As much as I love C and C++, I can't help but scratch my head at the choice of null terminated strings:
Length prefixed (i.e. Pascal) strings existed before C
Length prefixed strings make several algorithms faster by allowing constant time length lookup.
Length prefixed strings make it more difficult to cause buffer overrun errors.
Even on a 32 bit machine, if you allow the string to be the size of available memory, a length prefixed string is only three bytes wider than a null terminated string. On 16 bit machines this is a single byte. On 64 bit machines, 4GB is a reasonable string length limit, but even if you want to expand it to the size of the machine word, 64 bit machines usually have ample memory making the extra seven bytes sort of a null argument. I know the original C standard was written for insanely poor machines (in terms of memory), but the efficiency argument doesn't sell me here.
Pretty much every other language (i.e. Perl, Pascal, Python, Java, C#, etc) use length prefixed strings. These languages usually beat C in string manipulation benchmarks because they are more efficient with strings.
C++ rectified this a bit with the std::basic_string template, but plain character arrays expecting null terminated strings are still pervasive. This is also imperfect because it requires heap allocation.
Null terminated strings have to reserve a character (namely, null), which cannot exist in the string, while length prefixed strings can contain embedded nulls.
Several of these things have come to light more recently than C, so it would make sense for C to not have known of them. However, several were plain well before C came to be. Why would null terminated strings have been chosen instead of the obviously superior length prefixing?
EDIT: Since some asked for facts (and didn't like the ones I already provided) on my efficiency point above, they stem from a few things:
Concat using null terminated strings requires O(n + m) time complexity. Length prefixing often require only O(m).
Length using null terminated strings requires O(n) time complexity. Length prefixing is O(1).
Length and concat are by far the most common string operations. There are several cases where null terminated strings can be more efficient, but these occur much less often.
From answers below, these are some cases where null terminated strings are more efficient:
When you need to cut off the start of a string and need to pass it to some method. You can't really do this in constant time with length prefixing even if you are allowed to destroy the original string, because the length prefix probably needs to follow alignment rules.
In some cases where you're just looping through the string character by character you might be able to save a CPU register. Note that this works only in the case that you haven't dynamically allocated the string (Because then you'd have to free it, necessitating using that CPU register you saved to hold the pointer you originally got from malloc and friends).
None of the above are nearly as common as length and concat.
There's one more asserted in the answers below:
You need to cut off the end of the string
but this one is incorrect -- it's the same amount of time for null terminated and length prefixed strings. (Null terminated strings just stick a null where you want the new end to be, length prefixers just subtract from the prefix.)
From the horse's mouth
None of BCPL, B, or C supports
character data strongly in the
language; each treats strings much
like vectors of integers and
supplements general rules by a few
conventions. In both BCPL and B a
string literal denotes the address of
a static area initialized with the
characters of the string, packed into
cells. In BCPL, the first packed byte
contains the number of characters in
the string; in B, there is no count
and strings are terminated by a
special character, which B spelled
*e. This change was made partially
to avoid the limitation on the length
of a string caused by holding the
count in an 8- or 9-bit slot, and
partly because maintaining the count
seemed, in our experience, less
convenient than using a terminator.
Dennis M Ritchie, Development of the C Language
C doesn't have a string as part of the language. A 'string' in C is just a pointer to char. So maybe you're asking the wrong question.
"What's the rationale for leaving out a string type" might be more relevant. To that I would point out that C is not an object oriented language and only has basic value types. A string is a higher level concept that has to be implemented by in some way combining values of other types. C is at a lower level of abstraction.
in light of the raging squall below:
I just want to point out that I'm not trying to say this is a stupid or bad question, or that the C way of representing strings is the best choice. I'm trying to clarify that the question would be more succinctly put if you take into account the fact that C has no mechanism for differentiating a string as a datatype from a byte array. Is this the best choice in light of the processing and memory power of todays computers? Probably not. But hindsight is always 20/20 and all that :)
The question is asked as a Length Prefixed Strings (LPS) vs zero terminated strings (SZ) thing, but mostly expose benefits of length prefixed strings. That may seem overwhelming, but to be honest we should also consider drawbacks of LPS and advantages of SZ.
