Perlin's Noise with OpenGL - opengl

I was studying Perlin's Noise through some examples # http://dindinx.net/OpenGL/index.php?menu=exemples&submenu=shaders and couldn't help to notice that his make3DNoiseTexture() in perlin.c uses noise3(ni) instead of PerlinNoise3D(...)
Now why is that? Isn't Perlin's Noise supposed to be a summation of different noise frequencies and amplitudes?
Qestion 2 is what does ni, inci, incj, inck stand for? Why use ni instead of x,y coordinates? Why is ni incremented with
ni[0]+=inci;
inci = 1.0 / (Noise3DTexSize / frequency);
I see Hugo Elias created his Perlin2D with x,y coordinates, and so does PerlinNoise3D(...).
Thanks in advance :)

I now understand why and am going to answer my own question in hopes that it helps other people.
Perlin's Noise is actually a synthesis of gradient noises. In its production process, we must compute the dot product of a vector pointing from one of the corners flooring the input point to the input point itself with the random-generated gradient vector.
Now if the input point were a whole number, such as the xyz coordinates of a texture you want to create, the dot product would always return 0, which would give you a flat noise. So instead, we use inci, incj, inck as an alternative index. Yep, just an index, nothing else.
Now returning to question 1, there are two methods to implement Perlin's Noise:
1.Calculate the noise values separately and store them in the RGBA slots in the texture
2.Synthesize the noises up before-hand and store them in one of the RGBA slots in the texture
noise3(ni) is the actual implementation of method 1, while PerlinNoise3D(...) suggests the latter.
In my personal opinion, method 1 is much better because you have much more flexibility over how you use each octave in your shaders.

My guess on the reason for using noise3(ni) in make3DNoiseTexture() instead if PerlinNoise3D(...) is that when you use that noise texture in your shader you want to be able to replicate and modify the functionality of PerlinNoise3D(...) directly in the shader.
My guess for the reasoning behind ni, inci, incj, inck is that using x,y,z of the volume directly don't give a good result so by scaling the the noise with the frequency instead it is possible to adjust the resolution of the noise independently from the volume size.

Related

The meaning of sigma_s and sigma_r in detailEnhance function on OpenCV

The detailEnhance function provided by openCV have parameters InputArray, OutputArray, sigma_s and sigma_r. What does sigma s and r mean and what is it used for?
Here is the source: http://docs.opencv.org/3.0-beta/modules/photo/doc/npr.html#detailenhance
Thank you in advance.
sigma_s controls how much the image is smoothed - the larger its value, the more smoothed the image gets, but it's also slower to compute.
sigma_r is important if you want to preserve edges while smoothing the image. Small sigma_r results in only very similar colors to be averaged (i.e. smoothed), while colors that differ much will stay intact.
See also: https://www.learnopencv.com/non-photorealistic-rendering-using-opencv-python-c/

About generalized hough transform code

I was looking for an implementation of Generalized Hough Transform,and then I found this website,which showed me a complete implementation of GHT .
I can totally understand how the algorithm processes except this:
Vec2i referenceP = Vec2i(id_max[0]*rangeXY+(rangeXY+1)/2, id_max[1]*rangeXY+(rangeXY+1)/2);
which calculates the reference point of the object based on the maximum value of the hough space,then mutiplied by rangXY to get back to the corresponding position of origin image.(rangeXY is the dimensions in pixels of the squares in which the image is divided. )
I edited the code to
Vec2i referenceP = Vec2i(id_max[0]*rangeXY, id_max[1]*rangeXY);
and I got another reference point then show all edgePoints in the image,which apparently not fit the shape.
I just cannot figure out what the factor(rangeXY+1)/2means.
Is there anyone who has implemented this code or familiared with the rationale of GHT can tell me what the factor rangeXYmeans? Thanks~
I am familiar with the classic Hough Transform, though not with the generalised one. However, I believe you give enough information in your question for me to answer it without being familiar with the algorithm in question.
(rangeXY+1)/2 is simply integer division by 2 with rounding. For instance (4+1)/2 gives 2 while (5+1)/2 gives 3 (2.5 rounds up). Now, since rangeXY is the side of a square block of pixels and id_max is the position (index) of such a block, then id_max[dim]*rangeXY+(rangeXY+1)/2 gives the position of the central pixel in that block.
On the other hand, when you simplified the expression to id_max[dim]*rangeXY, you were getting the position of the top-left rather than the central pixel.

