Regular expression to find two sets of 11 only - regex

Hello guys I need to find a regular expression that takes strings with two sets of 11 only
from a set {0,1,2}
0011110000 match it only has two sets
0010001001100 does not match (only has one set)
0000011000110011 does not match (it has three sets)
00 does not match (it has no set
0001100000110001 match it only has two sets
This is what I've done so far
([^1]|1(0|2|3)(0|2|3)*)*11([^1]|1(0|2|3)(0|2|3)*)*11([^1]|1(0|2|3)(0|2|3)*|1$)*
--------------------------
I think what I'm missing is that I need to make sure the underlined section of the above regular expression has to make sure there is no more "11" left in the string, and I don't think that section is working correctly.

You could use a regular expression, but you've got much simpler options available to you. Here's an example in C#:
public bool IsValidString(string input)
{
return input.Split(new string[] { "11" }, StringSplitOptions.None).Length == 3;
}
Although regular expressions can be a very useful tool, their usage is not always warranted. As jwz put it:
Some people, when confronted with a problem, think "I know, I'll use regular expressions." Now they have two problems.

If this is not homework, then I would suggest avoiding a regex and going with a regular function (shown here is JavaScript):
function hasTwoElevensOnly(s) {
var first = s.indexOf("11");
if (first < 0) return false;
var second = s.indexOf("11", first + 2);
if (second < 0) return false;
return s.indexOf("11", second + 2) < 0;
}
Code here: http://jsfiddle.net/8FMRH/
function hasTwoElevensOnly(s) {
return /^((0|1(?!1)|2)*?11(0|1(?!1)|2)*?){2}$/.test(s);
}
If a regex is required,
COde here: http://jsfiddle.net/PAARn/1/

most of regex comes with the restriction of appearance, usually in {}. For example, in JavaScript, you could do something like:
/^((10|0)*11(01|0)*){2}$/
Which mataches 2 set of 11 prefixed and suffixed with 0+ 0 in the string.

There may be a simpler way, but starting with your approach, this seems to work on the sample data provided:
/^([^1]|1[023])*11([^1]|1[023])*11((?<!11)|1[023]|[023]|(?<=[023])1)*$/
Using lookbehind.

Related

+ is supposed to be greedy, so why am I getting a lazy result?

Why does the following regex return 101 instead of 1001?
console.log(new RegExp(/1(0+)1/).exec('101001')[0]);
I thought that + was greedy, so the longer of the two matches should be returned.
IMO this is different from Using javascript regexp to find the first AND longest match because I don't care about the first, just the longest. Can someone correct my definition of greedy? For example, what is the difference between the above snippet and the classic "oops, too greedy" example of new RegExp(/<(.+)>/).exec('<b>a</b>')[0] giving b>a</b?
(Note: This seems to be language-agnostic (it also happens in Perl), but just for ease of running it in-browser I've used JavaScript here.)
Regex always reads from left to right! It will not look for something longer. In the case of multiple matches, you have to re-execute the regex to get them, and compare their lengths yourself.
Greedy means up to the rightmost occurrence, it never means the longest in the input string.
Regex itself is not the correct tool to extract the longest match. You might get all the substrings that match your pattern, and get the longest one using the language specific means.
Since the string is parsed from left to right, 101 will get matched in 101001 first, and the rest (001) will not match (as the 101 and 1001 matches are overlapping). You might use /(?=(10+1))./g and then check the length of each Group 1 value to get the longest one.
var regex = /(?=(10+1))./g;
var str = "101001";
var m, res=[];
while ((m = regex.exec(str)) !== null) {
res.push(m[1]);
}
console.log(res); // => ["101", "1001"]
if (res.length>0) {
console.log("The longest match:", res.sort(function (a, b) { return b.length - a.length; })[0]);
} // => 1001