As I understand it, the question may even be understood as a biased way to ask "what are the advantages of Zero Terminated Strings ?".
Advantages (I see) of Zero Terminated Strings:
very simple, no need to introduce new concepts in language, char
arrays/char pointers can do.
the core language just include minimal syntaxic sugar to convert
something between double quotes to a
bunch of chars (really a bunch of
bytes). In some cases it can be used
to initialize things completely
unrelated with text. For instance xpm
image file format is a valid C source
that contains image data encoded as a
string.
by the way, you can put a zero in a string literal, the compiler will
just also add another one at the end of the literal: "this\0is\0valid\0C".
Is it a string ? or four strings ? Or a bunch of bytes...
flat implementation, no hidden indirection, no hidden integer.
no hidden memory allocation involved (well, some infamous non
standard functions like strdup
perform allocation, but that's mostly
a source of problem).
no specific issue for small or large hardware (imagine the burden to
manage 32 bits prefix length on 8
bits microcontrollers, or the
restrictions of limiting string size
to less than 256 bytes, that was a problem I actually had with Turbo Pascal eons ago).
implementation of string manipulation is just a handful of
very simple library function
efficient for the main use of strings : constant text read
sequentially from a known start
(mostly messages to the user).
the terminating zero is not even mandatory, all necessary tools
to manipulate chars like a bunch of
bytes are available. When performing
array initialisation in C, you can
even avoid the NUL terminator. Just
set the right size. char a[3] =
"foo"; is valid C (not C++) and
won't put a final zero in a.
coherent with the unix point of view "everything is file", including
"files" that have no intrinsic length
like stdin, stdout. You should remember that open read and write primitives are implemented
at a very low level. They are not library calls, but system calls. And the same API is used
for binary or text files. File reading primitives get a buffer address and a size and return
the new size. And you can use strings as the buffer to write. Using another kind of string
representation would imply you can't easily use a literal string as the buffer to output, or
you would have to make it have a very strange behavior when casting it to char*. Namely
not to return the address of the string, but instead to return the actual data.
very easy to manipulate text data read from a file in-place, without useless copy of buffer,
just insert zeroes at the right places (well, not really with modern C as double quoted strings are const char arrays nowaday usually kept in non modifiable data segment).
prepending some int values of whatever size would implies alignment issues. The initial
length should be aligned, but there is no reason to do that for the characters datas (and
again, forcing alignment of strings would imply problems when treating them as a bunch of
bytes).
length is known at compile time for constant literal strings (sizeof). So why would
anyone want to store it in memory prepending it to actual data ?
in a way C is doing as (nearly) everyone else, strings are viewed as arrays of char. As array length is not managed by C, it is logical length is not managed either for strings. The only surprising thing is that 0 item added at the end, but that's just at core language level when typing a string between double quotes. Users can perfectly call string manipulation functions passing length, or even use plain memcopy instead. SZ are just a facility. In most other languages array length is managed, it's logical that is the same for strings.
in modern times anyway 1 byte character sets are not enough and you often have to deal with encoded unicode strings where the number of characters is very different of the number of bytes. It implies that users will probably want more than "just the size", but also other informations. Keeping length give use nothing (particularly no natural place to store them) regarding these other useful pieces of information.
That said, no need to complain in the rare case where standard C strings are indeed inefficient. Libs are available. If I followed that trend, I should complain that standard C does not include any regex support functions... but really everybody knows it's not a real problem as there is libraries available for that purpose. So when string manipulation efficiency is wanted, why not use a library like bstring ? Or even C++ strings ?
EDIT: I recently had a look to D strings. It is interesting enough to see that the solution choosed is neither a size prefix, nor zero termination. As in C, literal strings enclosed in double quotes are just short hand for immutable char arrays, and the language also has a string keyword meaning that (immutable char array).