Draw Ring with shapeRenderer in LibGDX

I want to draw a ring (circle with big border) with the shaperenderer.
I tried two different solutions:
Solution: draw n-circles, each with 1 pixel width and 1 pixel bigger than the one before. Problem with that: it produces a graphic glitch. (also with different Multisample Anti-Aliasing values)
Solution: draw one big filled circle and then draw a smaller one with the backgroundcolor. Problem: I can't realize overlapping ring shapes. Everything else works fine.
I can't use a ring texture, because I have to increase/decrease the ring radius dynamic. The border-width should always have the same value.
How can I draw smooth rings with the shaperenderer?
EDIT:
Increasing the line-width doesn't help:
MeshBuilder has the option to create a ring using the ellipse method. It allows you to specify the inner and outer size of the ring. Normally this would result in a Mesh, which you would need to render yourself. But because of a recent change it is also possible to use in conjunction with PolygonSpriteBatch (an implementation of Batch that allows more flexible shapes, while SpriteBatch only allows quads). You can use PolygonSpriteBatch instead of where you normally would use a SpriteBatch (e.g. for your Stage or Sprite class).
Here is an example how to use it: https://gist.github.com/xoppa/2978633678fa1c19cc47, but keep in mind that you do need the latest nightly (or at least release 1.6.4) for this.
Maybe you can try making a ring some other way, such as using triangles. I'm not familiar with LibGDX, so here's some
pseudocode.
// number of sectors in the ring, you may need
// to adapt this value based on the desired size of
// the ring
int sectors=32;
float outer=0.8; // distance to outer edge
float inner=1.2; // distance to inner edge
glBegin(GL_TRIANGLES)
glNormal3f(0,0,1)
for(int i=0;i<sectors;i++){
// define each section of the ring
float angle=(i/sectors)*Math.PI*2
float nextangle=((i+1)/sectors)*Math.PI*2
float s=Math.sin(angle)
float c=Math.cos(angle)
float sn=Math.sin(nextangle)
float cn=Math.cos(nextangle)
glVertex3f(inner*c,inner*s,0)
glVertex3f(outer*cn,outer*sn,0)
glVertex3f(outer*c,outer*s,0)
glVertex3f(inner*c,inner*s,0)
glVertex3f(inner*cn,inner*sn,0)
glVertex3f(outer*cn,outer*sn,0)
}
glEnd()
Alternatively, divide the ring into four polygons, each of which consists of one quarter of the whole ring. Then use ShapeRenderer to fill each of these polygons.
Here's an illustration of how you would divide the ring:
if I understand your question,
maybe, using glLineWidth(); help you.
example pseudo code:
size = 5;
Gdx.gl.glLineWidth(size);
mShapeRenderer.begin(....);
..//
mShapeRenderer.end();

How to create a depth map from PointGrey BumbleBee2 stereo camera using Triclops and FlyCapture SDKs?

