Transforming n binary calls to one n-ary call in C++? - c++

We have a helper function in our codebase to concatenate two (Windows) path strings:
CString AppendPath(CString const& part1, CString const& part2);
It is often used in this way:
const CString filePath = AppendPath(AppendPath(AppendPath(base, toplevel), sub1), filename);
This is rather acceptable, but it got me wondering if there is some possibility in C++ (or C++0x) to use a (template?) function to chain binary function calls together.
That is, given a function T f(T arg1, T arg2) is it possible to write a function T ncall(FnT fn, T arg1, T arg2, T arg3, ...) that will call f like in my example above and return the result?
// could roughly look like this with my example:
const CString filePath = ncall(&AppendPath, base, toplevel, sub1, filename);
Please, this question is about the transformation and not about the best way to handle or concatenate path strings!
Edit: Thanks to deft_code's answer for providing the correct term for what I was asking for: Fold (higher-order function). (Note that I have settled on accepting the answer of Matthieu because his solution does not require C++0x.)

Without C++0x, it's also possible to use chaining (I don't recommend overloading the comma operator, the syntax gets weird).
The syntax is somewhat different, but very close:
CString const Path = AppendPath(base)(toplevel)(sub1)(filename);
This is done simply by creating a temporary object that will perform the catenation through an overload of operator() and which will be implicitly convertible through operator CString() const.
class AppenderPath
{
public:
AppenderPath(){}
AppenderPath(CString s): _stream(s) {}
AppenderPath& operator()(CString const& rhs) {
_stream += "/";
_stream += rhs;
return *this;
}
operator CString() const { return _stream; }
private:
CString _stream;
};
Then, you tweak AppendPath to return such an object:
AppenderPath AppendPath(CString s) { return AppenderPath(s); }
(Note, actually you could directly name it AppendPath)
Making it generic as per #Martin's suggestion:
#include <iostream>
#include <string>
template <typename L, typename R>
class Fold1l
{
public:
typedef void (*Func)(L&, R const&);
Fold1l(Func func, L l): _func(func), _acc(l) {}
Fold1l& operator()(R const& r) { (*_func)(_acc, r); return *this; }
operator L() const { return _acc; }
private:
Func _func;
L _acc;
};
// U is just to foil argument deduction issue,
// since we only want U to be convertible into a R
template <typename R, typename L, typename U>
Fold1l<R,L> fold1l(void (*func)(L&, R const&), U l) {
return Fold1l<R,L>(func, l);
}
void AppendPath(std::string& path, std::string const& next) {
path += "/"; path += next;
}
int main() {
std::string const path = fold1l(AppendPath, "base")("next");
std::cout << path << std::endl;
}
Code validated on ideone.

In C++0x, you can use variadic templates. Something like this, perhaps:
template<typename... Args>
CString AppendAllPaths(CString const& part1, Args const&... partn)
{
return AppendPath(part1, AppendAllPaths(partn...));
}
template<>
CString AppendAllPaths(CString const& part1, CString const& part2)
{
return AppendPath(part1, part2);
}

Making Martinho Fernandes' solution more generic:
#define AUTO_RETURN(EXPR) -> decltype(EXPR) \
{ return EXPR; }
template<class F, class Arg1, class ...Args>
auto n_binary_to_1_nary(F func, Arg1 &&a, Args &&...rest)
AUTO_RETURN(func(std::forward<Arg1>(a),
n_binary_to_1_nary(func, std::forward<Args>(rest)...))))
template<class F, class Arg1, class Arg2>
auto n_binary_to_1_nary(F func, Arg1 &&a, Arg2 &&b)
AUTO_RETURN(func(std::forward<Arg1>(a), std::forward<Arg2>(b)))
Use:
n_binary_to_1_nary(&AppendPath, base, toplevel, sub1, filename)
However, AppendPath could simply be written in this style:
CString AppendPath(CString const &part1, CString const &part2); // existing
template<class ...Args>
CString AppendPath(CString const &a, CString const &b, Args const &...rest) {
return AppendPath(AppendPath(a, b), rest...);
}
You can, of course, add this overload and use it transparently in your code.
Or pass an initializer_list:
CString filePath = AppendPath({base, toplevel, sub1, filename});
Code:
template<class Iter>
CString AppendPath(Iter begin, Iter end) {
CString result;
if (begin == end) {
assert(!"reporting an error (however you like) on an empty list of paths"
" is probably a good idea");
}
else {
result = *begin;
while (++begin != end) {
result = AppendPath(result, *begin);
}
}
return result;
}
template<class C>
CString AppendPath(C const &c) {
return AppendPath(c.begin(), c.end());
}
Notice the last AppendPath works with any STL-like container. You can also add these overloads to your code and use them transparently.

In this specific case of calling AppendPath I'd just write an overload of the function which has as its implementation your second line of code.
In the general case I'd write a series of templates:
template<typename T>
T ncall(T (*fn)(T const&,T const&), T const& p1, T const& p2, T const& p3){
return fn(fn(p1, p2), p3);
}
template<typename T>
T ncall(T (*fn)(T const&,T const&), T const& p1, T const& p2, T const& p3, T const& p4){
return ncall(fn, fn(p1, p2), p3, p4);
}
template<typename T>
T ncall(T (*fn)(T const&,T const&), T const& p1, T const& p2, T const& p3, T const& p4, T const& p5){
return ncall(fn, fn(p1, p2), p3, p4, p5);
}
Which I'm sure could be easily generated automatically.

Given a function T f(T arg1, T arg2) is it possible to write a function T ncall(FnT fn, T arg1, T arg2, T arg3, ...) that will call f like in my example above and return the result?
Everyone is soo close to a general foldl implementation. Here is an even more general solution than the question asked. It accepts functions like T f(T arg1, T arg2) as well as T1 f(T2 arg1, T3 arg2). Also I named the function foldl in homage to its functional roots.
#define AUTO_RETURN( EXPR ) -> decltype( EXPR ) \
{ return EXPR; }
template< typename BinaryFunc, typename First, typename Second >
auto foldl( BinaryFunc&& func, First&& first, Second&& second )
AUTO_RETURN( func( std::forward<First>(first), std::forward<Second>(second) ) )
template<typename BinaryFunc,typename First, typename Second, typename... Rest >
auto foldl( BinaryFunc&& func, First&& first, Second&& second, Rest&&... rest )
AUTO_RETURN(
foldl(
std::forward<BinaryFunc>(func),
std::forward<decltype( func(first,second) )>(
func( std::forward<First>(first), std::forward<Second>(second) )),
std::forward<Rest>(rest)... )
)
An example of how this would solve your problem:
auto path = foldl( &AppendPath, base, toplevel, sub1, filename );
Another example showing off all of foldl's strength:
struct stream
{
template< typename T >
std::ostream& operator()( std::ostream& out, T&& t ) const
{
out << std::forward<T>(t);
return out;
}
};
struct Foo
{
Foo( void ) = default;
Foo( const Foo& ) = delete;
Foo& operator=( const Foo& ) = delete;
};
std::ostream& operator << ( std::ostream& out, const Foo& )
{
out << "foo";
return out;
}
int main()
{
foldl( stream(), std::cout, 1, ' ', 1.1, ' ', Foo{}, '\n' );
}
See the output / code in action at ideone.