But D arrays are much richer than C arrays. In the case of static arrays length is known at run-time so there is no need to store the length. Compiler has it at compile time. In the case of dynamic arrays, length is available but D documentation does not state where it is kept. For all we know, compiler could choose to keep it in some register, or in some variable stored far away from the characters data.
On normal char arrays or non literal strings there is no final zero, hence programmer has to put it itself if he wants to call some C function from D. In the particular case of literal strings, however the D compiler still put a zero at the end of each strings (to allow easy cast to C strings to make easier calling C function ?), but this zero is not part of the string (D does not count it in string size).
The only thing that disappointed me somewhat is that strings are supposed to be utf-8, but length apparently still returns a number of bytes (at least it's true on my compiler gdc) even when using multi-byte chars. It is unclear to me if it's a compiler bug or by purpose. (OK, I probably have found out what happened. To say to D compiler your source use utf-8 you have to put some stupid byte order mark at beginning. I write stupid because I know of not editor doing that, especially for UTF-8 that is supposed to be ASCII compatible).
I think, it has historical reasons and found this in wikipedia:
At the time C (and the languages that
it was derived from) were developed,
memory was extremely limited, so using
only one byte of overhead to store the
length of a string was attractive. The
only popular alternative at that time,
usually called a "Pascal string"
(though also used by early versions of
BASIC), used a leading byte to store
the length of the string. This allows
the string to contain NUL and made
finding the length need only one
memory access (O(1) (constant) time).
But one byte limits the length to 255.
This length limitation was far more
restrictive than the problems with the
C string, so the C string in general
won out.
Calavera is right, but as people don't seem to get his point, I'll provide some code examples.
First, let's consider what C is: a simple language, where all code has a pretty direct translation into machine language. All types fit into registers and on the stack, and it doesn't require an operating system or a big run-time library to run, since it were meant to write these things (a task to which is superbly well-suited, considering there isn't even a likely competitor to this day).
If C had a string type, like int or char, it would be a type which didn't fit in a register or in the stack, and would require memory allocation (with all its supporting infrastructure) to be handled in any way. All of which go against the basic tenets of C.
So, a string in C is:
char s*;
So, let's assume then that this were length-prefixed. Let's write the code to concatenate two strings:
char* concat(char* s1, char* s2)
{
/* What? What is the type of the length of the string? */
int l1 = *(int*) s1;
/* How much? How much must I skip? */
char *s1s = s1 + sizeof(int);
int l2 = *(int*) s2;
char *s2s = s2 + sizeof(int);
int l3 = l1 + l2;
char *s3 = (char*) malloc(l3 + sizeof(int));
char *s3s = s3 + sizeof(int);
memcpy(s3s, s1s, l1);
memcpy(s3s + l1, s2s, l2);
*(int*) s3 = l3;
return s3;
}
Another alternative would be using a struct to define a string:
struct {
int len; /* cannot be left implementation-defined */
char* buf;
}
At this point, all string manipulation would require two allocations to be made, which, in practice, means you'd go through a library to do any handling of it.
The funny thing is... structs like that do exist in C! They are just not used for your day-to-day displaying messages to the user handling.
So, here is the point Calavera is making: there is no string type in C. To do anything with it, you'd have to take a pointer and decode it as a pointer to two different types, and then it becomes very relevant what is the size of a string, and cannot just be left as "implementation defined".
Now, C can handle memory in anyway, and the mem functions in the library (in <string.h>, even!) provide all the tooling you need to handle memory as a pair of pointer and size. The so-called "strings" in C were created for just one purpose: showing messages in the context of writting an operating system intended for text terminals. And, for that, null termination is enough.
Obviously for performance and safety, you'll want to keep the length of a string while you're working with it rather than repeatedly performing strlen or the equivalent on it. However, storing the length in a fixed location just before the string contents is an incredibly bad design. As Jörgen pointed out in the comments on Sanjit's answer, it precludes treating the tail of a string as a string, which for example makes a lot of common operations like path_to_filename or filename_to_extension impossible without allocating new memory (and incurring the possibility of failure and error handling). And then of course there's the issue that nobody can agree how many bytes the string length field should occupy (plenty of bad "Pascal string" languages used 16-bit fields or even 24-bit fields which preclude processing of long strings).
