enable/disable frag & vert shaders - opengl

Currently I'm using
glUseProgramObjectARB(ProgramObject);
and
glUseProgramObjectARB(0);
But it doesn't switch back properly,and gives me an “invalid operation glError” along these lines
void updateAnim_withShader()
{
int location;
location = getUniLoc(ProgramObject, "currentTime");
ParticleTime += 0.002f;
if (ParticleTime > 15.0)
ParticleTime = 0.0;
glUniform1fARB(location, ParticleTime);
printOpenGLError();
}
What's the proper/right way of doing it(enable/disable shaders)?
[my code files(Temporary link removed )][1]

Your location is -1, because the actual currentTime uniform was not used in a shader.

Related

I'm experiencing very slow OpenGL compute shader compilation (10+ minutes) when using larger work groups, is there anything I can do to speed it up?

So, I'm encountering a really bizarre (at least to me as a compute shader noob) phenomenon when I compile my compute shader using glGetShaderiv(m_shaderID, GL_COMPILE_STATUS, &status). Inexplicably, my compute shader takes much longer to compile when I increase the size of my work groups! When I have one-dimensional work groups, it compiles in less than a second, but when I increase the size of my work groups to 4x1x6, the compute shader takes 10+ minutes to compile! How strange.
For background, I'm trying to implement a light clustering algorithm (essentially the one shown here: http://www.aortiz.me/2018/12/21/CG.html#tiled-shading--forward), and my compute shader is this monster:
// TODO: Figure out optimal tile size, currently using a 16x9x24 subdivision
#define FLT_MAX 3.402823466e+38
#define FLT_MIN 1.175494351e-38
#define DBL_MAX 1.7976931348623158e+308
#define DBL_MIN 2.2250738585072014e-308
layout(local_size_x = 4, local_size_y = 9, local_size_z = 4) in;
// TODO: Change to reflect my light structure
// struct PointLight{
// vec4 position;
// vec4 color;
// uint enabled;
// float intensity;
// float range;
// };
// TODO: Pack this more efficiently
struct Light {
vec4 position;
vec4 direction;
vec4 ambientColor;
vec4 diffuseColor;
vec4 specularColor;
vec4 attributes;
vec4 intensity;
ivec4 typeIndexAndFlags;
// uint flags;
};
// Array containing offset and number of lights in a cluster
struct LightGrid{
uint offset;
uint count;
};
struct VolumeTileAABB{
vec4 minPoint;
vec4 maxPoint;
};
layout(std430, binding = 0) readonly buffer LightBuffer {
Light data[];
} lightBuffer;
layout (std430, binding = 1) buffer clusterAABB{
VolumeTileAABB cluster[ ];
};
layout (std430, binding = 2) buffer screenToView{
mat4 inverseProjection;
uvec4 tileSizes;
uvec2 screenDimensions;
};
// layout (std430, binding = 3) buffer lightSSBO{
// PointLight pointLight[];
// };
// SSBO of active light indices
layout (std430, binding = 4) buffer lightIndexSSBO{
uint globalLightIndexList[];
};
layout (std430, binding = 5) buffer lightGridSSBO{
LightGrid lightGrid[];
};
layout (std430, binding = 6) buffer globalIndexCountSSBO{
uint globalIndexCount;
};
// Shared variables, shared between all invocations WITHIN A WORK GROUP
// TODO: See if I can use gl_WorkGroupSize for this, gl_WorkGroupSize.x * gl_WorkGroupSize.y * gl_WorkGroupSize.z
// A grouped-shared array which contains all the lights being evaluated
shared Light sharedLights[4*9*4]; // A grouped-shared array which contains all the lights being evaluated, size is thread-count
uniform mat4 viewMatrix;
bool testSphereAABB(uint light, uint tile);
float sqDistPointAABB(vec3 point, uint tile);
bool testConeAABB(uint light, uint tile);
float getLightRange(uint lightIndex);
bool isEnabled(uint lightIndex);
// Runs in batches of multiple Z slices at once
