;
}
void write_output(const state_type& x, const double z)
{
pack_height.push_back(z);
Umidity.push_back(x[0]);
T_liquid.push_back(x[1]);
T_gas.push_back(x[2]);
Liquid_flow.push_back(x[3]);
Gas_flow.push_back(x[4]);
cout << z << " " << x[0] << " " << x[1] << " " << x[2] << " " << x[3] << " " << x[4] << endl;
}
int main()
{
state_type x(5);
x[0] = Uair;
x[1] = ToutH2O;
x[2] = Tinair;
x[3] = L0;
x[4] = Gdry;
double z0 = 0.0;
double zf = 5.5;
double stepsize = 0.001;
integrate( rhs , x , z0 , zf , stepsize , write_output );
return 0;
}
And this is the final results that i get from the prompt:
0 0.00183349 25 20 19292 15000
0.001 0.00183356 25 20 19292 15000
0.0055 0.0018339 25.0002 20.0001 19292 15000
0.02575 0.00183542 25.001 20.0007 19292 15000
0.116875 0.00184228 25.0046 20.003 19292.1 15000.1
0.526938 0.00187312 25.0206 20.0135 19292.6 15000.6
2.37222 0.00201203 25.0928 20.0608 19294.7 15002.7
5.5 0.00224788 25.2155 20.142 19298.2 15006.2
Only the first iteration has the right-asked stepsize.. and obiviously the solution is not the right one.. what can i do? Thank you in advance. :)
If you read the documentation, then you will find that the constant step-size routines are integrate_const and integrate_n_steps, or possibly integrate_adaptive with a non-controlled stepper.
The short call to integrate uses the standard dopri5 stepper with adaptive step size, so that the changing step size is no surprise. You could possibly use the dense output of the stepper to interpolate values at equidistant times.

4th Order Adams-Moulton Method C++

I am trying to solve an ODE using 4th Order Runge Kutta and the 4th Order Adams-Moulton Method. I iterate over a couple of thousand timesteps and it seems to hold fine when the values are constant(first 50 or so) However, the very first iteration when a change in input value jumps(current(I) changes from 0 to 1) it won't converge.
In order to satisfy the 4th Order Adams-Moulton Method I have split each timestep in the main function into 5 smaller timesteps so the 5th inner step will equal the next time step (0.1s) in the main function.
I will be very grateful for any advice/help!!
The code is below
#include <iostream>
#include <cmath>
using namespace std;
double state_deriv(double Vc,double I, double OCV1, double C, double Rct)
{
double newVc = (OCV1 - Vc) / (C * Rct) - (I / C);
return newVc;
}
double predict(double Vc,double Vc_[],double dt,double I_[],double OCV1_[],double C_[],double Rct_[])
{
double fn[4];
fn[0] = state_deriv(Vc_[0], I_[0],OCV1_[0],C_[0],Rct_[0]);
fn[1] = state_deriv(Vc_[1], I_[1],OCV1_[1],C_[1],Rct_[1]);
fn[2] = state_deriv(Vc_[2], I_[2],OCV1_[2],C_[2],Rct_[2]);
fn[3] = state_deriv(Vc_[3], I_[3],OCV1_[3],C_[3],Rct_[3]);
// value of next y(predicted) is returned
double y1p = Vc_[3] + (dt/24)*(55*fn[3] - 59*fn[2] + 37 *fn[1] - 9 *fn[0]);
return y1p;
}
double correct(double Vc,double Vc_[],double Vc1,double dt,double I_[],double OCV1_[],double C_[],double Rct_[])
{
double e = 0.0001;
double Vc1c = Vc1;
double fn[4];
fn[1] = state_deriv(Vc_[1], I_[1],OCV1_[1],C_[1],Rct_[1]);
fn[2] = state_deriv(Vc_[2], I_[2],OCV1_[2],C_[2],Rct_[2]);
fn[3] = state_deriv(Vc_[3], I_[3],OCV1_[3],C_[3],Rct_[3]);
do {
Vc1 = Vc1c;
fn[4] = state_deriv(Vc1, I_[4],OCV1_[4],C_[4],Rct_[4]);
Vc1c = Vc_[3] + dt/24*(9*fn[4] + 19*fn[3] - 5*fn[2] + fn[1]);
} while (fabs(Vc1c - Vc1) > e);
// every iteration is correcting the value
// of state deriv using average slope
return Vc1c;
}
double predictor_corrector(double Vc, double dt, double I[], double* OCV1, double* C, double* Rct)
{
//double x = time[0];
//double xn = time[1];
double h = dt;
//4th order RKK TO predict 4 values
double I_[4],OCV1_[5],C_[5],Rct_[5];
I_[0] = I[0];
OCV1_[0] = OCV1[0];
C_[0] = *C;
Rct_[0] = *Rct;
I_[4] = I[1];
OCV1_[4] = OCV1[1];
C_[4] = *C;
Rct_[4] = *Rct;
double newdt;
for(int i = 1;i<4;i++){
newdt = i * dt/5;
I_[i] = I_[0] + (I[1]-I[0]) * (newdt/dt);
OCV1_[i] = OCV1_[0] + (OCV1[1] - OCV1[0])*(newdt/dt);
Rct_[i] = *Rct;
C_[i] = *C;
}
//now do rk4 on each step
double k1,k2,k3,k4;
double Vc_[4];
Vc_[0] = Vc;
for(int i = 1;i<4;i++) {
// 4th order runge kutta
k1 = dt/4 * state_deriv(Vc_[i-1], *I, *OCV1, *C, *Rct);
k2 = dt/4 * state_deriv(Vc_[i-1]+k1/2.0, I_[i], OCV1_[i], *C, *Rct);
k3 = dt/4 * state_deriv(Vc_[i-1]+k2/2.0, I_[i], OCV1_[i], *C, *Rct);
k4 = dt/4 * state_deriv(Vc_[i-1]+k3, I_[i], OCV1_[i], *C, *Rct);
Vc_[i] = Vc_[i-1] + (1.0 / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4);
}
double y1p = predict(Vc,Vc_,dt/4,I_,OCV1_,C_,Rct_);
double y1c = correct(Vc,Vc_,y1p,dt/4,I_,OCV1_,C_,Rct_);
Vc = y1c;
cout << Vc << endl;
return Vc;
}
int main()
{
double R1 = 0.0315973;
double C = 0.00100284;
double Vc[5];
double OCV1[5];
double I[5];
Vc[0] = 4.15;
double dt = 0.1;
for(int i=0;i<3;i++){
OCV1[i] = 4.15;
I[i] = 0;
}
I[3]=I[4]=1;
OCV1[3] = 4.13;
OCV1[4] = 4.10;
double I_[2];
for(size_t i=1;i<4;i++){
Vc[i] = predictor_corrector(Vc[i-1],dt,&I[i-1],&OCV1[i-1],&C,&R1);
}
}