Related

Unordered map where key is a pair

I have an unordered map where my key is a pair of <int, const Foo*> and value is a vector. I do not see any compilation or runtime error during insertion or lookup but I am not sure if this is most efficient code. Will the compiler create an efficient hash function for computing hash value of the key or should I use boost::hash?
class Foo {
public:
Foo():var1(0){};
~Foo();
void func(int a) {
var1 = a;
}
int var1;
}
int main()
{
Foo f1;
f1.func(10);
const Foo* fp = &f1;
std::unordered_map<std::pair<uint,const Foo*>,std::vector<uint>> umap1;
umap1[std::make_pair(1,fp)].emplace_back(100);
}
std::hash<T> has no std::pair<X,Y> specialization. You have to provide one.
Boost's one isn't as bad as the first one you are likely to write, so feel free to use it. (It isn't perfect, but it isn't horrid).
The hashing trick I use is to first start with an ADL helper:
namespace MyNS {
template<class T, class...Unused>
std::size_t hash( T const& t, Unused... )->decltype( std::hash<T>{}(std::declval<T const&>()) ) {
return std::hash<T>{}(t);
}
struct hasher {
template<class T>
std::size_t operator()(T const& t)const {
return hash(t);
}
}
}
as written, MyNS::Hasher passed to a std::unordered_map<X,Y, MyNS::Hasher> will invoke std::hash<X> as its hasher.
But if you override hash in the namespace of X or in MyNS you'll call it instead. This allows us to extend stuff nicely.
namespace MyNS {
std::size_t hash_combine( std::size_t lhs, std::size_t rhs ) {
return ((lhs<<6)+(lhs>>3)) + rhs;
}
template<class...Szs>
std::size_t hash_combine( std::size_t lhs ) {
return lhs;
}
template<class...More>
std::size_t hash_combine( std::size_t lhs, std::size_t rhs, More...more ) {
return hash_combine( hash_combine(lhs, rhs), more... );
}
template<class T, class U>
std::size_T hash( std::pair<T, U> const& p ) {
return hash_combine( hash(p.first), hash(p.second) );
}
}
I then add this. hash_combine can be written better (boost has an example of a better one), but it combines two size_t hashes into one. But the above one is better than nothing.
It takes 1 or more arguments and combines their hashes into one hash.
I then add an overload to hash for std::pair It invokes hash on its elements; this means pairs of pairs are supported. We can add tuple support:
template<std::size_t...Is, class Tup>
std::size_T hash( std::index_sequence<Is...>, Tup const& tup ) {
return hash_combine( std::get<Is>(tup)... );
}
template<class...Ts>
std::size_T hash( std::tuple<Ts...> const& tup ) {
return hash_combine( std::make_index_sequence<sizeof...(Ts)>{}, tup );
}
and vector support:
template<class Seq>
std::size_t hash_sequence(Seq const& v) {
std::size_t r = 0;
for (auto const& e:v) {
r = hash_combine( r, hash(e) );
}
return r;
}
template<class T, class A>
std::size_t hash(std::vector<T,A> const& v) {
return hash_sequence(v);
}
and similar for other containers.
Any class you need to support hash for is easy:
namespace SomeRandomNS {
struct some_random_type {
int state;
};
inline std::size_t hash( some_random_type const& x ) {
using MyNS::hash;
return hash(x.state);
}
}
and done. For something more complex:
namespace SomeRandomNS {
struct some_random_type {
int state;
double more_state;
std::string even_more;
};
inline std::size_t hash( some_random_type const& x ) {
using MyNS::hash;
return hash(std::tie(x.state, x.more_state, x.even_more));
}
}
and we are done (the tuple hash does the work for us).

C++03 Finding an element based in a member function value

I'm trying to find an element in a std::vector based in a member function, but unforunately I have no access to a full C++11 conformant compiler.
I kwnow I can use a functor to solve this, but I wonder if there is a "functional" way to accomplish the same result.
Below is a snippet which depicts my problem:
#include <iostream>
#include <string>
#include <functional>
#include <algorithm>
#include <vector>
struct Class {
int type_;
Class(int type): type_(type) {
}
int GetType() {
return type_;
}
};
struct Functor {
Functor(int t): t_(t) {
}
bool operator()(Class c) {
return c.GetType() == t_;
}
int t_;
};
int main() {
// It also works
std::vector<Class> v2 { Class(1), Class(2), Class(3), Class(4), Class(5) };
auto it2 = std::find_if(v2.begin(), v2.end(), Functor(4));
std::cout << (it2 != v2.end() ? "Found!" : "Not found!") << std::endl;
// It would solve, but I can't use due to compiler limitations :(
it2 = std::find_if(v2.begin(), v2.end(), [](auto& v) { return v.GetType() == 4; });
std::cout << (it2 != v2.end() ? "Found!" : "Not found!") << std::endl;
// Is there any "functional based" solution to this, using std::mem_fun, std::bind1st, etc.?
// it2 = std::find_if(v2.begin(), v2.end(), ???);
return 0;
}
if my std::vector was formed by a non-complex type, I would do something like:
std::vector<int> v1 { 1, 2, 3, 4, 5 };
auto it1 = std::find_if(v1.begin(), v1.end(), std::bind1st(std::equal_to<int>(), 4));
std::cout << (it1 != v1.end() ? "Found!" : "Not found!") << std::endl;
Is there any solution do write a code similar to that above?
Edit:
I'm using GCC 4.4.1
Edit2:
Based in some comments and in the response from #scohe001, I would solve the problem overloading the global == operator.
But my curiosity isn't satisfied yet :)
Is there no way to achieve my goal using the std toolset from <funtional>?
Edit3:
Only to clarify: After reading the responses and comments, I know that it's possible to solve the simple example I posted before using the overloading of the operator==(int) and also know that I can use a function object (functor) to do the same job of the lambda expression. But, my real question is: Using ONLY the toolset available in <functional> (std::mem_fun, std::bind1st, std::equal_to, etc), can I "mimic" the behavior of the lambda/functor? If so, how can I "chain" the funtion calls to do it?
Edit4:
Apparently there's no way to solve my problem ONLY using the existing toolset from <functional>, so I'm accepting the #Caleth's response, once it's the one which is closer to what I was trying to do.
You'd have to write a bind_both adaptor yourself
it2 = std::find_if(v2.begin(), v2.end(), bind_both(std::equal_to<int>(), std::mem_fn_ref(&Class::getType), 4));
And it would have a combinatorial explosion of possibilities
template <typename Binary, typename Left, typename Arg>
class bind_left_t : public std::unary_function<Arg, typename Binary::result_type> {
Binary b;
Left l;
typename Binary::second_argument_type r;
public:
bind_left_t(Binary b, Left l, typename Binary::second_argument_type r) : b(b), l(l), r(r) {}
typename Binary::result_type operator()( Arg & arg) const { return b(l(arg), r); }
typename Binary::result_type operator()(const Arg & arg) const { return b(l(arg), r); }
};
template <typename Binary, typename Right, typename Arg>
class bind_right_t : public std::unary_function<Arg, typename Binary::result_type> {
Binary b;
typename Binary::first_argument_type l;
Right r;
public:
bind_right_t(Binary b, typename Binary::first_argument_type l, Right r) : b(b), l(l), r(r) {}
typename Binary::result_type operator()( Arg & arg) const { return b(l, r(arg)); }
typename Binary::result_type operator()(const Arg & arg) const { return b(l, r(arg)); }
};
template <typename Binary, typename Left, typename Right, typename Arg1, typename Arg2>
class bind_both_t : public std::binary_function<Arg1, Arg2, typename Binary::result_type> {
Binary b;
Left l;
Right r;
public:
bind_both_t (Binary b, Left l, Right r) : b(b), l(l), r(r) {}
typename Binary::result_type operator()( Arg1 & arg1, Arg2 & arg2) const { return b(l(arg1), r(arg2)); }
typename Binary::result_type operator()(const Arg1 & arg1, Arg2 & arg2) const { return b(l(arg1), r(arg2)); }
typename Binary::result_type operator()( Arg1 & arg1, const Arg2 & arg2) const { return b(l(arg1), r(arg2)); }
typename Binary::result_type operator()(const Arg1 & arg1, const Arg2 & arg2) const { return b(l(arg1), r(arg2)); }
};
The extra template arguments (Arg, Arg1 and Arg2) disambiguate between the three forms when calling bind_both
template <typename Binary, typename Left>
bind_left_t<Binary, Left, typename Left::argument_type> bind_both(Binary b, Left l, typename Binary::second_argument_type r)
{
return bind_left_t<Binary, Left, typename Left::argument_type>(b, l, r);
}
template <typename Binary, typename Right>
bind_right_t<Binary, Right, typename Right::argument_type> bind_both(Binary b, typename Binary::first_argument_type l, Right r)
{
return bind_right_t<Binary, Right, typename Right::argument_type>(b, l, r);
}
template <typename Binary, typename Left, typename Right>
bind_both_t<Binary, Left, Right, typename Left::argument_type, typename Right::argument_type> bind_both(Binary b, Left l, Right r)
{
return bind_both_t<Binary, Left, Right, typename Left::argument_type, typename Right::argument_type>(b, l, r);
}
It sounds like you can't modify the struct definition itself, so create an overload for operator== in the global scope:
bool operator==(const Class &lhs, const Class &rhs) {
return lhs.type_ == rhs.type_;
}
Then you can use regular old find:
std::find(v2.begin(), v2.end(), Class(4));