// In this implementation, 6 batches, since each thread group contains four z slices (24/4=6)
// We begin by each thread representing a cluster
// Then in the light traversal loop they change to representing lights
// Then change again near the end to represent clusters
// NOTE: Tiles actually mean clusters, it's just a legacy name from tiled shading
void main(){
// Reset every frame
globalIndexCount = 0; // How many lights are active in t his scene
uint threadCount = gl_WorkGroupSize.x * gl_WorkGroupSize.y * gl_WorkGroupSize.z; // Number of threads in a group, same as local_size_x, local_size_y, local_size_z
uint lightCount = lightBuffer.data.length(); // Number of total lights in the scene
uint numBatches = uint((lightCount + threadCount -1) / threadCount); // Number of groups of lights that will be completed, i.e., number of passes
uint tileIndex = gl_LocalInvocationIndex + gl_WorkGroupSize.x * gl_WorkGroupSize.y * gl_WorkGroupSize.z * gl_WorkGroupID.z;
// uint tileIndex = gl_GlobalInvocationID; // doesn't wortk, is uvec3
// Local thread variables
uint visibleLightCount = 0;
uint visibleLightIndices[100]; // local light index list, to be transferred to global list
// Every light is being checked against every cluster in the view frustum
// TODO: Perform active cluster determination
// Each individual thread will be responsible for loading a light and writing it to shared memory so other threads can read it
for( uint batch = 0; batch < numBatches; ++batch){
uint lightIndex = batch * threadCount + gl_LocalInvocationIndex;
//Prevent overflow by clamping to last light which is always null
lightIndex = min(lightIndex, lightCount);
//Populating shared light array
// NOTE: It is VERY important that lightBuffer.data not be referenced after this point,
// since that is not thread-safe
sharedLights[gl_LocalInvocationIndex] = lightBuffer.data[lightIndex];
barrier(); // Synchronize read/writes between invocations within a work group
//Iterating within the current batch of lights
for( uint light = 0; light < threadCount; ++light){
if( isEnabled(light)){
uint lightType = uint(sharedLights[light].typeIndexAndFlags[0]);
if(lightType == 0){
// Point light
if( testSphereAABB(light, tileIndex) ){
visibleLightIndices[visibleLightCount] = batch * threadCount + light;
visibleLightCount += 1;
}
}
else if(lightType == 1){
// Directional light
visibleLightIndices[visibleLightCount] = batch * threadCount + light;
visibleLightCount += 1;
}
else if(lightType == 2){
// Spot light
if( testConeAABB(light, tileIndex) ){
visibleLightIndices[visibleLightCount] = batch * threadCount + light;
visibleLightCount += 1;
}
}
}
}
}
// We want all thread groups to have completed the light tests before continuing
barrier();
// Back to every thread representing a cluster
// Adding the light indices to the cluster light index list
uint offset = atomicAdd(globalIndexCount, visibleLightCount);
for(uint i = 0; i < visibleLightCount; ++i){
globalLightIndexList[offset + i] = visibleLightIndices[i];
}
// Updating the light grid for each cluster
lightGrid[tileIndex].offset = offset;
lightGrid[tileIndex].count = visibleLightCount;
}
// Return whether or not the specified light intersects with the specified tile (cluster)
bool testSphereAABB(uint light, uint tile){
float radius = getLightRange(light);
vec3 center = vec3(viewMatrix * sharedLights[light].position);
float squaredDistance = sqDistPointAABB(center, tile);
return squaredDistance <= (radius * radius);
}
// TODO: Different test for spot-lights
// Has been done by using several AABBs for spot-light cone, this could be a good approach, or even just use one to start.
