Exception handling mechanism on Solaris - c++

I'm building an error handling mechanism for a C++ application. Right now, I got the windows part done using VectoredExceptionHandling and I wanted to know if there is a similar concept on Solaris. Basically, whenever an exception is thrown from anywhere in the program, I want to have a callback called. Under windows, you can register a callback using AddVectoredExceptionHandler(). How do I do this for Solaris?

Not 100% if this will work, but you can try to mimic the way gdb's catchpoints work: see http://www.delorie.com/gnu/docs/gdb/gdb_31.html The key piece of info is this:
"To stop just before an exception handler is called, you need some knowledge of the implementation. In the case of GNU C++, exceptions are raised by calling a library function named __raise_exception which has the following ANSI C interface:
/* addr is where the exception identifier is stored.
id is the exception identifier. */
void __raise_exception (void **addr, void *id);
To make the debugger catch all exceptions before any stack unwinding takes place, set a breakpoint on __raise_exception"
So, my guess is that you could install your own __raise_exception via LD_PRELOAD trick, for example.

Related

Recoverying from exceptions

In our application (c++) we load 3rd party DLLs using LoadLibrary.
Sometimes these DLLs cause exceptions, such as "Access violation reading location 0x00000000..".
Is it possible to recover from such an exception, for example using try & catch or some other mechanism? in other world, is that possible to create a sandbox within the same process that withstand such events?
Thank you
No. It's not. A DLL has unrestricted access to the process context that calls it. You need to run untrustable DLLs in their own process context.
In Windows, with VisualStudio compiler, may use SEH mechanism.
__try
{
char* ptr = 0;
char val = *ptr;
}
__except(GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION)
{
std::cout<<"AV"<<std::endl;
}
Use option /EHa.
You could try a different type of exception handler:
__try
{
// Code that might cause an access violation goes here.
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
int code = _exception_code();
}
Beware though, such handlers can't be used in any routine where C++ objects need stack unwinding as the compiler will warn you (irritatingly).
You can try the /EH flag - http://msdn.microsoft.com/en-us/library/1deeycx5%28v=vs.80%29.aspx - in Visual Studio, but access violation exceptions most likely mean you're doing something very wrong. I'd let the program crash and try to solve the exception, rather than catching it.
It is not possible in c++ if, it is not possible throws a crossmodules exceptions anymore in any case you will have a memory corruption in your application so you have to find out what is going wrong in your dll. You can check the reason you cant throw exception from dll here:
http://www.codeproject.com/Articles/28969/HowTo-Export-C-classes-from-a-DLL
The people behind Runtime-Compiled C++ are using a thing called Structured Exception Handling for their DLL crash-handling routines. Dig into their website or ask them if you want some code samples.
According to the MSDN, the /EHa switch enables "C++ exception handling with structured exception handling exceptions". So if you're using the msvc compiler, you might want to try this.

Uncaught exception in a callback from a 3rd party static library

I am compiling my program with a 3rd party library. That library contains an error callback if an error occurs internally. Inside that error callback I am throwing an exception and I have a unit test to verify that when I do something invalid that the exception is thrown. This all works beautifully in Windows, but when I test this in linux (fedora) I am getting an abort from an uncaught exception.
I tried wrapping my call directly with a try-catch block but no luck. ( Also, all my code is running within the google test framework which also normally catches exceptions ). The only thing that seems to catch the exception is if I wrap the throw statement in a try block directly within the error callback.
Does anyone have any idea why this would happen and if there is a way to catch the exception?
When you interface with third-party libraries you usually have to catch all exception on the border between your code and their code:
int yourCallback( params )
{
try {
doStuff( params );
return Okay;
} catch (...) {
return Error;
}
}
The reason is you can't be sure that library is written in C++ or it uses the very same version of C++ runtime as your code uses.
Unless you're completely sure that code can deal with your exceptions you can't propagate exceptions to third-party code. The extreme example is COM where both your code and "other code" can be in whatever language and with whatever runtime and you are not allowed to let exceptions propagate through COM boundary.
Usually you should not throw exceptions "through" code you do not know anything about. It might be C code, which will not even clean up after itself.
How to deal with your concrete problem would require concrete information about the 3rd-party library you are interfacing with. What is that callback there for? To give you a chance to fix stuff? To inform you that an error occurred? Can you cancel whatever operation it is called from?
One way to deal with such a scenario is to store some information somewhere when the callback is called and check for that information when the actual processing finishes from your function that calls into that library.