Regex Pattern to Match, Excluding when... / Except between

--Edit-- The current answers have some useful ideas but I want something more complete that I can 100% understand and reuse; that's why I set a bounty. Also ideas that work everywhere are better for me than not standard syntax like \K
This question is about how I can match a pattern except some situations s1 s2 s3. I give a specific example to show my meaning but prefer a general answer I can 100% understand so I can reuse it in other situations.
Example
I want to match five digits using \b\d{5}\b but not in three situations s1 s2 s3:
s1: Not on a line that ends with a period like this sentence.
s2: Not anywhere inside parens.
s3: Not inside a block that starts with if( and ends with //endif
I know how to solve any one of s1 s2 s3 with a lookahead and lookbehind, especially in C# lookbehind or \K in PHP.
For instance
s1 (?m)(?!\d+.*?\.$)\d+
s3 with C# lookbehind (?<!if\(\D*(?=\d+.*?//endif))\b\d+\b
s3 with PHP \K (?:(?:if\(.*?//endif)\D*)*\K\d+
But the mix of conditions together makes my head explode. Even more bad news is that I may need to add other conditions s4 s5 at another time.
The good news is, I don't care if I process the files using most common languages like PHP, C#, Python or my neighbor's washing machine. :) I'm pretty much a beginner in Python & Java but interested to learn if it has a solution.
So I came here to see if someone think of a flexible recipe.
Hints are okay: you don't need to give me full code. :)
Thank you.
Hans, I'll take the bait and flesh out my earlier answer. You said you want "something more complete" so I hope you won't mind the long answer—just trying to please. Let's start with some background.
First off, this is an excellent question. There are often questions about matching certain patterns except in certain contexts (for instance, within a code block or inside parentheses). These questions often give rise to fairly awkward solutions. So your question about multiple contexts is a special challenge.
Surprise
Surprisingly, there is at least one efficient solution that is general, easy to implement and a pleasure to maintain. It works with all regex flavors that allow you to inspect capture groups in your code. And it happens to answer a number of common questions that may at first sound different from yours: "match everything except Donuts", "replace all but...", "match all words except those on my mom's black list", "ignore tags", "match temperature unless italicized"...
Sadly, the technique is not well known: I estimate that in twenty SO questions that could use it, only one has one answer that mentions it—which means maybe one in fifty or sixty answers. See my exchange with Kobi in the comments. The technique is described in some depth in this article which calls it (optimistically) the "best regex trick ever". Without going into as much detail, I'll try to give you a firm grasp of how the technique works. For more detail and code samples in various languages I encourage you to consult that resource.
A Better-Known Variation
There is a variation using syntax specific to Perl and PHP that accomplishes the same. You'll see it on SO in the hands of regex masters such as CasimiretHippolyte and HamZa. I'll tell you more about this below, but my focus here is on the general solution that works with all regex flavors (as long as you can inspect capture groups in your code).
Thanks for all the background, zx81... But what's the recipe?
Key Fact
The method returns the match in Group 1 capture. It does not care at
all about the overall match.
In fact, the trick is to match the various contexts we don't want (chaining these contexts using the | OR / alternation) so as to "neutralize them". After matching all the unwanted contexts, the final part of the alternation matches what we do want and captures it to Group 1.
The general recipe is
Not_this_context|Not_this_either|StayAway|(WhatYouWant)
This will match Not_this_context, but in a sense that match goes into a garbage bin, because we won't look at the overall matches: we only look at Group 1 captures.
In your case, with your digits and your three contexts to ignore, we can do:
s1|s2|s3|(\b\d+\b)