bool testConeAABB(uint light, uint tile){
// Light light = lightBuffer.data[lightIndex];
// float innerAngleCos = light.attributes[0];
// float outerAngleCos = light.attributes[1];
// float innerAngle = acos(innerAngleCos);
// float outerAngle = acos(outerAngleCos);
// FIXME: Actually do something clever here
return true;
}
// Get range of light given the specified light index
float getLightRange(uint lightIndex){
int lightType = sharedLights[lightIndex].typeIndexAndFlags[0];
float range;
if(lightType == 0){
// Point light
float brightness = 0.01; // cutoff for end of range
float c = sharedLights[lightIndex].attributes.x;
float lin = sharedLights[lightIndex].attributes.y;
float quad = sharedLights[lightIndex].attributes.z;
range = (-lin + sqrt(lin*lin - 4.0 * c * quad + (4.0/brightness)* quad)) / (2.0 * quad);
}
else if(lightType == 1){
// Directional light
range = FLT_MAX;
}
else{
// Spot light
range = FLT_MAX;
}
return range;
}
// Whether the light at the specified index is enabled
bool isEnabled(uint lightIndex){
uint flags = sharedLights[lightIndex].typeIndexAndFlags[2];
return (flags | 1) != 0;
}
// Get squared distance from a point to the AABB of the specified tile (cluster)
float sqDistPointAABB(vec3 point, uint tile){
float sqDist = 0.0;
VolumeTileAABB currentCell = cluster[tile];
cluster[tile].maxPoint[3] = tile;
for(int i = 0; i < 3; ++i){
float v = point[i];
if(v < currentCell.minPoint[i]){
sqDist += (currentCell.minPoint[i] - v) * (currentCell.minPoint[i] - v);
}
if(v > currentCell.maxPoint[i]){
sqDist += (v - currentCell.maxPoint[i]) * (v - currentCell.maxPoint[i]);
}
}
return sqDist;
}
Edit: Whoops, lost the bottom part of this!
What I don't understand is why changing the size of the work groups affects compilation time at all? It sort of defeats the point of the algorithm if my work group sizes are too small for the compute shader to run efficiently, so I'm hoping there's something that I'm missing.
As a last note, I'd like to avoid using glGetProgramBinary as a solution. Not only because it merely circumvents the issue instead of solving it, but because pre-compiling shaders will not play nicely with the engine's current architecture.
So, I'm figuring that this must be a bug in the compiler, since I've replaced the loop in my sqDistPointAABB function with:
vec3 minPoint = currentCell.minPoint.xyz;
vec3 maxPoint = currentCell.maxPoint.xyz;
vec3 t1 = vec3(lessThan(point, minPoint));
vec3 t2 = vec3(greaterThan(point, maxPoint));
vec3 sqDist = t1 * (minPoint - point) * (minPoint - point) + t2 * (maxPoint - point) * (maxPoint - point);
return sqDist.x + sqDist.y + sqDist.z;
And it compiles just fine now, in less than a second! So strange

Find the maximum float in the array

I have a compute shader program which looks for the maximum value in the float array. it uses reduction (compare two values and save the bigger one to the output buffer).
Now I am not quite sure how to run this program from the Java code (using jogamp). In the display() method I run the program once (every time with the halved array in the input SSBO = result from previous iteration) and finish this when the array with results has only one item - the maximum.
Is this the correct method? Every time in the display() method creating and binding input and output SSBO, running the shader program and then check how many items was returned?