Handling C++ exception thrown in function exported to QtScript

I am using the Qt script engine in my application as an alternative way for the user to access its functionality. As such, I export some C++ classes to the Qt ScriptEngine, that will serve as the interface to the application. The problem is, these C++ classes can throw exceptions.
I have a "ScriptInterface" class running on its own thread, listening for requests to process scripts. So when I evaluate a user's script, I have a try/catch block around it to handle exceptions, and print the error to the console in the application.
...
try {
m_engine->evaluate(script, name);
}
catch (Exception const& e) {
// deal with it
}
catch (...) {
// scary message
}
This works perfectly in windows... but doesn't work in linux- the program terminates with this message:
terminate called after throwing an instance of 'Basilisk::InvalidArgumentException'
what(): N8Basilisk24InvalidArgumentExceptionE
Aborted
I had a hunch that it was because the exceptions bubbled up to the event handler (since the script engine uses signals to call the functions in my exported classes), so I reimplemented QApplication::notify, to handle exceptions there, but they weren't caught.
My question is, am I doing something fundamentally wrong? Also, as an alternative, is it possible to explicitly throw script exceptions from within my C++ classes?
Thanks in advance
EDIT: fixed the description to include the catch(...) statement.
UPDATE (SOLUTION): I "fixed" this problem by following a strategy similar to the one outlined in the accepted answer. Although I haven't gone to the source of why the exceptions don't get caught on linux (my suspicion now, is that m_engine->evaluate spawn a seperate thread on linux), but I have started using the intended way of exception throwing in Qt Scripts, and that is QScriptContext::throwError().
In cases where my function would look like this: (random example)
void SomeClass::doStuff(unsigned int argument) {
if (argument != 42) {
throw InvalidArgumentException(
"Not the answer to Life, the Universe and Everything.");
}
// function that is not part of the scripting environment,
// and can throw a C++ exception
dangerousFunction(argument);
}
It is now this: (pay particular attention to the return type)
QScriptValue SomeClass::doStuff(unsigned int argument) {
if (argument != 42) {
// assuming m_engine points to an instance of
// QScriptEngine that will be calling this function
return m_engine->currentContext()->throwError(QScriptContext::SyntaxError,
"Not the answer to Life, the Universe and Everything.");
}
try {
// function that is not part of the scripting environment,
// and can throw a C++ exception
dangerousFunction(argument);
} catch (ExpectedException const& e) {
return m_engine->currentContext()->throwError(QScriptContext::UnknownError,
e.message());
}
// if no errors returned, return an invalid QScriptValue,
// equivalent to void
return QScriptValue();
}
So where does one deal with these script errors? After the call to QScriptEngine::evaluate() you can check whether there are any uncaught exceptions, with QScriptEngine::hasUncaughtException(), obtain the error object with uncaughtException(), and now you have the message, the trace, and line number in the script where the error occured!
Hope this helps someone out!
I ran into a similar type of problem when trying to use SWIG with Python to wrap C++ libraries. Eventually what happened was that I made a stub for all the wrapped classes which caught the exception and failed quietly. Luckily I had the luxury of wrapping functionality which only passed container classes and state pattern objects, so I could easily check if something was amiss. May I suggest the same for you?
Wrap the functions you want with another function, same interface except the return value.
Create an object that contains not only the requested return type but also an error indicator.
Have the script make sure to check for the exceptions.
And yes, it's very possible for a script engine to throw C++ exceptions if you've given it access to an exception factory (a class whose sole purpose is to throw C++ exceptions.)
Run your program under a debugger and place a breakpoint inside your runtime library's terminate() function. That way you'll stop on terminate() in the debugger and by inspecting the call stack you will then see from where terminate() was called.