Note that because we actually match s1, s2 and s3 instead of trying to avoid them with lookarounds, the individual expressions for s1, s2 and s3 can remain clear as day. (They are the subexpressions on each side of a | )
The whole expression can be written like this:
(?m)^.*\.$|\([^\)]*\)|if\(.*?//endif|(\b\d+\b)
See this demo (but focus on the capture groups in the lower right pane.)
If you mentally try to split this regex at each | delimiter, it is actually only a series of four very simple expressions.
For flavors that support free-spacing, this reads particularly well.
(?mx)
### s1: Match line that ends with a period ###
^.*\.$
| ### OR s2: Match anything between parentheses ###
\([^\)]*\)
| ### OR s3: Match any if(...//endif block ###
if\(.*?//endif
| ### OR capture digits to Group 1 ###
(\b\d+\b)
This is exceptionally easy to read and maintain.
Extending the regex
When you want to ignore more situations s4 and s5, you add them in more alternations on the left:
s4|s5|s1|s2|s3|(\b\d+\b)
How does this work?
The contexts you don't want are added to a list of alternations on the left: they will match, but these overall matches are never examined, so matching them is a way to put them in a "garbage bin".
The content you do want, however, is captured to Group 1. You then have to check programmatically that Group 1 is set and not empty. This is a trivial programming task (and we'll later talk about how it's done), especially considering that it leaves you with a simple regex that you can understand at a glance and revise or extend as required.
I'm not always a fan of visualizations, but this one does a good job of showing how simple the method is. Each "line" corresponds to a potential match, but only the bottom line is captured into Group 1.
Debuggex Demo
Perl/PCRE Variation
In contrast to the general solution above, there exists a variation for Perl and PCRE that is often seen on SO, at least in the hands of regex Gods such as #CasimiretHippolyte and #HamZa. It is:
(?:s1|s2|s3)(*SKIP)(*F)|whatYouWant
In your case:
(?m)(?:^.*\.$|\([^()]*\)|if\(.*?//endif)(*SKIP)(*F)|\b\d+\b
This variation is a bit easier to use because the content matched in contexts s1, s2 and s3 is simply skipped, so you don't need to inspect Group 1 captures (notice the parentheses are gone). The matches only contain whatYouWant
Note that (*F), (*FAIL) and (?!) are all the same thing. If you wanted to be more obscure, you could use (*SKIP)(?!)
demo for this version
Applications
Here are some common problems that this technique can often easily solve. You'll notice that the word choice can make some of these problems sound different while in fact they are virtually identical.
How can I match foo except anywhere in a tag like <a stuff...>...</a>?
How can I match foo except in an <i> tag or a javascript snippet (more conditions)?
How can I match all words that are not on this black list?
How can I ignore anything inside a SUB... END SUB block?
How can I match everything except... s1 s2 s3?
How to Program the Group 1 Captures
You didn't as for code, but, for completion... The code to inspect Group 1 will obviously depend on your language of choice. At any rate it shouldn't add more than a couple of lines to the code you would use to inspect matches.
If in doubt, I recommend you look at the code samples section of the article mentioned earlier, which presents code for quite a few languages.
Alternatives
Depending on the complexity of the question, and on the regex engine used, there are several alternatives. Here are the two that can apply to most situations, including multiple conditions. In my view, neither is nearly as attractive as the s1|s2|s3|(whatYouWant) recipe, if only because clarity always wins out.
1. Replace then Match.
A good solution that sounds hacky but works well in many environments is to work in two steps. A first regex neutralizes the context you want to ignore by replacing potentially conflicting strings. If you only want to match, then you can replace with an empty string, then run your match in the second step. If you want to replace, you can first replace the strings to be ignored with something distinctive, for instance surrounding your digits with a fixed-width chain of ###. After this replacement, you are free to replace what you really wanted, then you'll have to revert your distinctive ### strings.