Java code:
FloatBuffer inBuffer = Buffers.newDirectFloatBuffer(array);
gl.glBindBuffer(GL3ES3.GL_SHADER_STORAGE_BUFFER, buffersNames.get(1));
gl.glBufferData(GL3ES3.GL_SHADER_STORAGE_BUFFER, itemsCount * Buffers.SIZEOF_FLOAT, inBuffer,
GL3ES3.GL_STREAM_DRAW);
gl.glBindBufferBase(GL3ES3.GL_SHADER_STORAGE_BUFFER, 1, buffersNames.get(1));
gl.glDispatchComputeGroupSizeARB(groupsCount, 1, 1, groupSize, 1, 1);
gl.glMemoryBarrier(GL3ES3.GL_SHADER_STORAGE_BARRIER_BIT);
ByteBuffer output = gl.glMapNamedBuffer(buffersNames.get(1), GL3ES3.GL_READ_ONLY);
Shader code:
#version 430
#extension GL_ARB_compute_variable_group_size : enable
layout (local_size_variable) in;
layout(std430, binding = 1) buffer MyData {
vec4 elements[];
} data;
void main() {
uint index = gl_GlobalInvocationID.x;
float n1 = data.elements[index].x;
float n2 = data.elements[index].y;
float n3 = data.elements[index].z;
float n4 = data.elements[index].w;
data.elements[index].x = max(max(n1, n2), max(n3, n4));
}

Strange behaviour using in/out block data with OpenGL/GLSL

I have implemented normal mapping shader in my OpenGL/GLSL application. To compute the bump and shadow factor in the fragment shader I need to send from the vertex shader some data like the light direction in tangent space and the vertex position in light space for each light of my scene. So to do job I need the declare 2 output variables like below (vertex shader):
#define MAX_LIGHT_COUNT 5
[...]
out vec4 ShadowCoords[MAX_LIGHT_COUNT]; //Vertex position in light space
out vec3 lightDir_TS[MAX_LIGHT_COUNT]; //light direction in tangent space
uniform int LightCount;
[...]
for (int idx = 0; idx < LightCount; idx++)
{
[...]
lightDir_TS[idx] = TBN * lightDir_CS;
ShadowCoords[idx] = ShadowInfos[idx].ShadowMatrix * VertexPosition;
[...]
}
And in the fragment shader I recover these variables thanks to the followings input declarations:
in vec3 lightDir_TS[MAX_LIGHT_COUNT];
in vec4 ShadowCoords[MAX_LIGHT_COUNT];
The rest of the code is not important to explain my problem.
So now here's the result in image:
As you can see until here all is ok!
But now, for a sake of simplicity I want to use a single output declaration rather than 2! So the logical choice is to use an input/output data block like below:
#define MAX_LIGHT_COUNT 5
[...]
out LightData_VS
{
vec3 lightDir_TS;
vec4 ShadowCoords;
} LightData_OUT[MAX_LIGHT_COUNT];
uniform int LightCount;
[...]
for (int idx = 0; idx < LightCount; idx++)
{
[...]
LightData_OUT[idx].lightDir_TS = TBN * lightDir_CS;
LightData_OUT[idx].ShadowCoords = ShadowInfos[idx].ShadowMatrix * VertexPosition;
[...]
}
And in the fragment shader the input data block:
in LightData_VS
{
vec3 lightDir_TS;
vec4 ShadowCoords;
} LightData_IN[MAX_LIGHT_COUNT];
But this time when I execute my program I have the following display:
As you can see the specular light is not the same than in the first case above!
However I noticed if I replace the line:
for (int idx = 0; idx < LightCount; idx++) //Use 'LightCount' uniform variable
by the following one:
for (int idx = 0; idx < 1; idx++) //'1' value hard coded
or
int count = 1;
for (int idx = 0; idx < count; idx++)
the shading result is correct!
The problem seems to come from the fact I use uniform variable in the 'for' condition. However this works when I used seperates output variables like in the first case!
I checked: the uniform variable 'LightCount' is correct and equal to '1'; (I tried unsigned int data type without success and it's the same thing using a 'while' loop)
How can you explain a such result?
I use:
OpenGL: 4.4.0 NVIDIA driver 344.75
GLSL: 4.40 NVIDIA via Cg compiler
I already used input/output data block without problem but it was not arrays but just simple blocks like below:
[in/out] VertexData_VS
{
vec3 viewDir_TS;
vec4 Position_CS;
vec3 Normal_CS;
vec2 TexCoords;
} VertexData_[IN/OUT];
Do you think it's not possible to use input/output data blocks as arrays in a loop using a uniform variable in the for conditions ?