Crashing C++ application including ada dll does not generate core dump

How do I get a C++ application including a loaded ada shared library to generate a core dump when crashing?
I have a C++ application which loads a ada shared library, inside the ada code I get a stack overflow error which causes program termination along with the console output:
raised STORAGE ERROR
No core dump file is generated even thou I have issued a "ulimit -c unlimited" before starting the application.
Same thing happens if I send a kill SIGSEGV to the application.
Sending kill SIGSEGV to another application that does not use the ada dll generates a core dump file just the way I want it to.
Found some information here: http://objectmix.com/ada/301203-gnat-fstack-check-does-work.html
UPDATED!
As mentioned by Adrien, there is no contradiction, -s sets the stack limit while -c sets the core file limit.
Still the problem remains. I checked the flags when building the ada library and the fstack-check flag was not set, so it should generate a core dump.
Althou I haven't tried it yet, it seems somewhat strange.
It mentions the -fstack-check compiler option + setting the GNAT_STACK_LIMIT variable but at the same time refers to the ulimit command which seems like a contradiction, setting "ulimit -c " is the only way I know of getting a core dump to be generated at the time of crash, if this infers with the fstack-check option then we have a catch 22.
Now, almost 2 years later (still working at the same company as Kristofer did when he asked the question), was the question raised again - and finally I think that I understands why no core-dump is generated!!
The problem is caused by the Ada run-time, which by default implements a signal handler for some POSIX-signals (for Linux: SIGABRT, SIGFPE, SIGILL, SIGSEGV and SIGBUS). For GNAT/linux the signal handler is called __gnat_error_handler in a-init.c, which looks something like this:
static void
__gnat_error_handler (int sig)
{
struct Exception_Data *exception;
char *msg;
static int recurse = 0;
...
switch (sig)
{
case SIGSEGV:
if (recurse)
{
exception = &constraint_error;
msg = "SIGSEGV";
}
else
{
...
msg = "stack overflow (or erroneous memory access)";
exception = &storage_error;
}
break;
}
recurse = 0;
Raise_From_Signal_Handler (exception, msg);
}
This handler is "process wide", and will be called by any trigged signal, no matter from which part of the process it originates from (no matter if coded in Ada/C/C++...).
When called, the handler rises an Ada-exception and leaves it to the Ada runtime to find an appropriate exception handler - if no such handler is found (eg. when an SIGSEGV is generated by any part of the C++-code), the Ada-runtime falls back to just terminate the process and just leave a simple printout from __gnat_error_handler (eg. "stack overflow (or erroneous memory access)").
http://www2.adacore.com/gap-static/GNAT_Book/html/node25.htm
To prevent Ada-runtime from handling a POSIX-signal, and convert it to an Ada-exception, it is possible to disable the default beahviour by using
pragma Interrupt_State (Name => value, State => SYSTEM | RUNTIME | USER);,
eg. to disable handling of SIGSEGV, define
Pragma Interrupt_State(SIGSEGV, SYSTEM);
in your Ada-code - now the system's default behaviour will be trigged when a SIGSEGV is raised, and a core-dump will be generated that allows you to trace down the origin of the problem!
I think this is a quite important issue to be aware of when mixing Ada and C/C++ on *NIX-platforms, since it may mislead you to think that problems origins from the Ada-code(since the printout indicates an exception generated from Ada) when the real source of the problem lays in the C/C++-code...
Although it is probably safe to disable the Ada-runtime default handling of SIGSEGV (I guess no sane programmer using this in any "expected" error handling... Well, maybe used in aviation software or similar, when some sort of "last resort" functionallity needs to be maintained to avoid something really bad from happening..) i guess a bit caution should be taken then "overriding" the Ada-runtime handling for signals.
One issue may be the SIGFPE-signal, which also raises an Ada Constraint_Error-exception by default. This type of exception may be used by the Ada-code as an "excpected behaviour".
Disabling SIGFPE by Pragma Interrupt_State may seriously affect the execution of the Ada-code, and crash your application during "normal circumstances" - on the other hand will any division by zero in the C/C++-code trig the Ada-exception handling mechanism, and leave you without any real trace of the origin of the problem...
This looks to me like a really good use for your AdaCore support. You aren't liable to find a whole lot of folk outside that company who are that familiar with the implications of the interactions between Gnu Ada's runtime and C++'s.
I would suggest for debugging the Ada code that you try putting in a last-ditch exception handler around everything, which in turn dumps the exception stack. Most vendors have some way of doing that, usually based off of Ada.Exceptions.Exception_Information and Ada.Exceptions.Exception_Message.
I found a discussion from a security perspective (finding malware). Basically there are 10 signals that you can try, SIGSEGV is only one of them.
It seems you can simply call sigaction(SIGSEGV, 0, SIG_DFL); to restore the default signal behavior.

