Call a function concurrently on separate thread - c++

I am working on a network programming and I have created a thread pool. It basically has a queue with mutex lock and condition variable and 5 child threads compete to get a work from the queue. It seems like working correctly with locking and unlocking with the condition variable.
But the problems is that if I call a function from the child thread then only one thread is allowed work on the function(fromByte). For example, if thread 1 called the function then the other thread won't be able to enter the function.
void WorkHandler::workLoop(){
printf("WorkHandler::workLoop, called\n");
while(m_workHandlerRun){
Work *work = getWork();
char *pdata = work->getMsg();
/*
* Get type only
*/
unsigned char type = pdata[0];
printf("WorkHandler::workLoop, type %d\n", type);
Packet *packet = m_packetFactory->createInstance(static_cast<PACKET_TYPES>(type));
packet->fromByte(pdata);
}
}
This is the work loop that the child threads are running and it calls the fromByte() after it gets the appropriate class instance from the factory. If I see the log statement then only one thread are allowed to work on the fromByte function and if the thread finished then other thread can work in the function. In other words, if a thread is currently in the function then other threads wait until the thread finish the work.
bool WorkHandler::initThreads(){
for(int i=0; i < m_maxThreads; i++){
pthread_t *thread(new pthread_t);
m_workThreadList.push_back(thread);
if(pthread_create(thread, NULL, runWorkThread, reinterpret_cast<void *>(this))!=0){
perror("WorkHandler::initThreads, pthread_create error \n");
return false;
}
pthread_detach(*thread);
}
return true;
}
This is how I spawn a thread and runWorkThread is a static method to call the workLoop function. How do I fix my code so that child threads can work on the function concurrently. Thanks in advance..
Edit
I am locking and unlocking like this
void WorkHandler::addWork(Work* w){
printf("WorkHandler::insertWork Thread, insertWork locking \n");
lock();
printf("WorkHandler::insertWork Locked, and inserting into queue \n");
m_workQueue.push(w);
signal();
unLock();
}
Work* WorkHandler::getWork(){
printf("WorkHandler::getWork, locking (tid : %lu) \n", pthread_self());
lock();
printf("WorkHandler::getWork, locked (tid : %lu) \n", pthread_self());
while(m_workQueue.empty()){//Need 'while' instead of 'If'
printf("WorkHandler::getWork, waiting... (tid : %lu) \n", pthread_self());
wait();
printf("WorkHandler::getWork, waiting DONE (tid : %lu) \n", pthread_self());
}
Work *work = m_workQueue.front();
printf("WorkHandler::getWork, got a job (tid : %lu) \n", pthread_self());
m_workQueue.pop();
unLock();
return work;
}
Also, this class extends MutexdCondtion class I created
MutexCondition.cpp file
bool MutexCondition::init(){
printf("MutexCondition::init called\n");
pthread_mutex_init(&m_mut, NULL);
pthread_cond_init(&m_con, NULL);
return true;
}
bool MutexCondition::destroy(){
pthread_mutex_destroy(&m_mut);
pthread_cond_destroy(&m_con);
return true;
}
bool MutexCondition::lock(){
pthread_mutex_lock(&m_mut);
return true;
}
bool MutexCondition::unLock(){
pthread_mutex_unlock(&m_mut);
return true;
}
bool MutexCondition::wait(){
pthread_cond_wait(&m_con, &m_mut);
return true;
}
bool MutexCondition::signal(){
pthread_cond_signal(&m_con);
return true;
}

the problem is that if I call a
function from the child thread then
only one thread is allowed work
If you base this assumption on your printf, then you are wrong. It's possible that working thread finishes it's work before new item is placed in queue. This creates possibility, that same function will pick up two items in a row.
There is no way that for other threads to wait for working one, since there is nothing that blocks them after getWork() return.