UPDATE
I tried using 2 vec4 (for a sake of data alignment like for uniform block (for this case data need to be aligned on a vec4)) into the data structure like below:
[in/out] LightData_VS
{
vec4 lightDir_TS; //vec4((TBN * lightDir_CS), 0.0f);
vec4 ShadowCoords;
} LightData_[IN/OUT][MAX_LIGHT_COUNT];
without success...
UPDATE 2
Here's the code concerning shader compilation log:
core::FileSystem file(filename);
std::ifstream ifs(file.GetFullName());
if (ifs)
{
GLint compilationError = 0;
std::string fileContent, line;
char const *sourceCode;
while (std::getline(ifs, line, '\n'))
fileContent.append(line + '\n');
sourceCode = fileContent.c_str();
ifs.close();
this->m_Handle = glCreateShader(this->m_Type);
glShaderSource(this->m_Handle, 1, &sourceCode, 0);
glCompileShader(this->m_Handle);
glGetShaderiv(this->m_Handle, GL_COMPILE_STATUS, &compilationError);
if (compilationError != GL_TRUE)
{
GLint errorSize = 0;
glGetShaderiv(this->m_Handle, GL_INFO_LOG_LENGTH, &errorSize);
char *errorStr = new char[errorSize + 1];
glGetShaderInfoLog(this->m_Handle, errorSize, &errorSize, errorStr);
errorStr[errorSize] = '\0';
std::cout << errorStr << std::endl;
delete[] errorStr;
glDeleteShader(this->m_Handle);
}
}
And the code concerning the program log:
GLint errorLink = 0;
glGetProgramiv(this->m_Handle, GL_LINK_STATUS, &errorLink);
if (errorLink != GL_TRUE)
{
GLint sizeError = 0;
glGetProgramiv(this->m_Handle, GL_INFO_LOG_LENGTH, &sizeError);
char *error = new char[sizeError + 1];
glGetShaderInfoLog(this->m_Handle, sizeError, &sizeError, error);
error[sizeError] = '\0';
std::cerr << error << std::endl;
glDeleteProgram(this->m_Handle);
delete[] error;
}
Unfortunatly, I don't have any error log!

Very strange behaviour with sampler handling using OpenGL and GLSL

I have implemented cubemap shadow mapping successfully with just one point light.
To render this scene I use in the first render pass geometry shaders to dispatch the 6 frustrums. In the second render pass I use samplerCubeShadow in the fragment shader to computer the shadow factor.
I have OpenGL/GLSL version 4.40 with NVIDIA GeForce GTX 780M.
Here's a screenshot:
But now I want to implement multiple cubemap shadow mapping to render shadows using several point lights.
Here's some peace of code from my fragment shader:
[...]
/*
** Shadow Cube sampler array.
*/
uniform samplerCubeShadow ShadowCubeSampler[5]; //Max point light by scene = 5
[...]
float ConvertDistToClipSpace(vec3 lightDir_ws)
{
vec3 AbsVec = abs(lightDir_ws);
float LocalZcomp = max(AbsVec.x, max(AbsVec.y, AbsVec.z));
float NormZComp = (NearFar.y + NearFar.x)/(NearFar.y - NearFar.x)
- (2.0f * NearFar.y * NearFar.x)/(LocalZcomp * NearFar.y - NearFar.x);
return ((NormZComp + 1) * 0.5f);
}
float GetCubeShadowFactor(vec3 vertexPosition_ws, float shadowFactor, int idx)
{
vec3 lightToVertexDir_ws = vertexPosition_ws - LightPos_ws.xyz;
float LightToVertexClipDist = ConvertDistToClipSpace(lightToVertexDir_ws);
float LightToOccluderClipDist = texture(
ShadowCubeSampler[idx], vec4(lightToVertexDir_ws, LightToVertexClipDist));
if (LightToOccluderClipDist < LightToVertexClipDist)
{
shadowFactor = 0.0f;
}
return (shadowFactor);
}
void main(void)
{
[...]
for (int idx = 0; idx < 1; idx++) //Test first with 1 point light
{
float ShadowFactor = GetCubeShadowFactor(Position_ws.xyz, ShadowFactor, idx);
}
[...]