2. Lookarounds.
Your original post showed that you understand how to exclude a single condition using lookarounds. You said that C# is great for this, and you are right, but it is not the only option. The .NET regex flavors found in C#, VB.NET and Visual C++ for example, as well as the still-experimental regex module to replace re in Python, are the only two engines I know that support infinite-width lookbehind. With these tools, one condition in one lookbehind can take care of looking not only behind but also at the match and beyond the match, avoiding the need to coordinate with a lookahead. More conditions? More lookarounds.
Recycling the regex you had for s3 in C#, the whole pattern would look like this.
(?!.*\.)(?<!\([^()]*(?=\d+[^)]*\)))(?<!if\(\D*(?=\d+.*?//endif))\b\d+\b
But by now you know I'm not recommending this, right?
Deletions
#HamZa and #Jerry have suggested I mention an additional trick for cases when you seek to just delete WhatYouWant. You remember that the recipe to match WhatYouWant (capturing it into Group 1) was s1|s2|s3|(WhatYouWant), right? To delete all instance of WhatYouWant, you change the regex to
(s1|s2|s3)|WhatYouWant
For the replacement string, you use $1. What happens here is that for each instance of s1|s2|s3 that is matched, the replacement $1 replaces that instance with itself (referenced by $1). On the other hand, when WhatYouWant is matched, it is replaced by an empty group and nothing else — and therefore deleted. See this demo, thank you #HamZa and #Jerry for suggesting this wonderful addition.
Replacements
This brings us to replacements, on which I'll touch briefly.
When replacing with nothing, see the "Deletions" trick above.
When replacing, if using Perl or PCRE, use the (*SKIP)(*F) variation mentioned above to match exactly what you want, and do a straight replacement.
In other flavors, within the replacement function call, inspect the match using a callback or lambda, and replace if Group 1 is set. If you need help with this, the article already referenced will give you code in various languages.
Have fun!
No, wait, there's more!
Ah, nah, I'll save that for my memoirs in twenty volumes, to be released next Spring.
Do three different matches and handle the combination of the three situations using in-program conditional logic. You don't need to handle everything in one giant regex.
EDIT: let me expand a bit because the question just became more interesting :-)
The general idea you are trying to capture here is to match against a certain regex pattern, but not when there are certain other (could be any number) patterns present in the test string. Fortunately, you can take advantage of your programming language: keep the regexes simple and just use a compound conditional. A best practice would be to capture this idea in a reusable component, so let's create a class and a method that implement it:
using System.Collections.Generic;
using System.Linq;
using System.Text.RegularExpressions;
public class MatcherWithExceptions {
private string m_searchStr;
private Regex m_searchRegex;
private IEnumerable<Regex> m_exceptionRegexes;
public string SearchString {
get { return m_searchStr; }
set {
m_searchStr = value;
m_searchRegex = new Regex(value);
}
}
public string[] ExceptionStrings {
set { m_exceptionRegexes = from es in value select new Regex(es); }
}
public bool IsMatch(string testStr) {
return (
m_searchRegex.IsMatch(testStr)
&& !m_exceptionRegexes.Any(er => er.IsMatch(testStr))
);
}
}
public class App {
public static void Main() {
var mwe = new MatcherWithExceptions();
// Set up the matcher object.
mwe.SearchString = #"\b\d{5}\b";
mwe.ExceptionStrings = new string[] {
#"\.$"
, #"\(.*" + mwe.SearchString + #".*\)"
, #"if\(.*" + mwe.SearchString + #".*//endif"
};
var testStrs = new string[] {
"1." // False
, "11111." // False
, "(11111)" // False
, "if(11111//endif" // False
, "if(11111" // True
, "11111" // True
};
// Perform the tests.
foreach (var ts in testStrs) {
System.Console.WriteLine(mwe.IsMatch(ts));
}
}
}
So above, we set up the search string (the five digits), multiple exception strings (your s1, s2 and s3), and then try to match against several test strings. The printed results should be as shown in the comments next to each test string.