Finding out the source of an exception in C++ after it is caught?

I'm looking for an answer in MS VC++.
When debugging a large C++ application, which unfortunately has a very extensive usage of C++ exceptions. Sometimes I catch an exception a little later than I actually want.
Example in pseudo code:
FunctionB()
{
...
throw e;
...
}
FunctionA()
{
...
FunctionB()
...
}
try
{
Function A()
}
catch(e)
{
(<--- breakpoint)
...
}
I can catch the exception with a breakpoint when debugging. But I can't trace back if the exception occurred in FunctionA() or FunctionB(), or some other function. (Assuming extensive exception use and a huge version of the above example).
One solution to my problem is to determine and save the call stack in the exception constructor (i.e. before it is caught). But this would require me to derive all exceptions from this base exception class. It would also require a lot of code, and perhaps slow down my program.
Is there an easier way that requires less work? Without having to change my large code base?
Are there better solutions to this problem in other languages?
You pointed to a breakpoint in the code. Since you are in the debugger, you could set a breakpoint on the constructor of the exception class, or set Visual Studio debugger to break on all thrown exceptions (Debug->Exceptions Click on C++ exceptions, select thrown and uncaught options)
If you are just interested in where the exception came from, you could just write a simple macro like
#define throwException(message) \
{ \
std::ostringstream oss; \
oss << __FILE __ << " " << __LINE__ << " " \
<< __FUNC__ << " " << message; \
throw std::exception(oss.str().c_str()); \
}
which will add the file name, line number and function name to the exception text (if the compiler provides the respective macros).
Then throw exceptions using
throwException("An unknown enum value has been passed!");
There's an excellent book written by John Robbins which tackles many difficult debugging questions. The book is called Debugging Applications for Microsoft .NET and Microsoft Windows. Despite the title, the book contains a host of information about debugging native C++ applications.
In this book, there is a lengthy section all about how to get the call stack for exceptions that are thrown. If I remember correctly, some of his advice involves using structured exception handling (SEH) instead of (or in addition to) C++ exceptions. I really cannot recommend the book highly enough.
Put a breakpoint in the exception object constructor. You'll get your breakpoint before the exception is thrown.
There is no way to find out the source of an exception after it's caught, unless you include that information when it is thrown. By the time you catch the exception, the stack is already unwound, and there's no way to reconstruct the stack's previous state.
Your suggestion to include the stack trace in the constructor is your best bet. Yes, it costs time during construction, but you probably shouldn't be throwing exceptions often enough that this is a concern. Making all of your exceptions inherit from a new base may also be more than you need. You could simply have the relevant exceptions inherit (thank you, multiple inheritance), and have a separate catch for those.
You can use the StackTrace64 function to build the trace (I believe there are other ways as well). Check out this article for example code.
Here's how I do it in C++ using GCC libraries:
#include <execinfo.h> // Backtrace
#include <cxxabi.h> // Demangling
vector<Str> backtrace(size_t numskip) {
vector<Str> result;
std::vector<void*> bt(100);
bt.resize(backtrace(&(*bt.begin()), bt.size()));
char **btsyms = backtrace_symbols(&(*bt.begin()), bt.size());
if (btsyms) {
for (size_t i = numskip; i < bt.size(); i++) {
Aiss in(btsyms[i]);
int idx = 0; Astr nt, addr, mangled;
in >> idx >> nt >> addr >> mangled;
if (mangled == "start") break;
int status = 0;
char *demangled = abi::__cxa_demangle(mangled.c_str(), 0, 0, &status);
Str frame = (status==0) ? Str(demangled, demangled+strlen(demangled)) :
Str(mangled.begin(), mangled.end());
result.push_back(frame);
free(demangled);
}
free(btsyms);
}
return result;
}
Your exception's constructor can simply call this function and store away the stack trace. It takes the param numskip because I like to slice off the exception's constructor from my stack traces.
There's no standard way to do this.