Related

Using a single Condition Variable to pause multiple threads

I have a program that starts N number of threads (async/future). I want the main thread to set up some data, then all threads should go while the main thread waits for all of the other threads to finish, and then this needs to loop.
What I have atm is something like this
int main()
{
//Start N new threads (std::future/std::async)
while(condition)
{
//Set Up Data Here
//Send Data to threads
{
std::lock_guard<std::mutex> lock(mrun);
bRun = true;
}
run.notify_all();
//Wait for threads
{
std::unique_lock<std::mutex> lock(mrun);
run.wait(lock, [] {return bDone; });
}
//Reset bools
bRun = false;
bDone = false;
}
//Get results from futures once complete
}
int thread()
{
while(otherCondition)
{
std::unique_lock<std::mutex> lock(mrun);
run.wait(lock, [] {return bRun; });
bDone = true;
//Do thread stuff here
lock.unlock();
run.notify_all();
}
}
But I can't see any signs of either the main or the other threads waiting for each other! Any idea what I am doing wrong or how I can do this?
There are a couple of problems. First, you're setting bDone as soon as the first worker wakes up. Thus the main thread wakes immediately and begins readying the next data set. You want to have the main thread wait until all workers have finished processing their data. Second, when a worker finishes processing, it loops around and immediately checks bRun. But it can't tell if bRun == true means that the next data set is ready or if the last data set is ready. You want to wait for the next data set.
Something like this should work:
std::mutex mrun;
std::condition_variable dataReady;
std::condition_variable workComplete;
int nCurrentIteration = 0;
int nWorkerCount = 0;
int main()
{
//Start N new threads (std::future/std::async)
while(condition)
{
//Set Up Data Here
//Send Data to threads
{
std::lock_guard<std::mutex> lock(mrun);
nWorkerCount = N;
++nCurrentIteration;
}
dataReady.notify_all();
//Wait for threads
{
std::unique_lock<std::mutex> lock(mrun);
workComplete.wait(lock, [] { return nWorkerCount == 0; });
}
}
//Get results from futures once complete
}
int thread()
{
int nNextIteration == 1;
while(otherCondition)
{
std::unique_lock<std::mutex> lock(mrun);
dataReady.wait(lock, [&nNextIteration] { return nCurrentIteration==nNextIteration; });
lock.unlock();
++nNextIteration;
//Do thread stuff here
lock.lock();
if (--nWorkerCount == 0)
{
lock.unlock();
workComplete.notify_one();
}
}
}
Be aware that this solution isn't quite complete. If a worker encounters an exception, then the main thread will hang (because the dead worker will never reduce nWorkerCount). You'll likely need a strategy to deal with that scenario.
Incidentally, this pattern is called a barrier.

create threads but don't run it immediately in linux

I am trying to execute my program in threads, I use pthread_create(), but it runs the threads immediately. I would like to allow the user to change thread priorities before running. How it is possible to resolve?
for(int i = 0; i < threads; i++)
{
pthread_create(data->threads+i,NULL,SelectionSort,data);
sleep(1);
print(data->array);
}
Set the priority as you create the thread.
Replace
errno = pthread_create(..., NULL, ...);
if (errno) { ... }
with
pthread_attr_t attr;
errno = pthread_attr_init(&attr);
if (errno) { ... }
{
struct sched_param sp;
errno = pthread_attr_getschedparam(&attr, &sp);
if (errno) { ... }
sp.sched_priority = ...;
errno = pthread_attr_setschedparam(&attr, &sp);
if (errno) { ... }
}
/* So our scheduling priority gets used. */
errno = pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
if (errno) { ... }
errno = pthread_create(..., &attr, ...);
if (errno) { ... }
errno = pthread_attr_destroy(&attr);
if (errno) { ... }
For pthreads the priority isn't set after thread creation but rather by passing suitable attributes upon thread creation: the thread attributes go where you have specified NULL in your pthread_create() call. If you want to delay thread creation until the user has given you a priority you can create a function object expecting the priority and upon call of that function object you'd kick off the thread. Of course, you'll still need to keep track of the thus created object (possibly using a std::future<...>-like object) to later join that thread.
Note that providing an answer shouldn't be construed as endorsing thread priorities: as far as I can tell, playing with thread priorities are ill-advised.

