When compiled with either GNU Fortran (v4.4.3) or Sun Studio F95 (v8.3) and no array bounds checking the following program runs without error. However, when array bounds checking is switched on (gfortran -fbounds-check and f95 -C, respectively) the GNU compiled executable runs again without error, whereas the Sun Studio compiled executable gives the run-time error,
****** FORTRAN RUN-TIME SYSTEM ******
Subscript out of range. Location: line 44 column 20 of 'nosize.f90'
Subscript number 2 has value 1 in array 't$27'
That's an error in the call to sub2(), which uses an automatic array dummy argument for x. The sub1() calls run fine with either compiler and any flags.
To my knowledge this program is "legal", in that a zero sized array may be referenced like a non-zero sized array, and there is no explicit indexing of the zero length dimension of x. But is there some zero sized array slicing or automatic array subtlety that I'm missing here? And should I expect array bounds checking to behave the same across different compilers, or should I consider it a vendor-specific extension?
MODULE subs
IMPLICIT NONE
CONTAINS
SUBROUTINE sub1(x)
IMPLICIT NONE
REAL :: x(:,:)
PRINT*,'------------------------------------'
PRINT*,SHAPE(x)
PRINT*,SIZE(x)
END SUBROUTINE sub1
SUBROUTINE sub2(n1,n3,x)
IMPLICIT NONE
INTEGER,INTENT(in) :: n1, n3
REAL :: x(n1,n3)
PRINT*,'------------------------------------'
PRINT*,SHAPE(x)
PRINT*,SIZE(x)
END SUBROUTINE sub2
END MODULE subs
PROGRAM nosize
USE subs
IMPLICIT NONE
INTEGER :: n1 = 2, n2 = 2, n3 = 0
REAL,ALLOCATABLE :: x(:,:,:)
ALLOCATE(x(n1,n2,n3))
x(:,:,:) = -99.9
PRINT*,'ALLOCATED? ',ALLOCATED(x)
PRINT*,'SHAPE =',SHAPE(x)
PRINT*,'SIZE =',SIZE(x)
PRINT*,'X =',x
CALL sub1(x(:,1,:))
CALL sub2(n1,n3,x(:,1,:))
END PROGRAM nosize
It doesn't give any problems with intel's fortran compiler with -check bounds; and IBM's xlf, which in my experience is extremely strict, also didn't complain with -qcheck.
But more broadly, yes, there's no standard about what bounds checking should or shouldn't do. I can certainly see why some compilers would flag an assignment to a zero-length array as being bad/wrong/weird; it is a strange corner-case.
Related
I tried to compile this program with two different versions of gfortran:
program main
integer, dimension(1:2) :: iii
real, dimension(1:4,1:4,1:2) :: myArray
associate(iix => iii(1), iiy=> iii(2) )
forall( iix=1:4, iiy=1:4 )
myArray(iix,iiy,1) = iix + iiy
myArray(iix,iiy,2) = (iix + iiy)*10
endforall
end associate
print *, myArray(:,:,1)
print *, myArray(:,:,2)
end program main
There is no problem with GNU Fortran (GCC) 12.1.1 20220507 (Red Hat 12.1.1-1) version
But with GNU Fortran (Debian 10.2.1-6) 10.2.1 20210110 version, I get a compilation error
7 | forall( iix=1:4, iiy=1:4 )
| 1 internal compiler error: Segmentation fault
This version is not so old (2021/01/10)
From which gfortran version, is it possible to use associate in a forall statement?
And does this program conform to the standard?
It works with do loops
integer, dimension(1:2) :: iii
real, dimension(1:4,1:4,1:2) :: myArray
associate(iix => iii(1), iiy=> iii(2) )
do iix = 1,4
do iiy = 1,4
myArray(iix,iiy,1) = iix + iiy
myArray(iix,iiy,2) = (iix + iiy)*10
enddo
enddo
end associate
print *, myArray(:,:,1)
print *, myArray(:,:,2)
end program main
Following the comment of Jonathan Wakely, I sum up. In my initial code, there is also a do loop between the associate line and the forall line.
program main
integer, dimension(1:2) :: iii
real, dimension(1:4,1:4,1:2) :: myArray
integer :: i
myArray = 0.0
associate( iix => iii(1), iiy => iii(2) )
do i=1,2
forall( iix=1:4, iiy=1:4 )
myArray(iix,iiy,i) = (iix+iiy)*10*i
endforall
enddo
end associate
print *, myArray(:,:,1)
print *, myArray(:,:,2)
end program main
In comments we've addressed that the failure to compile with GCC 10 is a compiler bug which has been fixed in/by GCC 12. You offered to report this bug, but Jonathan Wakely has identified where this was fixed: there's little point reporting.