Further, the call stack must typically be recorded at the time of the exception being thrown; once it has been caught the stack has unrolled, so you no longer know what was going on at the point of being thrown.
In VC++ on Win32/Win64, you might get usable-enough results by recording the value from the compiler intrinsic _ReturnAddress() and ensuring that your exception class constructor is __declspec(noinline). In conjunction with the debug symbol library, I think you could probably get the function name (and line number, if your .pdb contains it) that corresponds to the return address using SymGetLineFromAddr64.
In native code you can get a shot at walking the callstack by installing a Vectored Exception handler. VC++ implements C++ exceptions on top of SEH exceptions and a vectored exception handler is given first shot before any frame based handlers. However be really careful, problems introduced by vectored exception handling can be difficult to diagnose.
Also Mike Stall has some warnings about using it in an app that has managed code. Finally, read Matt Pietrek's article and make sure you understand SEH and vectored exception handling before you try this. (Nothing feels quite so bad as tracking down a critical problem to code you added help track down critical problems.)
I believe MSDev allows you to set break points when an exception is thrown.
Alternatively put the break point on the constructor of your exception object.
If you're debugging from the IDE, go to Debug->Exceptions, click Thrown for C++ exceptions.
Other languages? Well, in Java you call e.printStackTrace(); It doesn't get much simpler than that.
In case anyone is interested, a co-worker replied to this question to me via email:
Artem wrote:
There is a flag to MiniDumpWriteDump() that can do better crash dumps that will allow seeing full program state, with all global variables, etc. As for call stacks, I doubt they can be better because of optimizations... unless you turn (maybe some) optimizations off.
Also, I think disabling inline functions and whole program optimization will help quite a lot.
In fact, there are many dump types, maybe you could choose one small enough but still having more info
http://msdn.microsoft.com/en-us/library/ms680519(VS.85).aspx
Those types won't help with call stack though, they only affect the amount of variables you'll be able to see.
I noticed some of those dump types aren't supported in dbghelp.dll version 5.1 that we use. We could update it to the newest, 6.9 version though, I've just checked the EULA for MS Debugging Tools -- the newest dbghelp.dll is still ok to redistribute.
I use my own exceptions. You can handle them quite simple - also they contain text. I use the format:
throw Exception( "comms::serial::serial( )", "Something failed!" );
Also I have a second exception format:
throw Exception( "comms::serial::serial( )", ::GetLastError( ) );
Which is then converted from a DWORD value to the actual message using FormatMessage. Using the where/what format will show you what happened and in what function.
By now, it has been 11 years since this question was asked and today, we can solve this problem using only standard C++11, i.e. cross-platform and without the need for a debugger or cumbersome logging.
You can trace the call stack that led to an exception
Use std::nested_exception and std::throw_with_nested
This won't give you a stack unwind, but in my opinion the next best thing.
It is described on StackOverflow here and here, how you can get a backtrace on your exceptions inside your code without need for a debugger or cumbersome logging, by simply writing a proper exception handler which will rethrow nested exceptions.
It will, however, require that you insert try/catch statements at the functions you wish to trace (i.e. functions without this will not appear in your trace).
You could automate this with macros, reducing the amount of code you have to write/change.
Since you can do this with any derived exception class, you can add a lot of information to such a backtrace!
You may also take a look at my MWE on GitHub, where a backtrace would look something like this:
Library API: Exception caught in function 'api_function'
Backtrace:
~/Git/mwe-cpp-exception/src/detail/Library.cpp:17 : library_function failed
~/Git/mwe-cpp-exception/src/detail/Library.cpp:13 : could not open file "nonexistent.txt"