}
The problem is I have the error 1282 (INVALID_OPERATION). To resume the situation here, I want to display exactly the same scene like in the picture above with a SINGLE point light but this time using an array of samplerCubeShadow. What is amazing is if I replace the first parameter of the function 'texture' 'ShadowCubeSampler[idx]' by 'ShadowCubeSampler[0]' is works! However the value of 'idx' is always '0'. I tried the following code without success:
int toto = 0;
float LightToOccluderClipDist = texture(ShadowCubeSampler[toto], vec4(lightToVertexDir_ws, LightToVertexClipDist));
I already have the error 1282! The type of the index is the same (int)!
I have already use arrays of 'sampler2DShadow' or 'sampler2D' without problem.
So, Why it does not work correctly using 'samplerCubeShadow' and the solution 'ShadowCubeSampler[0]' works and not the others ?
PS: If I define an array of 2 and if I use 2 cubemaps so 2 point lights, it works. So, if I load a number of cubemaps inferior to the number specified in the fragment shader it fails!
I have no compilation error and no linkage error. Here's the code I use to check shader programs state:
void video::IEffectBase::Log(void) const
{
GLint errorLink = 0;
glGetProgramiv(this->m_Handle, GL_LINK_STATUS, &errorLink);
if (errorLink != GL_TRUE)
{
GLint sizeError = 0;
glGetProgramiv(this->m_Handle, GL_INFO_LOG_LENGTH, &sizeError);
char *erreur = new char[sizeError + 1];
glGetShaderInfoLog(this->m_Handle, sizeError, &sizeError, erreur);
erreur[sizeError] = '\0';
std::cerr << erreur << std::endl;
glDeleteProgram(this->m_Handle);
delete[] erreur;
}
}
And about the texture unit limits:
std::cout << GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS << std::endl;
std::cout << GL_MAX_TEXTURE_IMAGE_UNITS << std::endl;
$> 35660
$> 34930
If I use 'ShadowCubeSampler[0]', '0' written directly in the code I have the same display like the picture a the beginning of the my post without error. If I use 'ShadowCubeSampler[idx]' with idx = 0 I have the following display:
As you can see, all the geometry sharing this shader has not been rendered. However I don't have any linkage error. How can you explain that ? Is it possible the system unlink the shader program?
UPDATE
Let's suppose my array of samplerCubeShadow can contain 2 maximum samplers (uniform samplerCubeShadow tex_shadow2).
I noticed if I load just one point light, so one cubemap:
CASE 1
uniform samplerCubeShadow tex_shadow[1]; //MAX POINT LIGHT = 1
for (int i=0; i < 1; i++) {tex_shadow[i];} //OK
for (int i=0; i < 1; i++) {texture(tex_shadow[i], ...);} //OK
for (int i=0; i < 1; i++) {texture(tex_shadow[0], ...);} //OK
CASE 2
uniform samplerCubeShadow tex_shadow[2]; //MAX POINT LIGHT = 2
for (int i=0; i < 1; i++) {tex_shadow[i];} //NOT OK - 1282
for (int i=0; i < 1; i++) {texture(tex_shadow[i], ...);} //NOT OK - 1282
for (int i=0; i < 1; i++) {texture(tex_shadow[0], ...);} //OK
CASE 3
uniform samplerCubeShadow tex_shadow[2]; //MAX POINT LIGHT = 2
for (int i=0; i < 2; i++) {tex_shadow[i];} //OK
for (int i=0; i < 2; i++) {texture(tex_shadow[i], ...);} //OK
for (int i=0; i < 2; i++) {texture(tex_shadow[0], ...);} //OK
Conclusion: if the max number of sampler is equal to the number of sampler loaded, I can loop over the samplers contained in my array. If the number is inferior, it does not work! I can use a maximum of 32 texture units for each use of shader program. I have the same problem using the samplerCube keyword.