template function with corresponding parameters to subset of tuple types

I would like to write function as this find:
multi_set<int, string, double, myType> m; //vector of tuples
m.insert(/*some data*/);
m.find<1,2>("something",2.123);
Or
m.find<0,3>(1,instanceOfMyType);
m.find<1>("somethingelse");
Where find can be parametrized corresponding to any subset of tuple parameters.
My code so far:
template <typename ... T>
class multi_set{
typedef tuple < T... > Tuple;
vector<tuple<T...>> data = vector<tuple<T...>>();
public:
void insert(T... t){
data.push_back(tuple<T...>(t...));
}
template<size_t ... Pos>
void find(???){
// then I would like to use those params to search through data and
// return first matching item
}
}
// test whether a particular tuple is a match
template<size_t... Pos>
static bool is_match(const Tuple& tuple, const typename std::tuple_element<Pos, Tuple>::type &... args) {
std::initializer_list<bool> results = { (std::get<Pos>(tuple) == args)... };
return std::all_of(results.begin(), results.end(), [](bool p) { return p; });
}
// Find the first one that is a match.
template<size_t... Pos>
typename vector<Tuple>::const_iterator find(const typename std::tuple_element<Pos, Tuple>::type &... args) const {
return std::find_if(data.begin(), data.end(), [&](const Tuple & tup) { return is_match<Pos...>(tup, args...); });
}
It's also possible to have find take a type parameter pack and perfectly forward, rather than taking fixed types with tuple_element. The benefit is that you can avoid an unnecessary conversion if == is transparent. The cost is that you can't take anything that can't be perfectly forwarded any more (e.g., braced initializer lists, 0 as a null pointer constant). A side benefit appears to be that MSVC 2013 doesn't choke on this version:
// test whether a particular tuple is a match
template<size_t... Pos, class... Args>
static bool is_match(const Tuple& tuple, Args&&... args) {
std::initializer_list<bool> results = { (std::get<Pos>(tuple) == std::forward<Args>(args))... };
return std::all_of(results.begin(), results.end(), [](bool p) { return p; });
}
// Find the first one that is a match.
template<size_t... Pos, class... Args>
typename vector<Tuple>::const_iterator find(Args&&... args) const {
return std::find_if(data.begin(), data.end(), [&](const Tuple & tup) { return is_match<Pos...>(tup, std::forward<Args>(args)...); });
}
You should look into boost::multi_index. It is very close to what you are looking for.
http://www.boost.org/doc/libs/1_54_0/libs/multi_index/doc/tutorial/index.html
This is a function that takes a seed value, and a set of lambdas. It feeds that seed value through each of the lambdas in turn:
template<class... Fs, class R>
R chain( R r, Fs&&... fs ) {
using in_order = int[];
(void)(in_order{0,
(
(r = std::forward<Fs>(fs)( r ))
, void(), 0
)...
});
return r;
}
Inside your class, we use the above:
template<size_t... Pos, class...Us>
typename std::vector<Tuple>::const_iterator
find(Us const&... us) const {
return std::find_if(
data.begin(), data.end(),
[&](const Tuple & tup) {
return chain(
true,
[&](bool old){
return old && (std::get<Pos>(tup) == us);
}...
);
}
);
}
this compiles in clang, but not g++ 4.9.2 -- g++ doesn't like parameter packs inside lambdas.
Note the fact we take Us const&... -- this allows for transparent ==, which is important in some cases. std::string == char const* is a classic example, where if you force find to take the same value as in the tuple, you'll force a needless allocation in calling find.
In C++1z, the chain call can be replaced with:
( ... && (std::get<Pos>(tup) == us) )
which is conceptually identical, but much easier to read. This is known as a "fold expression".
Now, a problem with the above is that it uses forwarding references, which causes imperfect forwarding problems of perfect forwarding.
The most annoying of which is the inability to use {} to construct arguments.
If we use matching types, we instead force non-transparent comparison, which can be expensive (examine std::string compared to "hello this is a c string" -- it causes possibly allocation if we force the c string into a std::string.)
A way around this is to type erase down to the concept of equality with a given type.
template<class...>struct voider{using type=void;};
template<class...Ts>using void_t=typename voider<Ts...>::type;
template<class T>struct tag{using type=T;};
template<class...>struct types{using type=types;};
template<class T>
using block_deduction = typename tag<T>::type;
template<class F, class Sig, class T=void>
struct erase_view_op;
template<class F, class R, class...Ts, class T>
struct erase_view_op<F, R(Ts...), T>
{
using fptr = R(*)(void const*, Ts&&...);
fptr f;
void const* ptr;
private:
template<class U>
erase_view_op(U&& u, int):
f([](void const* p, Ts&&...ts)->R{
U& u = reinterpret_cast<U&>( *static_cast<std::decay_t<U>*>(const_cast<void*>(p)) );
return F{}( u, std::forward<Ts>(ts)... );
}),
ptr( static_cast<void const*>(std::addressof(u)) )
{}
public:
template<class U, class=std::enable_if_t< !std::is_same<std::decay_t<U>,erase_view_op>{} && std::is_convertible< std::result_of_t<F(U,Ts...)>, R >{} >>
erase_view_op(U&& u):erase_view_op( std::forward<U>(u), 0 ){}
template<class U=T, class=std::enable_if_t< !std::is_same<U, void>{} >>
erase_view_op( block_deduction<U>&& u ):erase_view_op( std::move(u), 0 ){}
erase_view_op( erase_view_op const& ) = default;
erase_view_op( erase_view_op&& ) = default;
R operator()( Ts... ts ) const {
return f( ptr, std::forward<Ts>(ts)... );
}
};
struct equality {
template<class lhs, class rhs>
bool operator()(lhs const& l, rhs const& r)const {
return l==r;
}
};
template<class T>
using erase_equal_to = erase_view_op< equality, bool(T const&), T >;
using string_equal_to = erase_equal_to< std::string >;
int main() {
static_assert( std::is_same< bool, std::result_of_t< std::equal_to<>(decltype("hello"), std::string const&) > >{}, "hmm" );
string_equal_to s = "hello";
string_equal_to s2 = {{"hello"}};
(void)s2;
std::string x = "hello";
std::string y = "jello";
std::cout << s(x) << s(y) << '\n';
}
then we rewrite find:
template<size_t... Pos>
typename std::vector<Tuple>::const_iterator
find(erase_equal_to< std::remove_reference_t<std::tuple_element_t<Pos, Tuple>> >... us) const {
return std::find_if(
data.begin(), data.end(),
[&](const Tuple & tup) {
return chain(
true,
[&](bool old){
return old && us(std::get<Pos>(tup));
}...
);
}
);
}
which does both transparent equality and allows {} based construction (well, it does require {{}} based construction -- the outer to say we are constructing the eraser, the inner to construct the T).