using boost::bisect on a series of equations

I just started using boost today and found this post to be extremely helpful. I am attempting to use boost::bisect to solve a parametric equation for a series of values. The following works if I want to solve for a value of 0.8:
#include <boost/math/tools/roots.hpp>
//declare constants
const double Y_r = 0.2126;
const double Y_g = 0.7152;
const double Y_b = 0.0722;
struct FunctionToApproximate {
double operator() (double x) {
return (pow (x, 2.4) * Y_r) + (pow ((x*0.6)+0.4, 2.4) * Y_g) + (1 * Y_b) - 0.8;
}
};
struct TerminationCondition {
bool operator() (double min, double max) {
return fabs(min - max) <= t_c;
}
};
using boost::math::tools::bisect;
std::pair<double, double> result = bisect(FunctionToApproximate(), 0.0, 1.0, TerminationCondition());
double root = (result.first + result.second) / 2;
I would like to wrap this in a loop so I could solve for values other than 0.8. How would I go about this?
Many thanks!
You can add a state/data member to FunctionToApproximate to hold the value that you want to substract in each call:
struct FunctionToApproximate {
FunctionToApproximate(double val) :val(val){}
double operator() (double x) {
return (pow (x, 2.4) * Y_r) + (pow ((x*0.6)+0.4, 2.4) * Y_g) + (1 * Y_b) - val;
}
double val;
};
Then wrap the calculations inside a loop should be straight forward.
for(double i = 0.1; i <= 1.0; i+=1.0) {
std::pair<double, double> result = bisect(FunctionToApproximate(i), 0.0, 1.0, TerminationCondition());
double root = (result.first + result.second) / 2;
}

C++ changing instance variables [closed]