Your requirement that it's not inside parens in impossible to satify for all cases.
Namely, if you can somehow find a ( to the left and ) to the right, it doesn't always mean you are inside parens. Eg.
(....) + 55555 + (.....) - not inside parens yet there are ( and ) to left and right
Now you might think yourself clever and look for ( to the left only if you don't encounter ) before and vice versa to the right. This won't work for this case:
((.....) + 55555 + (.....)) - inside parens even though there are closing ) and ( to left and to right.
It is impossible to find out if you are inside parens using regex, as regex can't count how many parens have been opened and how many closed.
Consider this easier task: using regex, find out if all (possibly nested) parens in a string are closed, that is for every ( you need to find ). You will find out that it's impossible to solve and if you can't solve that with regex then you can't figure out if a word is inside parens for all cases, since you can't figure out at a some position in string if all preceeding ( have a corresponding ).
Hans if you don't mind I used your neighbor's washing machine called perl :)
Edited:
Below a pseudo code:
loop through input
if line contains 'if(' set skip=true
if skip= true do nothing
else
if line match '\b\d{5}\b' set s0=true
if line does not match s1 condition set s1=true
if line does not match s2 condition set s2=true
if s0,s1,s2 are true print line
if line contains '//endif' set skip=false
Given the file input.txt:
tiago#dell:~$ cat input.txt
this is a text
it should match 12345
if(
it should not match 12345
//endif
it should match 12345
it should not match 12345.
it should not match ( blabla 12345 blablabla )
it should not match ( 12345 )
it should match 12345
And the script validator.pl:
tiago#dell:~$ cat validator.pl
#! /usr/bin/perl
use warnings;
use strict;
use Data::Dumper;
sub validate_s0 {
my $line = $_[0];
if ( $line =~ \d{5/ ){
return "true";
}
return "false";
}
sub validate_s1 {
my $line = $_[0];
if ( $line =~ /\.$/ ){
return "false";
}
return "true";
}
sub validate_s2 {
my $line = $_[0];
if ( $line =~ /.*?\(.*\d{5.*?\).*/ ){
return "false";
}
return "true";
}
my $skip = "false";
while (<>){
my $line = $_;
if( $line =~ /if\(/ ){
$skip = "true";
}
if ( $skip eq "false" ) {
my $s0_status = validate_s0 "$line";
my $s1_status = validate_s1 "$line";
my $s2_status = validate_s2 "$line";
if ( $s0_status eq "true"){
if ( $s1_status eq "true"){
if ( $s2_status eq "true"){
print "$line";
}
}
}
}
if ( $line =~ /\/\/endif/) {
$skip="false";
}
}
Execution:
tiago#dell:~$ cat input.txt | perl validator.pl
it should match 12345
it should match 12345
it should match 12345
Not sure if this would help you or not, but I am providing a solution considering the following assumptions -
You need an elegant solution to check all the conditions
Conditions can change in future and anytime.
One condition should not depend on others.
However I considered also the following -
The file given has minimal errors in it. If it doe then my code might need some modifications to cope with that.
I used Stack to keep track of if( blocks.
Ok here is the solution -
I used C# and with it MEF (Microsoft Extensibility Framework) to implement the configurable parsers. The idea is, use a single parser to parse and a list of configurable validator classes to validate the line and return true or false based on the validation. Then you can add or remove any validator anytime or add new ones if you like. So far I have already implemented for S1, S2 and S3 you mentioned, check classes at point 3. You have to add classes for s4, s5 if you need in future.
First, Create the Interfaces -
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace FileParserDemo.Contracts
{
public interface IParser
{
String[] GetMatchedLines(String filename);
}
public interface IPatternMatcher
{
Boolean IsMatched(String line, Stack<string> stack);
}
}
Then comes the file reader and checker -
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using FileParserDemo.Contracts;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition;
using System.IO;
using System.Collections;
namespace FileParserDemo.Parsers
{
public class Parser : IParser
{
[ImportMany]