That said, there's still something we can say about code validity and workarounds.
Actually, I won't comment on validity, because what I'll say about the code itself makes that concept redundant.
Based on previous questions you've asked, you're using the ASSOCIATE with the FORALL to allow you to use an array element as the index. Something like
integer :: i(2)
forall (i(1)=1:4) ...
isn't allowed, so like with DO constructs and arrays you're associating a scalar variable with the element.
With FORALLs, though, that's entirely unhelpful.
The scope of an index in a FORALL statement/construct is that statement/construct. There's no connection between the array iii (in the question example) outside the FORALL and inside. There's simply no point associating the arrays elements with scalars to use those scalars in the FORALL.1
Note that you can2 "create" a new name specific to the FORALL itself, so you don't need to re-use names:
forall (integer :: iix=1:4, iiy=1:4, iiz=1:4) ...
instead of
integer iii(3)
associate (iix=>iii(1), iiy=>iii(2), iiz=>iii(3)
forall (iix=1:4, iiy=1:4, iiz=1:4) ...
end associate
FORALLs and DOs are very different things.
Some Fortran developers would say that the appropriate workaround for GCC 10 is to simply avoid using FORALLs at all. FORALLs are obsolescent in the Fortran standard and may be removed in the future. It's a reasonable position to hold that they should be avoided in new code.
1 If you don't have compiler support for what I mention next, then there is a (weak) point in using an ASSOCIATE to tidy up the number of declared scalar variables - in this case use a BLOCK construct to at least keep them local. It's hard to see the ASSOCIATE example above as any tidier than
block
integer iix, iiy, iiz
forall (iix=1:4, iiy=1:4, iiz1:4) ...
end block
Or avoid the obsolescent FORALL altogether.
2 If you have compiler support for this Fortran 2008 feature. GCC at the time of answering is missing this support.
I have some legacy Fortran 77 code which I'm trying to at least compile without warnings (without disabling warnings). There are subroutine calls that pass a scalar where subroutine expects an array, since the scalar is used as a size-1 array, this causes no problems. But with the Intel compiler, if I enable interface warnings I get this error:
error #8284: If the actual argument is scalar, the dummy argument shall be scalar unless the actual argument is of type character or is an element of an array that is not assumed shape, pointer, or polymorphic.
In some cases, I've tried to solve this by overloading the subroutine with array and scalar variants, but then I face a problem when the argument passed is an "an element of an array", which is detected as a scalar. Consider the following sample (tested with gfortran):
program a
integer n,dum(3)
interface readn
subroutine readn_s(n,m)
integer m,n
end subroutine
subroutine readn_a(n,m)
integer m,n(*)
end subroutine
end interface
call readn(n,1)
write(6,*) 'n=',n
call readn(dum,3)
write(6,*) 'dum=',dum
call readn(dum(2),2)
write(6,*) 'dum=',dum
end program
subroutine readn_s(n,m)
integer i,m,n
n=2
end subroutine
subroutine readn_a(n,m)
integer i,m,n(*)
do i=1,m
n(i)=1
end do
end subroutine
The readn(dum,3) call correctly uses readn_a, while the second one uses readn_s. The intended behaviour is that both should use readn_a. Indeed, if I replace both calls with readn_a everything is as expected.
Is it possible to have this working properly and use the "array" version of the overloaded routine when the actual argument is an array element? I've found out it works if I call the subroutine with readn(dum(2:),2), but I'm afraid that creates a temporary copy of the array...
Original problem:
file.f90
program a
integer n,dum(3)
call readn_a(n,1)
write(6,*) 'n=',n
call readn_a(dum,3)
write(6,*) 'dum=',dum
dum=3
call readn_a(dum(2),2)
write(6,*) 'dum=',dum
end program
file2.f90
subroutine readn_a(n,m)
integer i,m,n(*)
do i=1,m
n(i)=1
end do
end subroutine
Compile with gfortran -Wall file.f90 file2.f90 or ifort file.f90 file2.f90, all is fine and the output is the intended:
n= 1
dum= 1 1 1
dum= 3 1 1
Compile with ifort -warn all file.f90 file2.f90 and I get the error #8284 above. So that's why I wanted a version of the subroutine that would work with scalars or arrays... but would give the array version with an array element.
In your attempted solution the type-kind-rank generic resolution will delegate all array elements to the scalar version of the subroutine and that will not do the intended work on the part of the array. So "The intended behaviour is that both should use readn_a." is not really possible with the approach you chose.