Closed. This question needs debugging details. It is not currently accepting answers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Closed 8 years ago.
Improve this question
I am trying to write a program to calculate an n-body problem. I have run into a problem trying to change my code so it would be easily adaptable for any number of bodies. There seems to be a problem with the function corr(), the changes made to some variables of the instances of the class particle in this function seem to get lost after the function corr() has been used. How do i solve this problem?
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <fstream>
#define h 1000.0
#define G 6.67384*pow(10.0,-11)
using namespace std;
class particle{
public:
double kx1,kx2,kx3,kx4, kv1, kv2, kv3, kv4;
double ky1, ky2, ky3, ky4, kvy1, kvy2, kvy3, kvy4;
double x,y,vx,vy,m;
double dist(particle aap){
double dx = x - aap.x;
double dy = y - aap.y;
return sqrt(pow(dx,2.0)+pow(dy,2.0));
}
double g(double x1, double y1,particle aap){
return G*aap.m*(aap.x-x1)/pow(dist(aap),3.0);
}
double p(double x1, double y1, particle aap){
return G*aap.m*(aap.y-y1)/pow(dist(aap),3.0);
}
void update(){ //zet het object 1 stap vooruit
x = x + (1/6.0)*(kx1+2*kx2+2*kx3+kx4);
vx = vx + (1/6.0)*(kv1+2*kv2+2*kv3+kv4);
y = y + (1/6.0)*(ky1+2*ky2+2*ky3+ky4);
vy = vy + (1/6.0)*(kvy1+2*kvy2+2*kvy3+kvy4);
}
void create(double x1, double y1, double vx1, double vy1, double m1){
x = x1;
y = y1;
vx = vx1;
vy = vy1;
m =m1;
}
bool operator ==(particle &other){
if(x == other.x && y == other.y && vx == other.vx && vy == other.vy){
return true;
}
}
};
particle zon, maan, aarde;
void set(){
zon.create(1, 1, -2, 1, 2*pow(10.0,30));
aarde.create(1.5*pow(10.0,11), 0, 2, 29780, 6*pow(10.0,24));
maan.create(aarde.x + 1, aarde .y + 3.844399*pow(10.0,8), aarde.vx + -1022.0, aarde.vy + 1, 7.3347*pow(10.0,22));
}
double xforce(double x1, double y1, particle aap){ //kracht in de x-richting
particle bodies[] = {zon, aarde, maan};
double fx;
for (int i = 0; i < 3; i++){
if (bodies[i].x == aap.x && bodies[i].y == aap.y && bodies[i].vx == aap.vx && bodies[i].vy == aap.vy ){;}
else{
fx += aap.g(x1,y1,bodies[i]);
}
}
return fx;
}
double yforce(double x1, double y1, particle aap){ //kracht in de y-richting
particle bodies[] = {zon, aarde, maan};
double fy;
for (int i = 0; i <= 3; i++){
if (bodies[i].x == aap.x && bodies[i].y == aap.y && bodies[i].vx == aap.vx && bodies[i].vy == aap.vy) {;}
else{
fy += aap.p(x1,y1,bodies[i]);
}
}
return fy;
}
void corr(particle body){
body.kx1 = h*body.vx;
body.kv1 = h*xforce(body.x, body.y, body);
body.ky1 = h*body.vy;
body.kvy1 =h*yforce(body.x, body.y, body);
body.kx2 = h*(body.vx + 0.5*body.kv1);
body.kv2 = h*xforce(body.x + 0.5*body.kx1, body.y + 0.5*body.ky1, body);
body.ky2 = h*(body.vy + 0.5*body.kvy1);
body.kvy2 = h*yforce(body.x + 0.5*body.kx1, body.y + 0.5*body.ky1, body);
body.kx3 = h*(body.vx+ 0.5*body.kv2);
body.kv3 = h*xforce(body.x + 0.5*body.kx2, body.y + 0.5*body.ky2, body);
body.ky3 = h*(body.vy+ 0.5*body.kvy2);
body.kvy3 = h*yforce(body.x + 0.5*body.kx2, body.y + 0.5*body.ky2,body);
body.kx4 = h*(body.vx+body.kv3);
body.kv4 = h*xforce(body.x+ body.kx3, body.y + body.ky3, body);
body.ky4 = h*(body.vy + body.kvy3);
body.kvy4 = h*yforce(body.x + body.kx3, body.y + body.ky3, body);
}
void bereken(){
set();
ofstream file;
file.open("3body.txt");
for(int i =0; i <=30000; i++){
corr(maan);
corr(zon);
corr(aarde);
zon.update();
aarde.update();
maan.update();
file << i*h <<" "<< zon.x << " "<< zon.y << " "<< zon.vx<< " "<< zon.vy <<" "<< aarde.x << " " << aarde.y <<" "<< aarde.vx <<" " << aarde.vy <<" "<< maan.x<<" "<<maan.y<<"\n";
}
file.close();
}
int main()
{
set();
bereken();
system("pause");
return 0;
}
Just use references:
void corr(particle& body)
The same fix has to be applied in other places. What you currently have is a code that COPIES your object, does some calculations on it and then just deletes this temporary object... By using reference (&) you effectively "share" the object between the caller and callee.
In your class methods you should also use references for passing this object, but this time for efficiency reasons - it's simple to pass reference (usually the same as pointer), but copying this huge object takes time.
The suggestion made by Freddie Chopin worked and fixed the function corr(). Now however i came across the fact that the functions xforce() and yforce() don't work properly. They are supposed to return the total force on a certain particle, which they do in the first step, but after that they seem to be returning wrong values. Anyone has an idea why that happens?