It's very strange because I don't have any problem using sampler2D or sampler2DShadow for spot light shadow computation.
I check with NSight where I put a break point in the fragment shader file and of course the break point is neaver reached. It's like the shader program is not linked but it's not the case.
Do you think it could be a problem concerning cubeMap samplers in general or the problem comes from the cubemap initialization ?
Does anyone can help me?
i have never use an array inside of glsl and infortuntly i dont have the equipments now to do so,
but have you tried using an unsigned int uint in glsl.
float GetCubeShadowFactor(vec3 vertexPosition_ws, float shadowFactor, uint idx) {
....
}
also note that you cannot use infinite samplers in you shaders.
OpenGL has, depending on the targeted version, special restrictions on arrays of opaque types (textures are one of them). Before OpenGL 4 looping over such arrays is not possible. You can check the details here: OpenGL Wiki - Data Types

Order independent transparency with MSAA

I have implemented OIT based on the demo in "OpenGL Programming Guide" 8th edition.(The red book).Now I need to add MSAA.Just enabling MSAA screws up the transparency as the layered pixels are resolved x times equal to the number of sample levels.I have read this article on how it is done with DirectX where they say the pixel shader should be run per sample and not per pixel.How id it done in OpenGL.
I won't put out here the whole implementation but the fragment shader chunk in which the final resolution of the layered pixels occurs:
vec4 final_color = vec4(0,0,0,0);
for (i = 0; i < fragment_count; i++)
{
/// Retrieving the next fragment from the stack:
vec4 modulator = unpackUnorm4x8(fragment_list[i].y) ;
/// Perform alpha blending:
final_color = mix(final_color, modulator, modulator.a);
}
color = final_color ;
Update:
I have tried the solution proposed here but it still doesn't work.Here are the full fragment shader for the list build and resolve passes:
List build pass :
#version 420 core
layout (early_fragment_tests) in;
layout (binding = 0, r32ui) uniform uimage2D head_pointer_image;
layout (binding = 1, rgba32ui) uniform writeonly uimageBuffer list_buffer;
layout (binding = 0, offset = 0) uniform atomic_uint list_counter;
layout (location = 0) out vec4 color;//dummy output
in vec3 frag_position;
in vec3 frag_normal;
in vec4 surface_color;
in int gl_SampleMaskIn[];
uniform vec3 light_position = vec3(40.0, 20.0, 100.0);
void main(void)
{
uint index;
uint old_head;
uvec4 item;
vec4 frag_color;
index = atomicCounterIncrement(list_counter);
old_head = imageAtomicExchange(head_pointer_image, ivec2(gl_FragCoord.xy), uint(index));
vec4 modulator =surface_color;
item.x = old_head;
item.y = packUnorm4x8(modulator);
item.z = floatBitsToUint(gl_FragCoord.z);
item.w = int(gl_SampleMaskIn[0]);
imageStore(list_buffer, int(index), item);
frag_color = modulator;
color = frag_color;
}
List resolve :
#version 420 core
// The per-pixel image containing the head pointers
layout (binding = 0, r32ui) uniform uimage2D head_pointer_image;
// Buffer containing linked lists of fragments
layout (binding = 1, rgba32ui) uniform uimageBuffer list_buffer;
// This is the output color
layout (location = 0) out vec4 color;
// This is the maximum number of overlapping fragments allowed
#define MAX_FRAGMENTS 40
// Temporary array used for sorting fragments
uvec4 fragment_list[MAX_FRAGMENTS];
void main(void)
{
uint current_index;
uint fragment_count = 0;
current_index = imageLoad(head_pointer_image, ivec2(gl_FragCoord).xy).x;
while (current_index != 0 && fragment_count < MAX_FRAGMENTS )
{
uvec4 fragment = imageLoad(list_buffer, int(current_index));