Any way of doing this iterator filter with boost MPL or similar

Essentially I have a couple of situations where I'm using boost::filter_iterator to filter an iterator for some conditions. There's a situation where I want to filter for 2 conditions simultaneously and we have some pre-existing code for this already but I'd like to know if there's a idiomatic way to do this with boost or the standard library:
/*! TODO: Surely there should be something in std/boost to achieve this??? */
/*! Filter for things that satisfy F1 and F2 */
template <
typename F1,
typename F2,
typename ArgT
>
struct filter_and
{
F1 f1;
F2 f2;
filter_and(F1 _f1, F2 _f2): f1(_f1), f2(_f2)
{}
inline bool operator() (ArgT const& arg) const
{
return f1(arg) && f2(arg);
}
};
If a solution requires c++11 that should be fine as long as the latest MSVC can handle it.
Try this: make_filter_iterator( it, [=](value_type const& v) { return f1(v) && f2(v); } );
For something fancier...
bool and_in_order() { return true; }
template<typename F0, typename Funcs...>
bool and_in_order( F0&& f0, Funcs&&... funcs ) {
return f0() && and_in_order(funcs...);
}
template<typename... Funcs>
struct and_unary_functors {
std::tuple<Funcs...> funcs;
template<typename Arg, typename seq=typename make_seq<sizeof...(Funcs)>::type>
bool operator()(Arg&& arg) const;
template<typename Arg, int...s>
bool operator()<Arg, seq<s...>>(Arg&& arg) const {
return and_in_order( [&](){ return get<s>(funcs)(arg); }... );
}
};
template<typename... Funcs>
and_unary_functors<Funcs> make_and_unary( Funcs const&... funcs ) {
return {std::make_tuple(funcs...)};
};
auto filter_it = make_filter_iterator( base_iterator, make_and_unary( f1, f2, f3, f4 ) );
or something silly like that.

Which C++ Standard Library wrapper functions do you use?