C's design of letting the programmer choose if/where/how to store the length is much more flexible and powerful. But of course the programmer has to be smart. C punishes stupidity with programs that crash, grind to a halt, or give your enemies root.
Lazyness, register frugality and portability considering the assembly gut of any language, especially C which is one step above assembly (thus inheriting a lot of assembly legacy code).
You would agree as a null char would be useless in those ASCII days, it (and probably as good as an EOF control char ).
let's see in pseudo code
function readString(string) // 1 parameter: 1 register or 1 stact entries
pointer=addressOf(string)
while(string[pointer]!=CONTROL_CHAR) do
read(string[pointer])
increment pointer
total 1 register use
case 2
function readString(length,string) // 2 parameters: 2 register used or 2 stack entries
pointer=addressOf(string)
while(length>0) do
read(string[pointer])
increment pointer
decrement length
total 2 register used
That might seem shortsighted at that time, but considering the frugality in code and register ( which were PREMIUM at that time, the time when you know, they use punch card ). Thus being faster ( when processor speed could be counted in kHz), this "Hack" was pretty darn good and portable to register-less processor with ease.
For argument sake I will implement 2 common string operation
stringLength(string)
pointer=addressOf(string)
while(string[pointer]!=CONTROL_CHAR) do
increment pointer
return pointer-addressOf(string)
complexity O(n) where in most case PASCAL string is O(1) because the length of the string is pre-pended to the string structure (that would also mean that this operation would have to be carried in an earlier stage).
concatString(string1,string2)
length1=stringLength(string1)
length2=stringLength(string2)
string3=allocate(string1+string2)
pointer1=addressOf(string1)
pointer3=addressOf(string3)
while(string1[pointer1]!=CONTROL_CHAR) do
string3[pointer3]=string1[pointer1]
increment pointer3
increment pointer1
pointer2=addressOf(string2)
while(string2[pointer2]!=CONTROL_CHAR) do
string3[pointer3]=string2[pointer2]
increment pointer3
increment pointer1
return string3
complexity O(n) and prepending the string length wouldn't change the complexity of the operation, while I admit it would take 3 time less time.
On another hand, if you use PASCAL string you would have to redesign your API for taking in account register length and bit-endianness, PASCAL string got the well known limitation of 255 char (0xFF) beacause the length was stored in 1 byte (8bits), and it you wanted a longer string (16bits->anything) you would have to take in account the architecture in one layer of your code, that would mean in most case incompatible string APIs if you wanted longer string.
Example:
One file was written with your prepended string api on an 8 bit computer and then would have to be read on say a 32 bit computer, what would the lazy program do considers that your 4bytes are the length of the string then allocate that lot of memory then attempt to read that many bytes.
Another case would be PPC 32 byte string read(little endian) onto a x86 (big endian), of course if you don't know that one is written by the other there would be trouble.
1 byte length (0x00000001) would become 16777216 (0x0100000) that is 16 MB for reading a 1 byte string.
Of course you would say that people should agree on one standard but even 16bit unicode got little and big endianness.
Of course C would have its issues too but, would be very little affected by the issues raised here.
In many ways, C was primitive. And I loved it.
It was a step above assembly language, giving you nearly the same performance with a language that was much easier to write and maintain.
The null terminator is simple and requires no special support by the language.
Looking back, it doesn't seem that convenient. But I used assembly language back in the 80s and it seemed very convenient at the time. I just think software is continually evolving, and the platforms and tools continually get more and more sophisticated.