In C++ finding sinx value with Taylor's Series

I am trying to write a block of codes in C++ that calculates sinX value with Taylor's series.
#include <iostream>
using namespace std;
// exp example
#include <cstdio> // printf
#include <cmath> // exp
double toRadians(double angdeg) //convert to radians to degree
{ //x is in radians
const double PI = 3.14159265358979323846;
return angdeg / 180.0 * PI;
}
double fact(double x) //factorial function
{ //Simply calculates factorial for denominator
if(x==0 || x==1)
return 1;
else
x * fact(x - 1);
}
double mySin(double x) //mySin function
{
double sum = 0.0;
for(int i = 0; i < 9; i++)
{
double top = pow(-1, i) * pow(x, 2 * i + 1); //calculation for nominator
double bottom = fact(2 * i + 1); //calculation for denominator
sum = sum + top / bottom; //1 - x^2/2! + x^4/4! - x^6/6!
}
return sum;
}
int main()
{
double param = 45, result;
result = mySin(toRadians(param)); //This is my sin value
cout << "Here is my homemade sin : " << result << endl;
result = sin(param); //This is library value
cout << "Here is the API sin : " << result << endl;
return 0;
}
So my program works without any error. My output is exactly:
Here is my homemade sin : nan
Here is the API sin:0.850904
I know I am making a big logic mistake but I couldn't find it out. It is my second week with C++. I am more familiar with Java. I coded the same thing and It worked absolutely perfect. The answers matched each other.
Thanks for your time and attention!
in fact, you miss the return: x*fact(x-1); should be return x*fact(x-1);. You can see the compiler complaining if you turn the warnings on. For example, with GCC, calling g++ -Wall program.cpp gives Warning: control reaches end of non-void function for the factorial function.
The API sin also needs the angle in radians, so change result=sin(param); into result=sin(toRadians(param));. Generally, if in doubt about the API, consult the docs, like here.
Your codes seems to have some logical mistakes. Here is my corrected one:
#include <iostream>
using namespace std;
double radians(double degrees) // converts degrees to radians
{
double radians;
double const pi = 3.14159265358979323846;
radians = (pi/180)*degrees;
return radians;
}
double factorial(int x) //calculates the factorial
{
double fact = 1;
for(; x >= 1 ; x--)
{
fact = x * fact;
}
return fact;
}
double power(double x,double n) //calculates the power of x
{
double output = 1;
while(n>0)
{
output =( x*output);
n--;
}
return output;
}
float sin(double radians) //value of sine by Taylors series
{
double a,b,c;
float result = 0;
for(int y=0 ; y!=9 ; y++)
{
a= power(-1,y);
b= power(radians,(2*y)+1);
c= factorial((2*y)+1);
result = result+ (a*b)/c;
}
return result;
}
double n,output;
int main()
{
cout<<"enter the value\t";
cin>>n;
n = radians(n);
cout<< "\nthe value in radians is\t"<< n << "\n";
output = sin(n);
cout<< "\nsine of the given value is\t"<< output;
return 0;
}
The intention of this program was to use custom functions instead of libraries to make learning for others easy.
There are four user defined functions in this program.The first three user defined functions 'radians()', 'factorial()','power()', are apparently simple functions that perform operations as their name suggests.
The fourth function 'sin()' takes input in radians given by the function 'radians()'. The sin function uses Taylors series iterated term wise in the function's 'for(int y= 0;y!=9;y++)' loop till nine iterations to calculate the output.The 'for()' loop iterates the general mathematical expression: Term(n)=((-1)^n).(x^(2n+1))/(2n+1)!
sin(x)= x- x^3/3! + x^5/5! -x^7/7! + x^9/9!
=x-x^3/2*3 (1- x^2/4*5 + x^4/4*5*6*7 + x^6/4*5*6*7*8*9)
=x - x^3/2*3 {1- x^2/4*5(1- x^2/6*7 + x^4/6*7*8*9)}
=x - x^3/2*3 [{1- x^2/4*5 ( 1- x^2/6*7 (1- x^2/8*9))}]
=x(1 - x^2/2*3 [{1- x^2/4*5 ( 1- x^2/6*7 (1- x^2/8*9))}])
double sin_series_recursion(double x, int n){
static double r=1;
if(n>1){
r=1-((x*x*r)/(n*(n-1)));
return sin_series_recursion(x,n-2);
}else return r*x;
}