This question, asked this morning, made me wonder which features you think are missing from the C++ Standard Library, and how you have gone about filling the gaps with wrapper functions. For example, my own utility library has this function for vector append:
template <class T>
std::vector<T> & operator += ( std::vector<T> & v1,
const std::vector <T> & v2 ) {
v1.insert( v1.end(), v2.begin(), v2.end() );
return v1;
}
and this one for clearing (more or less) any type - particularly useful for things like std::stack:
template <class C>
void Clear( C & c ) {
c = C();
}
I have a few more, but I'm interested in which ones you use? Please limit answers to wrapper functions - i.e. no more than a couple of lines of code.
Quite often I'd use vector as a set of items in no particular order (and, obviously, when I don't need fast is-this-element-in-the-set checks). In these cases, calling erase() is a waste of time since it will reorder the elements and I don't care about order. That's when the O(1) function below comes in handy - just move the last element at the position of the one you'd want to delete:
template<typename T>
void erase_unordered(std::vector<T>& v, size_t index)
{
v[index] = v.back();
v.pop_back();
}
boost::array
contains(container, val) (quite simple, but convenient).
template<typename C, typename T>
bool contains(const C& container, const T& val) {
return std::find(std::begin(container), std::end(container), val) != std::end(container);
}
remove_unstable(begin, end, value)
A faster version of std::remove with the exception that it doesn't preserve the order of the remaining objects.
template <typename T>
T remove_unstable(T start, T stop, const typename T::value_type& val){
while(start != stop) {
if (*start == val) {
--stop;
::std::iter_swap(start, stop);
} else {
++start;
}
}
return stop;
}
(in the case of a vector of pod types (int, float etc) and almost all objects are removed, std::remove might be faster).
template < class T >
class temp_value {
public :
temp_value(T& var) : _var(var), _original(var) {}
~temp_value() { _var = _original; }
private :
T& _var;
T _original;
temp_value(const temp_value&);
temp_value& operator=(const temp_value&);
};
Ok, since it seems this isn't as straight-forward as I thought, here's an explanation:
In its constructor temp_value stores a reference to a variable and a copy of the variable's original value. In its destructor it restores the referenced variable to its original value. So, no matter what you did to the variable between construction and destruction, it will be reset when the temp_value object goes out of scope.
Use it like this:
void f(some_type& var)
{
temp_value<some_type> restorer(var); // remembers var's value
// change var as you like
g(var);
// upon destruction restorer will restore var to its original value
}
Here's another approach that uses the scope-guard trick:
namespace detail
{
// use scope-guard trick
class restorer_base
{
public:
// call to flag the value shouldn't
// be restored at destruction
void dismiss(void) const
{
mDismissed = true;
}
protected:
// creation
restorer_base(void) :
mDismissed(false)
{}
restorer_base(const restorer_base& pOther) :
mDismissed(pOther.is_dismissed())
{
// take "ownership"
pOther.dismiss();
}
~restorer_base(void) {} // non-virtual
// query
bool is_dismissed(void) const
{
return mDismissed;
}
private:
// not copy-assignable, copy-constructibility is ok
restorer_base& operator=(const restorer_base&);
mutable bool mDismissed;
};
// generic single-value restorer, could be made
// variadic to store and restore several variables
template <typename T>
class restorer_holder : public restorer_base
{
public:
restorer_holder(T& pX) :
mX(pX),
mValue(pX)
{}
~restorer_holder(void)
{
if (!is_dismissed())
mX = mValue;
}
private:
// not copy-assignable, copy-constructibility is ok
restorer_holder& operator=(const restorer_holder&);
T& mX;
T mValue;
};
}
// store references to generated holders
typedef const detail::restorer_base& restorer;
// generator (could also be made variadic)
template <typename T>
detail::restorer_holder<T> store(T& pX)
{
return detail::restorer_holder<T>(pX);
}
It's just a bit more boiler-plate code, but allows a cleaner usage:
#include <iostream>
template <typename T>
void print(const T& pX)
{
std::cout << pX << std::endl;
}
void foo(void)
{
double d = 10.0;
double e = 12.0;
print(d); print(e);
{
restorer f = store(d);
restorer g = store(e);
d = -5.0;
e = 3.1337;
print(d); print(e);
g.dismiss();
}
print(d); print(e);
}
int main(void)
{
foo();
int i = 5;
print(i);
{
restorer r = store(i);
i *= 123;
print(i);
}
print(i);
}
It removes its ability to be used in a class, though.
Here's a third way to achieve the same effect (which doesn't suffer from the problems of potentially throwing destructors):
Implementation:
//none -- it is built into the language
Usage:
#include <iostream>
template <typename T>
void print(const T& pX)
{
std::cout << pX << std::endl;
}
void foo(void)
{
double d = 10.0;
double e = 12.0;
print(d); print(e);
{
double f(d);
double g(e);
f = -5.0;
g = 3.1337;
print(f); print(g);
e = std::move(g);
}
print(d); print(e);
}
int main(void)
{
foo();
int i = 5;
print(i);
{
int r(i);
r *= 123;
print(r);
}
print(i);
}
Not really a wrapper, but the infamous missing copy_if. From here
template<typename In, typename Out, typename Pred>
Out copy_if(In first, In last, Out res, Pred Pr)
{
while (first != last) {
if (Pr(*first)) {
*res++ = *first;
}
++first;
}
return res;
}
template< typename T, std::size_t sz >
inline T* begin(T (&array)[sz]) {return array;}
template< typename T, std::size_t sz >
inline T* end (T (&array)[sz]) {return array + sz;}
Sometimes I feel like I'm in begin() and end() hell. I'd like to have some functions like:
template<typename T>
void sort(T& x)
{
std::sort(x.begin(), x.end());
}
and other similar ones for std::find, std::for_each, and basically all the STL algorithms.
I feel that sort(x) is much quicker to read/understand than sort(x.begin(), x.end()).
I don't use this one nearly as much anymore, but it used to be a staple:
template<typename T>
std::string make_string(const T& data) {
std::ostringstream stream;
stream << data;
return stream.str();
}
Will update with more as I remember them. :P
The utility function in everyones toolbox is of course copy_if. Not really a wrapper though.
Another helper I commonly use is deleter, a functor I use with std::for_each to delete all pointers in a container.
[edit]
Digging through my "sth.h" I also found vector<wstring> StringSplit(wstring const&, wchar_t);
I have a header which puts the following in the "util" namespace:
// does a string contain another string
inline bool contains(const std::string &s1, const std::string &s2) {
return s1.find(s2) != std::string::npos;
}
// remove trailing whitespace
inline std::string &rtrim(std::string &s) {
s.erase(std::find_if(s.rbegin(), s.rend(), std::not1(std::ptr_fun<int, int>(std::isspace))).base(), s.end());
return s;
}
// remove leading whitespace
inline std::string &ltrim(std::string &s) {
s.erase(s.begin(), std::find_if(s.begin(), s.end(), std::not1(std::ptr_fun<int, int>(std::isspace))));
return s;
}
// remove whitespace from both ends
inline std::string &trim(std::string &s) {
return ltrim(rtrim(s));
}
// split a string based on a delimeter and return the result (you pass an existing vector for the results)
inline std::vector<std::string> &split(const std::string &s, char delim, std::vector<std::string> &elems) {
std::stringstream ss(s);
std::string item;
while(std::getline(ss, item, delim)) {
elems.push_back(item);
}
return elems;
}
// same as above, but returns a vector for you
inline std::vector<std::string> split(const std::string &s, char delim) {
std::vector<std::string> elems;
return split(s, delim, elems);
}
// does a string end with another string
inline bool endswith(const std::string &s, const std::string &ending) {
return ending.length() <= s.length() && s.substr(s.length() - ending.length()) == ending;
}
// does a string begin with another string
inline bool beginswith(const std::string &s, const std::string &start) {
return s.compare(0, start.length(), start) == 0;
}
The infamously missing erase algorithm:
template <
class Container,
class Value
>
void erase(Container& ioContainer, Value const& iValue)
{
ioContainer.erase(
std::remove(ioContainer.begin(),
ioContainer.end(),
iValue),
ioContainer.end());
} // erase
template <
class Container,
class Pred
>
void erase_if(Container& ioContainer, Pred iPred)
{
ioContainer.erase(
std::remove_if(ioContainer.begin(),
ioContainer.end(),
iPred),
ioContainer.end());
} // erase_if
Wrapping sprintf
string example = function("<li value='%d'>Buffer at: 0x%08X</li>", 42, &some_obj);
// 'function' is one of the functions below: Format or stringf