int coverage = int(fragment.w);
//if((coverage &(1 << gl_SampleID))!=0) {
fragment_list[fragment_count] = fragment;
current_index = fragment.x;
//}
fragment_count++;
}
uint i, j;
if (fragment_count > 1)
{
for (i = 0; i < fragment_count - 1; i++)
{
for (j = i + 1; j < fragment_count; j++)
{
uvec4 fragment1 = fragment_list[i];
uvec4 fragment2 = fragment_list[j];
float depth1 = uintBitsToFloat(fragment1.z);
float depth2 = uintBitsToFloat(fragment2.z);
if (depth1 < depth2)
{
fragment_list[i] = fragment2;
fragment_list[j] = fragment1;
}
}
}
}
vec4 final_color = vec4(0,0,0,0);
for (i = 0; i < fragment_count; i++)
{
vec4 modulator = unpackUnorm4x8(fragment_list[i].y);
final_color = mix(final_color, modulator, modulator.a);
}
color = final_color;
}
Without knowing how your code actually works, you can do it very much the same way that your linked DX11 demo does, since OpenGL provides the same features needed.
So in the first shader that just stores all the rendered fragments, you also store the sample coverage mask for each fragment (along with the color and depth, of course). This is given as fragment shader input variable int gl_SampleMaskIn[] and for each sample with id 32*i+j, bit j of glSampleMaskIn[i] is set if the fragment covers that sample (since you probably won't use >32xMSAA, you can usually just use glSampleMaskIn[0] and only need to store a single int as coverage mask).
...
fragment.color = inColor;
fragment.depth = gl_FragCoord.z;
fragment.coverage = gl_SampleMaskIn[0];
...
Then the final sort and render shader is run for each sample instead of just for each fragment. This is achieved implicitly by making use of the input variable int gl_SampleID, which gives us the ID of the current sample. So what we do in this shader (in addition to the non-MSAA version) is that the sorting step just accounts for the sample, by only adding a fragment to the final (to be sorted) fragment list if the current sample is actually covered by this fragment:
What was something like (beware, pseudocode extrapolated from your small snippet and the DX-link):
while(fragment.next != 0xFFFFFFFF)
{
fragment_list[count++] = vec2(fragment.depth, fragment.color);
fragment = fragments[fragment.next];
}
is now
while(fragment.next != 0xFFFFFFFF)
{
if(fragment.coverage & (1 << gl_SampleID))
fragment_list[count++] = vec2(fragment.depth, fragment.color);
fragment = fragments[fragment.next];
}
Or something along those lines.
EDIT: To your updated code, you have to increment fragment_count only inside the if(covered) block, since we don't want to add the fragment to the list if the sample is not covered. Incrementing it always will likely result in the artifacts you see at the edges, which are the regions where the MSAA (and thus the coverage) comes into play.
On the other hand the list pointer has to be forwarded (current_index = fragment.x) in each loop iteration and not only if the sample is covered, as otherwise it can result in an infinite loop, like in your case. So your code should look like:
while (current_index != 0 && fragment_count < MAX_FRAGMENTS )
{
uvec4 fragment = imageLoad(list_buffer, int(current_index));
uint coverage = fragment.w;
if((coverage &(1 << gl_SampleID))!=0)
fragment_list[fragment_count++] = fragment;
current_index = fragment.x;
}
The OpenGL 4.3 Spec states in 7.1 about the gl_SampleID builtin variable:
Any static use of this variable in a fragment shader causes the entire shader to be evaluated per-sample.
(This has already been the case in the ARB_sample_shading and is also the case for gl_SamplePosition or a custom variable declared with the sample qualifier)
Therefore it is quite automatic, because you will probably need the SampleID anyway.