Returning code from pthread creation in C++ is 11

I have thread creation problem using Pthread. My code is as follows. I show only some portion due to space constraints.
Main.c create Detectdirection instance and send to the function.
d = new Detectdirection();
while(run)
{
int ret = d->run_parallel(d);
if(ret == -1)
run = false;
}
My Detectdirection Class has two functions to run in parallel:
class Detectdirection{
public:
int run_parallel(void*p);
void *Tracking(void *p);
static void *Tracking_helper(void * p);
void *ReadImage(void *p );
static void *ReadImage_helper(void *p );
private:
pthread_t thread[2];
}
void *Detectdirection::ReadImage(void *p){
Detectdirection *app = (Detectdirection*)p;
while(run){
}
pthread_exit(NULL);
}
void *Detectdirection::Tracking(void *p){
Detectdirection *app = (Detectdirection*)p;
while(run){
}
pthread_exit(NULL);
}
void *Detectdirection::Tracking_helper(void *p){
Detectdirection *app = (Detectdirection*)p;
return ((Detectdirection*)p)->Tracking(app);
}
void *Detectdirection::ReadImage_helper(void *p ){
Detectdirection *app = (Detectdirection*)p;
return ((Detectdirection*)p)->ReadImage(app);
}
int Detectdirection::run_parallel(void* p){
Detectdirection *app = (Detectdirection*)p;
int rc = pthread_create(&thread[0], NULL, app->ReadImage_helper, app);
if (rc) {
printf("ERROR; return code from pthread_create() is %d\n", rc);
return -1;
}
rc = pthread_create(&thread[1], NULL, app->Tracking_helper, app);
if (rc) {
printf("ERROR; return code from pthread_create() is %d\n", rc);
return -1;
}
return 0;
}
Compile is ok and when I run, I have thread creation error. That sort of return type 11 happens only when many threads are created. But now I create only two thread and I have that error. What could be wrong?
I believe your are getting EAGAIN (based on the error code 11). That (obivously) means your system doesn't have enough resources to create threads anymore.
POSIX documentation says:
[EAGAIN] The system lacked the necessary resources to create another
thread, or the system-imposed limit on the total number of threads in
a process {PTHREAD_THREADS_MAX} would be exceeded.
I am not quite sure the following is true.
But now I create only two thread and I have that error. What could be wrong?
Here,
while(run)
{
int ret = d->run_parallel(d);
if(ret == -1)
run = false;
}
You are creating in a loop and each call d->run_parallel() creates two threads. So, you are potentially creating infinite number of threads
as the loop only breaks when pthread_create() fails. So, you may want to look at this loop carefully whether you really want to do as it is right now.
You don't seem to join with the threads you create. So, you could detach the threads so that thread-specific resources are released immediately when the thread(s) exit.
You can do:
pthread_detach(pthread_self());
in both ReadImage_helper() and Tracking_helper() functions to detach them. This could potentially solve your resource issue.
If it's still present then you have to look at ways to limit the number of threads that are simultaneously running on your system. One possible option is to use thread pools -- create a fixed number of threads and assign them new tasks as the threads complete their current task(s).

When is it more appropriate to use a pthread barrier instead of a condition wait and broadcast?