The goal is decoupling formatting from output without getting into trouble with sprintf and its ilk. It's not pretty, but it's very useful, especially if your coding guidelines ban iostreams.
Here is a version which allocates as needed, from Neil Butterworth. [View revision history for Mike's version, which I removed as a subset of the remaining two. It is similar to Neil's, except the latter is exception-safe by using vector instead of delete[]: string's ctor will throw on allocation failure. Mike's also uses the same technique shown later to determine size up front. –RP]
string Format( const char * fmt, ... ) {
const int BUFSIZE = 1024;
int size = BUFSIZE, rv = -1;
vector <char> buf;
do {
buf.resize( size );
va_list valist;
va_start( valist, fmt );
// if _vsnprintf() returns < 0, the buffer wasn't big enough
// so increase buffer size and try again
// NOTE: MSFT's _vsnprintf is different from C99's vsnprintf,
// which returns non-negative on truncation
// http://msdn.microsoft.com/en-us/library/1kt27hek.aspx
rv = _vsnprintf( &buf[0], size, fmt, valist );
va_end( valist );
size *= 2;
}
while( rv < 0 );
return string( &buf[0] );
}
Here is a version which determines the needed size up front, from Roger Pate. This requires writable std::strings, which are provided by popular implementations, but are explicitly required by C++0x. [View revision history for Marcus' version, which I removed as it is slightly different but essentially a subset of the below. –RP]
Implementation
void vinsertf(std::string& s, std::string::iterator it,
char const* fmt, int const chars_needed, va_list args
) {
using namespace std;
int err; // local error code
if (chars_needed < 0) err = errno;
else {
string::size_type const off = it - s.begin(); // save iterator offset
if (it == s.end()) { // append to the end
s.resize(s.size() + chars_needed + 1); // resize, allow snprintf's null
it = s.begin() + off; // iterator was invalidated
err = vsnprintf(&*it, chars_needed + 1, fmt, args);
s.resize(s.size() - 1); // remove snprintf's null
}
else {
char saved = *it; // save char overwritten by snprintf's null
s.insert(it, chars_needed, '\0'); // insert needed space
it = s.begin() + off; // iterator was invalidated
err = vsnprintf(&*it, chars_needed + 1, fmt, args);
*(it + chars_needed) = saved; // restore saved char
}
if (err >= 0) { // success
return;
}
err = errno;
it = s.begin() + off; // above resize might have invalidated 'it'
// (invalidation is unlikely, but allowed)
s.erase(it, it + chars_needed);
}
string what = stringf("vsnprintf: [%d] ", err);
what += strerror(err);
throw runtime_error(what);
}
Public interface
std::string stringf(char const* fmt, ...) {
using namespace std;
string s;
va_list args;
va_start(args, fmt);
int chars_needed = vsnprintf(0, 0, fmt, args);
va_end(args);
va_start(args, fmt);
try {
vinsertf(s, s.end(), fmt, chars_needed, args);
}
catch (...) {
va_end(args);
throw;
}
va_end(args);
return s;
}
// these have nearly identical implementations to stringf above:
std::string& appendf(std::string& s, char const* fmt, ...);
std::string& insertf(std::string& s, std::string::iterator it,
char const* fmt, ...);
The is_sorted utility, to test containers before applying algorithms like include which expect a sorted entry:
template <
class FwdIt
>
bool is_sorted(FwdIt iBegin, FwdIt iEnd)
{
typedef typename std::iterator_traits<FwdIt>::value_type value_type;
return adjacent_find(iBegin, iEnd, std::greater<value_type>()) == iEnd;
} // is_sorted
template <
class FwdIt,
class Pred
>
bool is_sorted_if(FwdIt iBegin, FwdIt iEnd, Pred iPred)
{
if (iBegin == iEnd) return true;
FwdIt aIt = iBegin;
for (++aIt; aIt != iEnd; ++iBegin, ++aIt)
{
if (!iPred(*iBegin, *aIt)) return false;
}
return true;
} // is_sorted_if
Yeah, I know, would be better to negate the predicate and use the predicate version of adjacent_find :)
Definitely boost::addressof
//! \brief Fills reverse_map from map, so that all keys of map
// become values of reverse_map and all values become keys.
//! \note This presumes that there is a one-to-one mapping in map!
template< typename T1, typename T2, class TP1, class TA1, class TP2, class TA2 >
inline void build_reverse_map( const std::map<T1,T2,TP1,TA1>& map
, std::map<T2,T1,TP2,TA2>& reverse_map)
{
typedef std::map<T1,T2,TP1,TA1> map_type;
typedef std::map<T2,T1,TP2,TA2> r_map_type;
typedef typename r_map_type::value_type r_value_type;
for( typename map_type::const_iterator it=map.begin(),
end=map.end(); it!=end; ++it ) {
const r_value_type v(it->second,it->first);
const bool was_new = reverse_map.insert(v).second;
assert(was_new);
}
}
Looking at my stl_util.h, many of the classics (deleter functions, copy_if), and also this one (probably also quite common, but I don't see it given in the responses so far) for searching through a map and returning either the found value or a default, ala get in Python's dict:
template<typename K, typename V>
inline V search_map(const std::map<K, V>& mapping,
const K& key,
const V& null_result = V())
{
typename std::map<K, V>::const_iterator i = mapping.find(key);
if(i == mapping.end())
return null_result;
return i->second;
}
Using the default null_result of a default-constructed V is much as same as the behavior of std::map's operator[], but this is useful when the map is const (common for me), or if the default-constructed V isn't the right thing to use.
Here's my set of extra-utils, built on top of a boost.range'ish std-algo wrapper that you might need for some functions. (that's trivial to write, this is the interesting stuff)
#pragma once
/** #file
#brief Defines various utility classes/functions for handling ranges/function objects
in addition to bsRange (which is a ranged version of the \<algorithm\> header)
Items here uses a STL/boost-style naming due to their 'templatised' nature.
If template variable is R, anything matching range_concept can be used.
If template variable is C, it must be a container object (supporting C::erase())
*/
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/smart_ptr.hpp>
namespace boost
{
struct use_default;
template<class T>
class iterator_range;
#pragma warning(disable: 4348) // redeclaration of template default parameters (this clashes with fwd-decl in boost/transform_iterator.hpp)
template <
class UnaryFunction
, class Iterator
, class Reference = use_default
, class Value = use_default
>
class transform_iterator;
template <
class Iterator
, class Value = use_default
, class Category = use_default
, class Reference = use_default
, class difference = use_default
>
class indirect_iterator;
template<class T>
struct range_iterator;
template <
class Incrementable
, class CategoryOrTraversal = use_default
, class difference = use_default
>
class counting_iterator;
template <class Predicate, class Iterator>
class filter_iterator;
}
namespace orz
{
/// determines if any value that compares equal exists in container
template<class R, class T>
inline bool contains(const R& r, const T& v)
{
return std::find(boost::begin(r), boost::end(r), v) != boost::end(r);
}
/// determines if predicate evaluates to true for any value in container
template<class R, class F>
inline bool contains_if(const R& r, const F& f)
{
return std::find_if(boost::begin(r), boost::end(r), f) != boost::end(r);
}
/// insert elements in range r at end of container c
template<class R, class C>
inline void insert(C& c, const R& r)
{
c.insert(c.end(), boost::begin(r), boost::end(r));
}
/// copy elements that match predicate
template<class I, class O, class P>
inline void copy_if(I i, I end, O& o, const P& p)
{
for (; i != end; ++i) {
if (p(*i)) {
*o = *i;
++o;
}
}
}
/// copy elements that match predicate
template<class R, class O, class P>
inline void copy_if(R& r, O& o, const P& p)
{
copy_if(boost::begin(r), boost::end(r), o, p);
}
/// erases first element that compare equal
template<class C, class T>
inline bool erase_first(C& c, const T& v)
{
typename C::iterator end = boost::end(c);
typename C::iterator i = std::find(boost::begin(c), end, v);
return i != c.end() ? c.erase(i), true : false;
}
/// erases first elements that match predicate
template<class C, class F>
inline bool erase_first_if(C& c, const F& f)
{
typename C::iterator end = boost::end(c);
typename C::iterator i = std::find_if(boost::begin(c), end, f);
return i != end ? c.erase(i), true : false;
}
/// erase all elements (doesn't deallocate memory for std::vector)
template<class C>
inline void erase_all(C& c)
{
c.erase(c.begin(), c.end());
}
/// erase all elements that compare equal
template<typename C, typename T>
int erase(C& c, const T& value)
{
int n = 0;
for (boost::range_iterator<C>::type i = boost::begin(c); i != boost::end(c);) {
if (*i == value) {
i = c.erase(i);
++n;
} else {
++i;
}
}
return n;
}
/// erase all elements that match predicate
template<typename C, typename F>
int erase_if(C& c, const F& f)
{
int n = 0;