Well, it is possible when you rewrite the code to pass array sections as you noted yourself. But we are again at the same problem as we were before, you example is simplified. We can be certain there there is no temporary array in the example you have shown, we definitely can't say that about your real code. If you use some 2D subsections starting at some random place, you will have temporary arrays for sure and it might be difficult to make the correct subsection at all.
The original warning should be reasonably easy to avoid in your original legacy code. FORTRAN 77 has no non-contiguous arrays so if you keep your arguments to be integer :: a(*) instead of integer :: a and pass that further. If your original variable is scalar, that is a problem.
The problem is that an integer scalar does not constitute an element sequence:
F2008 12.5.2.11 1 An actual argument represents an element sequence if
it is an array expression, an array element designator, a default
character scalar, or a scalar of type character with the C character
kind (15.2.2). ...
An array element designator a(2) is an element sequence but the scalar n is not.
So it is not allowed for sequence association which is used when an array element is passed:
F2008 12.5.2.11 4 An actual argument that represents an element
sequence and corresponds to a dummy argument that is an array is
sequence associated with the dummy argument if the dummy argument is
an explicit-shape or assumed-size array. ...
Your code is not strictly standard Fortran conforming, but very likely to work as expected if you manage to compile it.
Possible solutions:
You can pass the argument as an array expression, but the argument may not be modified inside the subroutine
call readn_a([n],1)
You can just disable the warnings about interface matching
ifort -warn nointerfaces
You can create separate subroutines which only work for scalars and call it under some different name.
You can also disable argument checking for that dummy argument by an Intel Compiler directive
!DEC$ ATTRIBUTES NO_ARG_CHECK :: dummy-arg-name
I have some legacy Fortran code which I was asked to analyze and translate to a modern language. I don't know which compiler was used in the past to compile the code, so for now, I'm trying to compile it with gfortran. The code contains a statement like this was causes gfortran to complain:
program test
implicit none
integer*4 :: var
var=.true.
if(var) then
write(*,*) "Hi"
endif
end program test
Compiling this with gfortran gives the following error:
test.f:6:9:
if(var) then
1
Error: IF clause at (1) requires a scalar LOGICAL expression
(In addition, it gives a warning about the conversion done in var=.true.).
I'm not sure which which compiler the code was compiled, but apparently the code should compile as it is. Is there a way to tell gfortran to accept this conversion?
According to the docs, no implicit conversion is done within if-statements though: https://gcc.gnu.org/onlinedocs/gfortran/Implicitly-convert-LOGICAL-and-INTEGER-values.html
This is not possible in GFortran. The manual states:
However, there is no implicit conversion of INTEGER values in
if-statements, nor of LOGICAL or INTEGER values in I/O operations.
You are only able to perform implicit conversions in assignments like your
integer :: var
var = .true.
but even there you must be very careful. It is not standard conforming and the value var will differ between compilers. Intel used to use -1 (all bits set to 1), unless -standard-semantics was chosen, for .true., but gfortran uses +1 as in the C language. New versions of Intel Fortran changes the default. The other direction is even trickier, there might be values which are neither .true. nor .false..
I would like to define a type in Fortran which has an integer member and an array member depending on that integer.
program example
IMPLICIT NONE
type m
integer :: mSize = 2
double precision, dimension(mSize) :: mArray
end type m
type(m) :: test
!do stuff
end program
I do not want to use modules (yes, I know I am wasting memory!), since getting f2py and modules working together has not worked out for me (well, technically that is what I am doing, but it means in order to hide the module from f2py I have a subroutine which basically takes data and passes it without working on it and I am getting tired of the additional overhead, so I would like to work around this by including a type from an additional file)
Oh, and the bove code does not compile, gfortran complains that msize has no implicit type.
See the example below
program test
character(10),dimension(5):: models = (/"feddes.swp", "jarvis89.swp", "jarvis10.swp" , "pem.swp", "van.swp"/)
end
The following error is returned:
Different CHARACTER lengths (10/12) in array constructor at (1)
There is no error with ifort compiler. Why does it happen with gfortran and is there any way to circumvent this problem?
You have some lengths 12 in the constructor, so it may be better to use length 12.
Also, use instead
character(len=12), dimension(5) :: models = [character(len=12) :: "feddes.swp", &
"jarvis89.swp", "jarvis10.swp", "pem.swp", "van.swp"]
Possibly even better, if you have compiler support, is
character(len=*), dimension(*) :: ...
The original code is accepted by ifort but it is not standard fortran, hence the error from gfortran. If you supply the option -std to ifort it will print warnings when the compiler allows extensions such as this.