IEnumerable<Lazy<IPatternMatcher>> parsers;
private CompositionContainer _container;
public void ComposeParts()
{
var catalog = new AggregateCatalog();
catalog.Catalogs.Add(new AssemblyCatalog(typeof(IParser).Assembly));
_container = new CompositionContainer(catalog);
try
{
this._container.ComposeParts(this);
}
catch
{
}
}
public String[] GetMatchedLines(String filename)
{
var matched = new List<String>();
var stack = new Stack<string>();
using (StreamReader sr = File.OpenText(filename))
{
String line = "";
while (!sr.EndOfStream)
{
line = sr.ReadLine();
var m = true;
foreach(var matcher in this.parsers){
m = m && matcher.Value.IsMatched(line, stack);
}
if (m)
{
matched.Add(line);
}
}
}
return matched.ToArray();
}
}
}
Then comes the implementation of individual checkers, the class names are self explanatory, so I don't think they need more descriptions.
using FileParserDemo.Contracts;
using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;
using System.Linq;
using System.Text;
using System.Text.RegularExpressions;
using System.Threading.Tasks;
namespace FileParserDemo.PatternMatchers
{
[Export(typeof(IPatternMatcher))]
public class MatchAllNumbers : IPatternMatcher
{
public Boolean IsMatched(String line, Stack<string> stack)
{
var regex = new Regex("\\d+");
return regex.IsMatch(line);
}
}
[Export(typeof(IPatternMatcher))]
public class RemoveIfBlock : IPatternMatcher
{
public Boolean IsMatched(String line, Stack<string> stack)
{
var regex = new Regex("if\\(");
if (regex.IsMatch(line))
{
foreach (var m in regex.Matches(line))
{
//push the if
stack.Push(m.ToString());
}
//ignore current line, and will validate on next line with stack
return true;
}
regex = new Regex("//endif");
if (regex.IsMatch(line))
{
foreach (var m in regex.Matches(line))
{
stack.Pop();
}
}
return stack.Count == 0; //if stack has an item then ignoring this block
}
}
[Export(typeof(IPatternMatcher))]
public class RemoveWithEndPeriod : IPatternMatcher
{
public Boolean IsMatched(String line, Stack<string> stack)
{
var regex = new Regex("(?m)(?!\\d+.*?\\.$)\\d+");
return regex.IsMatch(line);
}
}
[Export(typeof(IPatternMatcher))]
public class RemoveWithInParenthesis : IPatternMatcher
{
public Boolean IsMatched(String line, Stack<string> stack)
{
var regex = new Regex("\\(.*\\d+.*\\)");
return !regex.IsMatch(line);
}
}
}
The program -
using FileParserDemo.Contracts;
using FileParserDemo.Parsers;
using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace FileParserDemo
{
class Program
{
static void Main(string[] args)
{
var parser = new Parser();
parser.ComposeParts();
var matches = parser.GetMatchedLines(Path.GetFullPath("test.txt"));
foreach (var s in matches)
{
Console.WriteLine(s);
}
Console.ReadLine();
}
}
}
For testing I took #Tiago's sample file as Test.txt which had the following lines -
this is a text
it should match 12345
if(
it should not match 12345
//endif
it should match 12345
it should not match 12345.
it should not match ( blabla 12345 blablabla )
it should not match ( 12345 )
it should match 12345
Gives the output -
it should match 12345
it should match 12345
it should match 12345
Don't know if this would help you or not, I do had a fun time playing with it.... :)
The best part with it is that, for adding a new condition all you have to do is provide an implementation of IPatternMatcher, it will automatically get called and thus will validate.
Same as #zx81's (*SKIP)(*F) but with using a negative lookahead assertion.
(?m)(?:if\(.*?\/\/endif|\([^()]*\))(*SKIP)(*F)|\b\d+\b(?!.*\.$)
DEMO
In python, i would do easily like this,
import re
string = """cat 123 sat.
I like 000 not (456) though 111 is fine
222 if( //endif if(cat==789 stuff //endif 333"""
for line in string.split('\n'): # Split the input according to the `\n` character and then iterate over the parts.
if not line.endswith('.'): # Don't consider the part which ends with a dot.
for i in re.split(r'\([^()]*\)|if\(.*?//endif', line): # Again split the part by brackets or if condition which endswith `//endif` and then iterate over the inner parts.
for j in re.findall(r'\b\d+\b', i): # Then find all the numbers which are present inside the inner parts and then loop through the fetched numbers.
print(j) # Prints the number one ny one.
Output:
000
111
222
333