for (boost::range_iterator<C>::type i = boost::begin(c); i != boost::end(c);) {
if (f(*i)) {
i = c.erase(i);
++n;
} else {
++i;
}
}
return n;
}
/// erases all consecutive duplicates from container (sort container first to get all)
template<class C>
inline int erase_duplicates(C& c)
{
boost::range_iterator<C>::type i = std::unique(c.begin(), c.end());
typename C::size_type n = std::distance(i, c.end());
c.erase(i, c.end());
return n;
}
/// erases all consecutive duplicates, according to predicate, from container (sort container first to get all)
template<class C, class F>
inline int erase_duplicates_if(C& c, const F& f)
{
boost::range_iterator<C>::type i = std::unique(c.begin(), c.end(), f);
typename C::size_type n = std::distance(i, c.end());
c.erase(i, c.end());
return n;
}
/// fill but for the second value in each pair in range
template<typename R, typename V>
inline void fill_second(R& r, const V& v)
{
boost::range_iterator<R>::type i(boost::begin(r)), end(boost::end(r));
for (; i != end; ++i) {
i->second = v;
}
}
/// applying function to corresponding pair through both ranges, min(r1.size(), r2,size()) applications
template<typename R1, typename R2, typename F>
void for_each2(R1& r1, R2& r2, const F& f)
{
boost::range_iterator<R1>::type i(boost::begin(r1)), i_end(boost::end(r1));
boost::range_iterator<R2>::type j(boost::begin(r2)), j_end(boost::end(r2));
for(;i != i_end && j != j_end; ++i, ++j) {
f(*i, *j);
}
}
/// applying function to corresponding pair through both ranges, min(r1.size(), r2,size()) applications
template<typename R1, typename R2, typename R3, typename F>
void for_each3(R1& r1, R2& r2, R3& r3, const F& f)
{
boost::range_iterator<R1>::type i(boost::begin(r1)), i_end(boost::end(r1));
boost::range_iterator<R2>::type j(boost::begin(r2)), j_end(boost::end(r2));
boost::range_iterator<R3>::type k(boost::begin(r3)), k_end(boost::end(r3));
for(;i != i_end && j != j_end && k != k_end; ++i, ++j, ++k) {
f(*i, *j, *k);
}
}
/// applying function to each possible permutation of objects, r1.size() * r2.size() applications
template<class R1, class R2, class F>
void for_each_permutation(R1 & r1, R2& r2, const F& f)
{
typedef boost::range_iterator<R1>::type R1_iterator;
typedef boost::range_iterator<R2>::type R2_iterator;
R1_iterator end_1 = boost::end(r1);
R2_iterator begin_2 = boost::begin(r2);
R2_iterator end_2 = boost::end(r2);
for(R1_iterator i = boost::begin(r1); i != end_1; ++i) {
for(R2_iterator j = begin_2; j != end_2; ++j) {
f(*i, *j);
}
}
}
template <class R>
inline boost::iterator_range<boost::indirect_iterator<typename boost::range_iterator<R>::type > >
make_indirect_range(R& r)
{
return boost::iterator_range<boost::indirect_iterator<typename boost::range_iterator<R>::type > > (r);
}
template <class R, class F>
inline boost::iterator_range<boost::transform_iterator<F, typename boost::range_iterator<R>::type> >
make_transform_range(R& r, const F& f)
{
return boost::iterator_range<boost::transform_iterator<F, typename boost::range_iterator<R>::type> >(
boost::make_transform_iterator(boost::begin(r), f),
boost::make_transform_iterator(boost::end(r), f));
}
template <class T>
inline boost::iterator_range<boost::counting_iterator<T> >
make_counting_range(T begin, T end)
{
return boost::iterator_range<boost::counting_iterator<T> >(
boost::counting_iterator<T>(begin), boost::counting_iterator<T>(end));
}
template <class R, class F>
inline boost::iterator_range<boost::filter_iterator<F, typename boost::range_iterator<R>::type> >
make_filter_range(R& r, const F& f)
{
return boost::iterator_range<boost::filter_iterator<F, typename boost::range_iterator<R>::type> >(
boost::make_filter_iterator(f, boost::begin(r), boost::end(r)),
boost::make_filter_iterator(f, boost::end(r), boost::end(r)));
}
namespace detail {
template<class T>
T* get_pointer(T& p) {
return &p;
}
}
/// compare member function/variable equal to value. Create using #ref mem_eq() to avoid specfying types
template<class P, class V>
struct mem_eq_type
{
mem_eq_type(const P& p, const V& v) : m_p(p), m_v(v) { }
template<class T>
bool operator()(const T& a) const {
using boost::get_pointer;
using orz::detail::get_pointer;
return (get_pointer(a)->*m_p) == m_v;
}
P m_p;
V m_v;
};
template<class P, class V>
mem_eq_type<P,V> mem_eq(const P& p, const V& v)
{
return mem_eq_type<P,V>(p, v);
}
/// helper macro to define function objects that compare member variables of a class
#define ORZ_COMPARE_MEMBER(NAME, OP) \
template <class P> \
struct NAME##_type \
{ \
NAME##_type(const P&p) : m_p(p) {} \
template<class T> \
bool operator()(const T& a, const T& b) const { \
return (a.*m_p) OP (b.*m_p); \
} \
P m_p; \
}; \
template <class P> \
NAME##_type<P> NAME(const P& p) { return NAME##_type<P>(p); }
#define ORZ_COMPARE_MEMBER_FN(NAME, OP) \
template <class P> \
struct NAME##_type \
{ \
NAME##_type(const P&p) : m_p(p) {} \
template<class T> \
bool operator()(const T& a, const T& b) const { \
return (a.*m_p)() OP (b.*m_p)(); \
} \
P m_p; \
}; \
template <class P> \
NAME##_type<P> NAME(const P& p) { return NAME##_type<P>(p); }
/// helper macro to wrap range functions as function objects (value return)
#define ORZ_RANGE_WRAP_VALUE_2(FUNC, RESULT) \
struct FUNC##_ \
{ \
typedef RESULT result_type; \
template<typename R, typename F> \
inline RESULT operator() (R& r, const F& f) const \
{ \
return FUNC(r, f); \
} \
};
/// helper macro to wrap range functions as function objects (void return)
#define ORZ_RANGE_WRAP_VOID_2(FUNC) \
struct FUNC##_ \
{ \
typedef void result_type; \
template<typename R, typename F> \
inline void operator() (R& r, const F& f) const \
{ \
FUNC(r, f); \
} \
};
/// helper macro to wrap range functions as function objects (void return, one argument)
#define ORZ_RANGE_WRAP_VOID_1(FUNC) \
struct FUNC##_ \
{ \
typedef void result_type; \
template<typename R> \
inline void operator() (R& r) const \
{ \
FUNC(r); \
} \
};
ORZ_RANGE_WRAP_VOID_2(for_each);
ORZ_RANGE_WRAP_VOID_1(erase_all);
ORZ_RANGE_WRAP_VALUE_2(contains, bool);
ORZ_RANGE_WRAP_VALUE_2(contains_if, bool);
ORZ_COMPARE_MEMBER(mem_equal, ==)
ORZ_COMPARE_MEMBER(mem_not_equal, !=)
ORZ_COMPARE_MEMBER(mem_less, <)
ORZ_COMPARE_MEMBER(mem_greater, >)
ORZ_COMPARE_MEMBER(mem_lessequal, <=)
ORZ_COMPARE_MEMBER(mem_greaterequal, >=)
ORZ_COMPARE_MEMBER_FN(mem_equal_fn, ==)
ORZ_COMPARE_MEMBER_FN(mem_not_equal_fn, !=)
ORZ_COMPARE_MEMBER_FN(mem_less_fn, <)
ORZ_COMPARE_MEMBER_FN(mem_greater_fn, >)
ORZ_COMPARE_MEMBER_FN(mem_lessequal_fn, <=)
ORZ_COMPARE_MEMBER_FN(mem_greaterequal_fn, >=)
#undef ORZ_COMPARE_MEMBER
#undef ORZ_RANGE_WRAP_VALUE_2
#undef ORZ_RANGE_WRAP_VOID_1
#undef ORZ_RANGE_WRAP_VOID_2
}
I seem to need a Cartesian product, for example {A, B}, {1, 2} -> {(A,1), (A,2), (B,1), (B,2)}
// OutIt needs to be an iterator to a container of std::pair<Type1, Type2>
template <typename InIt1, typename InIt2, typename OutIt>
OutIt
cartesian_product(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt out)
{
for (; first1 != last1; ++first1)
for (InIt2 it = first2; it != last2; ++it)
*out++ = std::make_pair(*first1, *it);
return out;
}
I would call such an append function by its name and would use operator+= , operator*= and so on for element-wise operations, such as:
template<typename X> inline void operator+= (std::vector<X>& vec1, const X& value)
{
std::transform( vec1.begin(), vec1.end(), vec1.begin(), std::bind2nd(std::plus<X>(),value) );
}
template<typename X> inline void operator+= (std::vector<X>& vec1, const std::vector<X>& vec2)
{
std::transform( vec1.begin(), vec1.end(), vec2.begin(), vec1.begin(), std::plus<X>() );
}
some other simple and obvious wrappers as implied before:
template<typename X> inline void sort_and_unique(std::vector<X> &vec)
{
std::sort( vec.begin(), vec.end() );
vec.erase( std::unique( vec.begin(), vec.end() ), vec.end() );
}
template<typename X> inline void clear_vec(std::vector<X> &vec)
{
std::vector<X>().swap(vec);
}
template<typename X> inline void trim_vec(std::vector<X> &vec, std::size_t new_size)
{
if (new_size<vec.size())
std::vector<X>(vec.begin(),vec.begin() + new_size).swap(vec);
else
std::vector<X>(vec).swap(vec);
}
Insert a new item and return it, useful for simple move semantics like push_back(c).swap(value) and related cases.
template<class C>
typename C::value_type& push_front(C& container) {
container.push_front(typename C::value_type());
return container.front();
}
template<class C>
typename C::value_type& push_back(C& container) {
container.push_back(typename C::value_type());
return container.back();
}
template<class C>
typename C::value_type& push_top(C& container) {
container.push(typename C::value_type());
return container.top();
}
Pop and return an item:
template<class C>
typename C::value_type pop_front(C& container) {
typename C::value_type copy (container.front());
container.pop_front();
return copy;
}
template<class C>