I am coding a telemetry system in C++ and have been having some difficulty syncing certain threads with the standard pthread_cond_timedwait and pthread_cond_broadcast.
The problem was that I needed some way for the function that was doing the broadcasting to know if another thread acted on the broadcast.
After some hearty searching I decided I might try using a barrier for the two threads instead. However, I still wanted the timeout functionality of the pthread_cond_timedwait.
Here is basically what I came up with: (However it feels excessive)
Listen Function: Checks for a period of milliseconds to see if an event is currently being triggered.
bool listen(uint8_t eventID, int timeout)
{
int waitCount = 0;
while(waitCount <= timeout)
{
globalEventID = eventID;
if(getUpdateFlag(eventID) == true)
{
pthread_barrier_wait(&barEvent);
return true;
}
threadSleep(); //blocks for 1 millisecond
++waitCount;
}
return false;
}
Trigger Function: Triggers an event for a period of milliseconds by setting an update flag for the triggering period
bool trigger(uint8_t eventID, int timeout)
int waitCount = 0;
while(waitCount <= timeout)
{
setUpdateFlag(eventID, true); //Sets the update flag to true
if(globalEventID == eventID)
{
pthread_barrier_wait(&barEvent);
return true;
}
threadSleep(); //blocks for 1 millisecond
++waitCount;
}
setUpdateFlag(eventID, false);
return false;
}
My questions: Is another way to share information with the broadcaster, or are barriers really the only efficient way? Also, is there another way of getting timeout functionality with barriers?
Based on your described problem:
Specifically, I am trying to let thread1 know that the message it is
waiting for has been parsed and stored in a global list by thread2,
and that thread2 can continue parsing and storing because thread1 will
now copy that message from the list ensuring that thread2 can
overwrite that message with a new version and not disrupt the
operations of thread1.
It sounds like your problem can be solved by having both threads alternately wait on the condition variable. Eg. in thread 1:
pthread_mutex_lock(&mutex);
while (!message_present)
pthread_cond_wait(&cond, &mutex);
copy_message();
message_present = 0;
pthread_cond_broadcast(&cond);
pthread_mutex_unlock(&mutex);
process_message();
and in thread 2:
parse_message();
pthread_mutex_lock(&mutex);
while (message_present)
pthread_cond_wait(&cond, &mutex);
store_message();
message_present = 1;
pthread_cond_broadcast(&cond);
pthread_mutex_unlock(&mutex);

Know if a pthread thread is Alive in a safe way

I made a multithread application that generates/destroy 100 threads continuously:
//Here is the thread class (one by every thread
struct s_control
{
data_in[D_BUFFER_SIZE];//data in to thread
data_out[D_BUFFER_SIZE];//data generated by the thread
//I use volatile in order to status data is avaiable in and out of the thread:
volatile __int16 status;//thread state 0=empty,1=full,2=filling (thread running)
}*control;
//Here is the thread main function
static void* F_pull(void* vv)//=pull_one_curl()
{
s_control* cc = (s_control* ) vv;
//use of cc->data_in and filling of cc->data out
cc->status=1; //Here advises that thread is finished and data out is filled
return NULL;
}
void main()
{
initialization();
control=new s_control[D_TAREAS];
pthread_t *tid=new pthread_t[D_TAREAS];
for (th=0;th<D_TAREAS;th++)
{ //Access to status of thread at the beginning
//(to avoid if it changes in the middle):
long status1=control[th].status
if (status1==0) //Thread finished and data_out of thread is empty
{ control[i2].status=2; //Filling in (thread initiated)status LLENANDO
error = pthread_create(&tid[th],NULL,F_pull,(void *) &control[th]);
}
else if (status1==1) //Thread finished and data_out of thread is full
{
//do things with control[th].data_out;
//and fill in control[th].data_in with data to pass to next thread
control[th].status=0; //Thread is finished and now its data_out is empty
}
else
{
//printf("\nThread#%li:filling",i2);
}
}while(!_kbhit());
finish();
}
Then as you can see, at the end of the thread, I used the variable volatile to advise that thread is about to exit:
begin of thread{ ....
cc->status=1; //Here advises that thread is finished and data out is filled
return NULL;
}//END OF THREAD
But after cc->status is set to 1 thread is not finished yet (it exist one more line)
So I do not like set status inside the thread.
I tried pthread_kill, but it didnĀ“t work, because it does not work until thread is alive, as can be seen at:
pthread_kill
I am not sure if this answers your question, but you can use pthread_join() to wait for a thread to terminate. In conjunction with some (properly synchronized) status variables, you should be able to achieve what you need.