Java Regular Expression Two Question marks (??)

I know that /? means the / is optional. so "toys?" will match both toy and toys. My understanding is that if I make it lazy and use "toys??" I will match both toy and toys and always return toy. So, a quick test:
private final static Pattern TEST_PATTERN = Pattern.compile("toys??", Pattern.CASE_INSENSITIVE);
public static void main(String[] args) {
for(String arg : args) {
Matcher m = TEST_PATTERN.matcher(arg);
System.out.print("Arg: " + arg);
boolean b = false;
while (m.find()) {
System.out.print(" {");
for (int i=0; i<=m.groupCount(); ++i) {
System.out.print("[" + m.group(i) + "]");
}
System.out.print("}");
}
System.out.println();
}
}
Yep, it looks like it works as expected
java -cp .. regextest.RegExTest toy toys
Arg: toy {[toy]}
Arg: toys {[toy]}
Now, change the regular expression to "toys??2" and it still matches toys2 and toy2. In both cases, it returns the entire string without the s removed. Is there any functional difference between searching for "toys?2" and "toys??2".
The reason I am asking is because I found an example like the following:
private final static Pattern TEST_PATTERN = Pattern.compile("</??tag(\\s+?.*?)??>", Pattern.CASE_INSENSITIVE);
and although I see no apparent reason for using ?? rather than ?, I thought that perhaps the original author (who is not known to me) might know something that I don't, I expect the later.
?? is lazy while ? is greedy.
Given (pattern)??, it will first test for empty string, then if the rest of the pattern can't match, it will test for pattern.
In contrast, (pattern)? will test for pattern first, then it will test for empty string on backtrack.
Now, change the regular expression to "toys??2" and it still matches toys2 and toy2. In both cases, it returns the entire string without the s removed. Is there any functional difference between searching for "toys?2" and "toys??2".
The difference is in the order of searching:
"toys?2" searches for toys2, then toy2
"toys??2" searches for toy2, then toys2
But for the case of these 2 patterns, the result will be the same regardless of the input string, since the sequel 2 (after s? or s??) must be matched.
As for the pattern you found:
Pattern.compile("</??tag(\\s+?.*?)??>", Pattern.CASE_INSENSITIVE)
Both ?? can be changed to ? without affecting the result:
/ and t (in tag) are mutually exclusive. You either match one or the other.
> and \s are also mutually exclusive. The at least 1 in \s+? is important to this conclusion: the result might be different otherwise.
This is probably micro-optimization from the author. He probably thinks that the open tag must be there, while the closing tag might be forgotten, and that open/close tags without attributes/random spaces appears more often than those with some.
By the way, the engine might run into some expensive backtracking attempt due to \\s+?.*? when the input has <tag followed by lots of spaces without > anywhere near.