typename C::value_type pop_back(C& container) {
typename C::value_type copy (container.back());
container.pop_back();
return copy;
}
template<class C>
typename C::value_type pop_top(C& container) {
typename C::value_type copy (container.top());
container.pop();
return copy;
}
IMO there needs to be more functionality for pair:
#ifndef pair_iterator_h_
#define pair_iterator_h_
#include <boost/iterator/transform_iterator.hpp>
#include <functional>
#include <utility>
// pair<T1, T2> -> T1
template <typename PairType>
struct PairGetFirst : public std::unary_function<PairType, typename PairType::first_type>
{
typename typename PairType::first_type& operator()(PairType& arg) const
{ return arg.first; }
const typename PairType::first_type& operator()(const PairType& arg) const
{ return arg.first; }
};
// pair<T1, T2> -> T2
template <typename PairType>
struct PairGetSecond : public std::unary_function<PairType, typename PairType::second_type>
{
typename PairType::second_type& operator()(PairType& arg) const
{ return arg.second; }
const typename PairType::second_type& operator()(const PairType& arg) const
{ return arg.second; }
};
// iterator over pair<T1, T2> -> iterator over T1
template <typename Iter>
boost::transform_iterator<PairGetFirst<typename std::iterator_traits<Iter>::value_type>, Iter>
make_first_iterator(Iter i)
{
return boost::make_transform_iterator(i,
PairGetFirst<typename std::iterator_traits<Iter>::value_type>());
}
// iterator over pair<T1, T2> -> iterator over T2
template <typename Iter>
boost::transform_iterator<PairGetSecond<typename std::iterator_traits<Iter>::value_type>, Iter>
make_second_iterator(Iter i)
{
return boost::make_transform_iterator(i,
PairGetSecond<typename std::iterator_traits<Iter>::value_type>());
}
// T1 -> pair<T1, T2>
template <typename FirstType, typename SecondType>
class InsertIntoPair1st : public std::unary_function<FirstType, std::pair<FirstType, SecondType> >
{
public:
InsertIntoPair1st(const SecondType& second_element) : second_(second_element) {}
result_type operator()(const FirstType& first_element)
{
return result_type(first_element, second_);
}
private:
SecondType second_;
};
// T2 -> pair<T1, T2>
template <typename FirstType, typename SecondType>
class InsertIntoPair2nd : public std::unary_function<SecondType, std::pair<FirstType, SecondType> >
{
public:
InsertIntoPair2nd(const FirstType& first_element) : first_(first_element) {}
result_type operator()(const SecondType& second_element)
{
return result_type(first_, second_element);
}
private:
FirstType first_;
};
#endif // pair_iterator_h_
template <typename T> size_t bytesize(std::vector<T> const& v) { return sizeof(T) * v.size(); }
If you need to use a lot of functions that take pointer + number of bytes, it's always just
fun(vec.data(), bytesize(vec));
Duplicate a string with *:
std::string operator*(std::string s, size_t n)
{
std::stringstream ss;
for (size_t i=0; i<n; i++) ss << s;
return ss.str();
}
One of my favorite is the Transposer that finds a transpose of a tuple of containers of the same size. That is, if you have a tuple<vector<int>,vector<float>>, it converts it into a vector<tuple<int, float>>. Comes handy in XML programming. Here is how I did it.
#include <iostream>
#include <iterator>
#include <vector>
#include <list>
#include <algorithm>
#include <stdexcept>
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_io.hpp>
#include <boost/type_traits.hpp>
using namespace boost;
template <class TupleOfVectors>
struct GetTransposeTuple;
template <>
struct GetTransposeTuple<tuples::null_type>
{
typedef tuples::null_type type;
};
template <class TupleOfVectors>
struct GetTransposeTuple
{
typedef typename TupleOfVectors::head_type Head;
typedef typename TupleOfVectors::tail_type Tail;
typedef typename
tuples::cons<typename remove_reference<Head>::type::value_type,
typename GetTransposeTuple<Tail>::type> type;
};
template <class TupleOfVectors,
class ValueTypeTuple =
typename GetTransposeTuple<TupleOfVectors>::type,
unsigned int TUPLE_INDEX = 0>
struct Transposer
: Transposer <typename TupleOfVectors::tail_type,
ValueTypeTuple,
TUPLE_INDEX + 1>
{
typedef typename remove_reference<typename TupleOfVectors::head_type>::type
HeadContainer;
typedef typename TupleOfVectors::tail_type Tail;
typedef Transposer<Tail, ValueTypeTuple, TUPLE_INDEX + 1> super;
typedef std::vector<ValueTypeTuple> Transpose;
Transposer(TupleOfVectors const & tuple)
: super(tuple.get_tail()),
head_container_(tuple.get_head()),
head_iter_(head_container_.begin())
{}
Transpose get_transpose ()
{
Transpose tran;
tran.reserve(head_container_.size());
for(typename HeadContainer::const_iterator iter = head_container_.begin();
iter != head_container_.end();
++iter)
{
ValueTypeTuple vtuple;
this->populate_tuple(vtuple);
tran.push_back(vtuple);
}
return tran;
}
private:
HeadContainer const & head_container_;
typename HeadContainer::const_iterator head_iter_;
protected:
void populate_tuple(ValueTypeTuple & vtuple)
{
if(head_iter_ == head_container_.end())
throw std::runtime_error("Container bound exceeded.");
else
{
vtuple.get<TUPLE_INDEX>() = *head_iter_++;
super::populate_tuple (vtuple);
}
}
};
template <class ValueTypeTuple,
unsigned int INDEX>
struct Transposer <tuples::null_type, ValueTypeTuple, INDEX>
{
void populate_tuple(ValueTypeTuple &) {}
Transposer (tuples::null_type const &) {}
};
template <class TupleOfVectors>
typename Transposer<TupleOfVectors>::Transpose
transpose (TupleOfVectors const & tupleofv)
{
return Transposer<TupleOfVectors>(tupleofv).get_transpose();
}
int main (void)
{
typedef std::vector<int> Vint;
typedef std::list<float> Lfloat;
typedef std::vector<long> Vlong;
Vint vint;
Lfloat lfloat;
Vlong vlong;
std::generate_n(std::back_inserter(vint), 10, rand);
std::generate_n(std::back_inserter(lfloat), 10, rand);
std::generate_n(std::back_inserter(vlong), 10, rand);
typedef tuples::tuple<Vint, Lfloat, Vlong> TupleOfV;
typedef GetTransposeTuple<TupleOfV>::type TransposeTuple;
Transposer<TupleOfV>::Transpose tran =
transpose(make_tuple(vint, lfloat, vlong));
// Or alternatively to avoid copying
// transpose(make_tuple(ref(vint), ref(lfloat), ref(vlong)));
std::copy(tran.begin(), tran.end(),
std::ostream_iterator<TransposeTuple>(std::cout, "\n"));
return 0;
}
Not sure if these qualify as std wrappers, but my commonly used helper functions are:
void split(string s, vector<string> parts, string delims);
string join(vector<string>& parts, string delim);
int find(T& array, const V& value);
void assert(bool condition, string message);
V clamp(V value, V minvalue, V maxvalue);
string replace(string s, string from, string to);
const char* stristr(const char* a,const char*b);
string trim(string str);
T::value_type& dyn(T& array,int index);
T and V here are template arguments. The last function works the same way as []-operator, but with automating resizing to fit needed index.
Similar to what people posted before, I have convenience overloads of algorithms for simplifying passing iterator arguments. I call algorithms like this:
for_each(iseq(vec), do_it());
I overloaded all the algorithms such that they take a single parameter of type input_sequence_range<> instead of the two input iterators (input as in anything that isn't mere output).
template<typename In>
struct input_sequence_range
: public std::pair<In,In>
{
input_sequence_range(In first, In last)
: std::pair<In,In>(first, last)
{ }
};
And this is how iseq() works:
template<typename C>
input_sequence_range<typename C::const_iterator> iseq(const C& c)
{
return input_sequence_range<typename C::const_iterator>(c.begin(),
c.end());
}
Similarly, I have specializations for
const_iterators
pointers (primitive arrays)
stream iterators
any range [begin,end) just for a uniform use: use iseq() for everything
Unordered erase for std::vector. The most efficient way to erase an element from a vector but it does not preserve the order of elements. I didn't see the point of extending it to other containers since most don't have the same penalty for removing items from the middle. It's similar to some other templates already posted but it uses std::swap to move items instead of copying.
template<typename T>
void unordered_erase(std::vector<T>& vec, const typename std::vector<T>::iterator& it)
{
if (it != vec.end()) // if vec is empty, begin() == end()
{
std::swap(vec.back(), *it);
vec.pop_back();
}
}
Signum returns the sign of a type. Returns -1 for negative, 0 for zero and 1 for positive.
template <typename T>
int signum(T val)
{
return (val > T(0)) - (val < T(0));
}
Clamp is pretty self explanatory, it clamps a value so that it lies within the given range. It boggles my mind that the Standard Library includes min and max but not clamp
template<typename T>
T clamp(const T& value, const T& lower, const T& upper)
{
return value < lower ? lower : (value > upper ? upper : value);
}