Assuming for a moment that C implemented strings the Pascal way, by prefixing them by length: is a 7 char long string the same DATA TYPE as a 3-char string? If the answer is yes, then what kind of code should the compiler generate when I assign the former to the latter? Should the string be truncated, or automatically resized? If resized, should that operation be protected by a lock as to make it thread safe? The C approach side stepped all these issues, like it or not :)
Somehow I understood the question to imply there's no compiler support for length-prefixed strings in C. The following example shows, at least you can start your own C string library, where string lengths are counted at compile time, with a construct like this:
#define PREFIX_STR(s) ((prefix_str_t){ sizeof(s)-1, (s) })
typedef struct { int n; char * p; } prefix_str_t;
int main() {
prefix_str_t string1, string2;
string1 = PREFIX_STR("Hello!");
string2 = PREFIX_STR("Allows \0 chars (even if printf directly doesn't)");
printf("%d %s\n", string1.n, string1.p); /* prints: "6 Hello!" */
printf("%d %s\n", string2.n, string2.p); /* prints: "48 Allows " */
return 0;
}
This won't, however, come with no issues as you need to be careful when to specifically free that string pointer and when it is statically allocated (literal char array).
Edit: As a more direct answer to the question, my view is this was the way C could support both having string length available (as a compile time constant), should you need it, but still with no memory overhead if you want to use only pointers and zero termination.
Of course it seems like working with zero-terminated strings was the recommended practice, since the standard library in general doesn't take string lengths as arguments, and since extracting the length isn't as straightforward code as char * s = "abc", as my example shows.
"Even on a 32 bit machine, if you allow the string to be the size of available memory, a length prefixed string is only three bytes wider than a null terminated string."
First, extra 3 bytes may be considerable overhead for short strings. In particular, a zero-length string now takes 4 times as much memory. Some of us are using 64-bit machines, so we either need 8 bytes to store a zero-length string, or the string format can't cope with the longest strings the platform supports.
There may also be alignment issues to deal with. Suppose I have a block of memory containing 7 strings, like "solo\0second\0\0four\0five\0\0seventh". The second string starts at offset 5. The hardware may require that 32-bit integers be aligned at an address that is a multiple of 4, so you have to add padding, increasing the overhead even further. The C representation is very memory-efficient in comparison. (Memory-efficiency is good; it helps cache performance, for example.)
One point not yet mentioned: when C was designed, there were many machines where a 'char' was not eight bits (even today there are DSP platforms where it isn't). If one decides that strings are to be length-prefixed, how many 'char's worth of length prefix should one use? Using two would impose an artificial limit on string length for machines with 8-bit char and 32-bit addressing space, while wasting space on machines with 16-bit char and 16-bit addressing space.
If one wanted to allow arbitrary-length strings to be stored efficiently, and if 'char' were always 8-bits, one could--for some expense in speed and code size--define a scheme were a string prefixed by an even number N would be N/2 bytes long, a string prefixed by an odd value N and an even value M (reading backward) could be ((N-1) + M*char_max)/2, etc. and require that any buffer which claims to offer a certain amount of space to hold a string must allow enough bytes preceding that space to handle the maximum length. The fact that 'char' isn't always 8 bits, however, would complicate such a scheme, since the number of 'char' required to hold a string's length would vary depending upon the CPU architecture.
The null termination allows for fast pointer based operations.
Not a Rationale necessarily but a counterpoint to length-encoded
Certain forms of dynamic length encoding are superior to static length encoding as far as memory is concerned, it all depends on usage. Just look at UTF-8 for proof. It's essentially an extensible character array for encoding a single character. This uses a single bit for each extended byte. NUL termination uses 8 bits. Length-prefix I think can be reasonably termed infinite length as well by using 64 bits. How often you hit the case of your extra bits is the deciding factor. Only 1 extremely large string? Who cares if you're using 8 or 64 bits? Many small strings (Ie Strings of English words)? Then your prefix costs are a large percentage.
Length-prefixed strings allowing time savings is not a real thing. Whether your supplied data is required to have length provided, you're counting at compile time, or you're truly being provided dynamic data that you must encode as a string. These sizes are computed at some point in the algorithm. A separate variable to store the size of a null terminated string can be provided. Which makes the comparison on time-savings moot. One just has an extra NUL at the end... but if the length encode doesn't include that NUL then there's literally no difference between the two. There's no algorithmic change required at all. Just a pre-pass you have to manually design yourself instead of having a compiler/runtime do it for you. C is mostly about doing things manually.