Perl: Help writing a regular expression

I am trying to write a common regular expression for the below 3 cases:
Supernatural_S07E23_720p_HDTV_X264-DIMENSION.mkv
the.listener.313.480p.hdtv.x264-2hd.mkv
How.I.met.your.mother.s02e07.hdtv.x264-xor.avi
Now my regular exoression should remove the series name from the original string i,e the output of above string will be:
S07E23_720p_HDTV_X264-DIMENSION.mkv
313.480p.hdtv.x264-2hd.mkv
s02e07.hdtv.x264-xor.avi
Now for the basic case of supernatural string I wrote the below regex and it worked fine but as soon as the series name got multiple words it fails.
$string =~ s/^(.*?)[\.\_\- ]//i; #delimiter can be (. - _ )
So, I have no idea how to proceed for the aboves cases I was thinking along the lines of \w+{1,6} but it also failed to do the required.
PS: Explanation of what the regular expression is doing will be appreciated.
you can detect if the .'s next token contains digit, if not, consider it as part of the name.
HOWEVER, I personally think there is no perfect solution for this. it'd still meet problem for something like:
24.313.480p.hdtv.x264-2hd.mkv // 24
Warehouse.13.s02e07.hdtv.x264-xor.avi // warehouse 13
As StanleyZ said, you'll always get into trouble with names containing numbers.
But, if you take these special cases appart, you can try :
#perl
$\=$/;
map {
if (/^([\w\.]+)[\.\_]([SE\d]+[\.\_].*)$/i) {
print "Match : Name='$1' Suffix='$2'";
} else {
print "Did not match $_";
}
}
qw!
Supernatural_S07E23_720p_HDTV_X264-DIMENSION.mkv
the.listener.313.480p.hdtv.x264-2hd.mkv
How.I.met.your.mother.s02e07.hdtv.x264-xor.avi
!;
which outputs :
Match : Name='Supernatural' Suffix='S07E23_720p_HDTV_X264-DIMENSION.mkv'
Match : Name='the.listener' Suffix='313.480p.hdtv.x264-2hd.mkv'
Match : Name='How.I.met.your.mother' Suffix='s02e07.hdtv.x264-xor.avi'
note : aren't you doing something illegal ? ;)

Flex 3 Regular Expression Problem

I've written a url validator for a project I am working on. For my requirements it works great, except when the last part for the url goes longer than 22 characters it breaks. My expression:
/((https?):\/\/)([^\s.]+.)+([^\s.]+)(:\d+\/\S+)/i
It expects input that looks like "http(s)://hostname:port/location".
When I give it the input:
https://demo10:443/111112222233333444445
it works, but if I pass the input
https://demo10:443/1111122222333334444455
it breaks. You can test it out easily at http://ryanswanson.com/regexp/#start. Oddly, I can't reproduce the problem with just the relevant (I would think) part /(:\d+\/\S+)/i. I can have as many characters after the required / and it works great. Any ideas or known bugs?
Edit:
Here is some code for a sample application that demonstrates the problem:
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute">
<mx:Script>
<![CDATA[
private function click():void {
var value:String = input.text;
var matches:Array = value.match(/((https?):\/\/)([^\s.]+.)+([^\s.]+)(:\d+\/\S+)/i);
if(matches == null || matches.length < 1 || matches[0] != value) {
area.text = "No Match";
}
else {
area.text = "Match!!!";
}
}
]]>
</mx:Script>
<mx:TextInput x="10" y="10" id="input"/>
<mx:Button x="178" y="10" label="Button" click="click()"/>
<mx:TextArea x="10" y="40" width="233" height="101" id="area"/>
</mx:Application>
I debugged your regular expression on RegexBuddy and apparently it takes millions of steps to find a match. This usually means that something is terribly wrong with the regular expression.
Look at ([^\s.]+.)+([^\s.]+)(:\d+\/\S+).
1- It seems like you're trying to match subdomains too, but it doesn't work as intended since you didn't escape the dot. If you escape it, demo10:443/123 won't match because it'll need at least one dot. Change ([^\s.]+\.)+ to ([^\s.]+\.)* and it'll work.
2- [^\s.]+ is a bad character class, it will match the whole string and start backtracking from there. You can avoid this by using [^\s:.] which will stop at the colon.
This one should work as you want:
https?:\/\/([^\s:.]+\.)*([^\s:.]+):\d+\/\S+
This is a bug, either in Ryan's implementation or within Flex/Flash.
The regular expression syntax used above (less surrounding slashes and flags) matches Python which provides the following output:
# ignore case insensitive flag as it doesn't matter in this case
>>> import re
>>> rx = re.compile('((https?):\/\/)([^\s.]+.)+([^\s.]+)(:\d+\/\S+)')
>>> print rx.match('https://demo10:443/1111122222333334444455').groups()
('https://', 'https', 'demo1', '0', ':443/1111122222333334444455')