I've got the BumbleBee 2 stereo camera and two mentioned SDKs.
I've managed to capture a video from it in my program, rectify stereo images and get a disparity map. Next thing I'd like to have is a depth map similar to one, the Kinect gives.
The Triclops' documentation is rather short, it only references functions, without typical workflow description. The workflow is described in examples.
Up to now I've found 2 relevant functions: family of triclopsRCDxxToXYZ() functions and triclopsExtractImage3d() function.
Functions from the first family calculate x, y and z coordinate for a single pixel. Z coordinate perfectly corresponds to the depth in meters. However, to use this function I should create two nested loops, as shown in the stereo3dpoints example. That gives too much overhead, because each call returns two more coordinates.
The second function, triclopsExtractImage3d(), always returns error TriclopsErrorInvalidParameter. The documentation says only that "there is a geometry mismatch between the context and the TriclopsImage3d", which is not clear for me.
Examples of Triclops 3.3.1 SDK do not show how to use it. Google brings example from Triclops SDK 3.2, which is absent in 3.3.1.
I've tried adding lines 253-273 from the link above to current stereo3dpoints - got that error.
Does anyone have an experience with it?
Is it valid to use triclopsExtractImage3d() or is it obsolete?
I also tried plotting values of disparity vs. z, obtained from triclopsRCDxxToXYZ().
The plot shows almost exact inverse proportionality: .
That is z = k / disparity. But k is not constant across the image, it varies from approximately 2.5e-5 to 1.4e-3, that is two orders of magnitude. Therefore, it is incorrect to calculate this value once and use forever.
Maybe it is a bit to late and you figured it out by yourself but:
To use triclopsExtractImage3d you have to create a 3dImage first.
TriclopsImage3d *depthImage;
triclopsCreateImage3d(triclopsContext, &depthImage);
triclopsExtractImage3d(triclopsContext, depthImage);
triclopsDestroyImage3d(&depthImage);

Cement Effect - Artistic Effect

I wish to give an effect to images, where the resultant image would appear as if it is painted on a rough cemented background, and the cemented background customizes itself near the edges to highlight them... Please help me in writing an algorithm to generate such an effect.
The first image is the original image
and the second image is the output im looking for.
please note the edges are detected and the mask changes near the edges to indicate the edges clearly
You need to read up on Bump Mapping. There are plenty of bump mapping algorithms.
The basic algorithm is:
for each pixel
Look up the position on the bump map texture that corresponds to the position on the bumped image.
Calculate the surface normal of the bump map
Add the surface normal from step 2 to the geometric surface normal (in case of an image it's a vector pointing up) so that the normal points in a new direction.
Calculate the interaction of the new 'bumpy' surface with lights in the scene using, for example, Phong shading -- light placement is up to you, and decides where will the shadows lie.
Finally, here's a plain C implementation for 2D images.
Starting with
1) the input image as R, G, B, and
2) a texture image, grayscale.
The images are likely in bytes, 0 to 255. Divide it by 255.0 so we have them as being from 0.0 to 1.0. This makes the math easier. For performance, you wouldn't actually do this but instead use clever fixed-point math, an implementation matter I leave to you.
First, to get the edge effects between different colored areas, add or subtract some fraction of the R, G, and B channels to the texture image:
texture_mod = texture - 0.2*R - 0.3*B
You could get fancier with with nonlinear forumulas, e.g. thresholding the R, G and B channels, or computing some mathematical expression involving them. This is always fun to experiment with; I'm not sure what would work best to recreate your example.
Next, compute an embossed version of texture_mod to create the lighting effect. This is the difference of the texture slid up and right one pixel (or however much you like), and the same texture slid. This give the 3D lighting effect.
emboss = shift(texture_mod, 1,1) - shift(texture_mod, -1, -1)
(Should you use texture_mod or the original texture data in this formula? Experiment and see.)
Here's the power step. Convert the input image to HSV space. (LAB or other colorspaces may work better, or not - experiment and see.) Note that in your desired final image, the cracks between the "mesas" are darker, so we will use the original texture_mod and the emboss difference to alter the V channel, with coefficients to control the strength of the effect:
Vmod = V * ( 1.0 + C_depth * texture_mod + C_light * emboss)
Both C_depth and C_light should be between 0 and 1, probably smaller fractions like 0.2 to 0.5 or so. You will need a fudge factor to keep Vmod from overflowing or clamping at its maximum - divide by (1+C_depth+C_light). Some clamping at the bright end may help the highlights look brighter. As always experiment and see...
As fine point, you could also modify the Saturation channel in some way, perhaps decreasing it where texture_mod is lower.
Finally, convert (H, S, Vmod) back to RGB color space.
If memory is tight or performance critical, you could skip the HSV conversion, and apply the Vmod formula instead to the individual R,G, B channels, but this will cause shifts in hue and saturation. It's a tradeoff between speed and good looks.
This is called bump mapping. It is used to give a non flat appearance to a surface.