Length-prefix being optional is a selling point. I don't always need that extra info for an algorithm so being required to do it for a every string makes my precompute+compute time never able to drop below O(n). (Ie hardware random number generator 1-128. I can pull from an "infinite string". Let's say it only generates characters so fast. So our string length changes all the time. But my usage of the data probably doesn't care how many random bytes I have. It just wants the next available unused byte as soon as it can get it after a request. I could be waiting on the device. But I could also have a buffer of characters pre-read. A length comparison is a needless waste of computation. A null check is more efficient.)
Length-prefix is a good guard against buffer overflow? So is sane usage of library functions and implementation. What if I pass in malformed data? My buffer is 2 bytes long but I tell the function it's 7! Ex: If gets() was intended to be used on known data it could've had an internal buffer check that tested compiled buffers and malloc() calls and still follow spec. If it was meant to be used as a pipe for unknown STDIN to arrive at unknown buffer then clearly one can't know abut the buffer size which means a length arg is pointless, you need something else here like a canary check. For that matter, you can't length-prefix some streams and inputs, you just can't. Which means the length check has to be built into the algorithm and not a magic part of the typing system. TL;DR NUL-terminated never had to be unsafe, it just ended up that way via misuse.
counter-counter point: NUL-termination is annoying on binary. You either need to do length-prefix here or transform NUL bytes in some way: escape-codes, range remapping, etc... which of course means more-memory-usage/reduced-information/more-operations-per-byte. Length-prefix mostly wins the war here. The only upside to a transform is that no additional functions have to be written to cover the length-prefix strings. Which means on your more optimized sub-O(n) routines you can have them automatically act as their O(n) equivalents without adding more code. Downside is, of course, time/memory/compression waste when used on NUL heavy strings. Depending on how much of your library you end up duplicating to operate on binary data, it may make sense to work solely with length-prefix strings. That said one could also do the same with length-prefix strings... -1 length could mean NUL-terminated and you could use NUL-terminated strings inside length-terminated.
Concat: "O(n+m) vs O(m)" I'm assuming your referring to m as the total length of the string after concatenating because they both have to have that number of operations minimum (you can't just tack-on to string 1, what if you have to realloc?). And I'm assuming n is a mythical amount of operations you no longer have to do because of a pre-compute. If so, then the answer is simple: pre-compute. If you're insisting you'll always have enough memory to not need to realloc and that's the basis of the big-O notation then the answer is even more simple: do binary search on allocated memory for end of string 1, clearly there's a large swatch of infinite zeros after string 1 for us to not worry about realloc. There, easily got n to log(n) and I barely tried. Which if you recall log(n) is essentially only ever as large as 64 on a real computer, which is essentially like saying O(64+m), which is essentially O(m). (And yes that logic has been used in run-time analysis of real data structures in-use today. It's not bullshit off the top of my head.)
Concat()/Len() again: Memoize results. Easy. Turns all computes into pre-computes if possible/necessary. This is an algorithmic decision. It's not an enforced constraint of the language.
String suffix passing is easier/possible with NUL termination. Depending on how length-prefix is implemented it can be destructive on original string and can sometimes not even be possible. Requiring a copy and pass O(n) instead of O(1).
Argument-passing/de-referencing is less for NUL-terminated versus length-prefix. Obviously because you're passing less information. If you don't need length, then this saves a lot of footprint and allows optimizations.
You can cheat. It's really just a pointer. Who says you have to read it as a string? What if you want to read it as a single character or a float? What if you want to do the opposite and read a float as a string? If you're careful you can do this with NUL-termination. You can't do this with length-prefix, it's a data type distinctly different from a pointer typically. You'd most likely have to build a string byte-by-byte and get the length. Of course if you wanted something like an entire float (probably has a NUL inside it) you'd have to read byte-by-byte anyway, but the details are left to you to decide.
TL;DR Are you using binary data? If no, then NUL-termination allows more algorithmic freedom. If yes, then code quantity vs speed/memory/compression is your main concern. A blend of the two approaches or memoization might be best.
Many design decisions surrounding C stem from the fact that when it was originally implemented, parameter passing was somewhat expensive. Given a choice between e.g.
void add_element_to_next(arr, offset)
char[] arr;
int offset;
{
arr[offset] += arr[offset+1];
}
char array[40];
void test()
{
for (i=0; i<39; i++)
add_element_to_next(array, i);
}
versus
void add_element_to_next(ptr)
char *p;
{
p[0]+=p[1];
}
char array[40];
void test()
{
int i;
for (i=0; i<39; i++)
add_element_to_next(arr+i);
}
the latter would have been slightly cheaper (and thus preferred) since it only required passing one parameter rather than two. If the method being called didn't need to know the base address of the array nor the index within it, passing a single pointer combining the two would be cheaper than passing the values separately.
While there are many reasonable ways in which C could have encoded string lengths, the approaches that had been invented up to that time would have all required functions that should be able to work with part of a string to accept the base address of the string and the desired index as two separate parameters. Using zero-byte termination made it possible to avoid that requirement. Although other approaches would be better with today's machines (modern compilers often pass parameters in registers, and memcpy can be optimized in ways strcpy()-equivalents cannot) enough production code uses zero-byte terminated strings that it's hard to change to anything else.
PS--In exchange for a slight speed penalty on some operations, and a tiny bit of extra overhead on longer strings, it would have been possible to have methods that work with strings accept pointers directly to strings, bounds-checked string buffers, or data structures identifying substrings of another string. A function like "strcat" would have looked something like [modern syntax]
void strcat(unsigned char *dest, unsigned char *src)
{
struct STRING_INFO d,s;
str_size_t copy_length;
get_string_info(&d, dest);
get_string_info(&s, src);
if (d.si_buff_size > d.si_length) // Destination is resizable buffer
{
copy_length = d.si_buff_size - d.si_length;
if (s.src_length < copy_length)
copy_length = s.src_length;
memcpy(d.buff + d.si_length, s.buff, copy_length);
d.si_length += copy_length;
update_string_length(&d);
}
}
A little bigger than the K&R strcat method, but it would support bounds-checking, which the K&R method doesn't. Further, unlike the current method, it would be possible to easily concatenate an arbitrary substring, e.g.
/* Concatenate 10th through 24th characters from src to dest */
void catpart(unsigned char *dest, unsigned char *src)
{
struct SUBSTRING_INFO *inf;
src = temp_substring(&inf, src, 10, 24);
strcat(dest, src);
}
Note that the lifetime of the string returned by temp_substring would be limited by those of s and src, which ever was shorter (which is why the method requires inf to be passed in--if it was local, it would die when the method returned).
In terms of memory cost, strings and buffers up to 64 bytes would have one byte of overhead (same as zero-terminated strings); longer strings would have slightly more (whether one allowed amounts of overhead between two bytes and the maximum required would be a time/space tradeoff). A special value of the length/mode byte would be used to indicate that a string function was given a structure containing a flag byte, a pointer, and a buffer length (which could then index arbitrarily into any other string).
Of course, K&R didn't implement any such thing, but that's most likely because they didn't want to spend much effort on string handling--an area where even today many languages seem rather anemic.
According to Joel Spolsky in this blog post,
It's because the PDP-7 microprocessor, on which UNIX and the C programming language were invented, had an ASCIZ string type. ASCIZ meant "ASCII with a Z (zero) at the end."
After seeing all the other answers here, I'm convinced that even if this is true, it's only part of the reason for C having null-terminated "strings". That post is quite illuminating as to how simple things like strings can actually be quite hard.
I don't buy the "C has no string" answer. True, C does not support built-in higher-level types but you can still represent data-structures in C and that's what a string is. The fact a string is just a pointer in C does not mean the first N bytes cannot take on special meaning as a the length.
Windows/COM developers will be very familiar with the BSTR type which is exactly like this - a length-prefixed C string where the actual character data starts not at byte 0.
So it seems that the decision to use null-termination is simply what people preferred, not a necessity of the language.
One advantage of NUL-termination over length-prefixing, which I have not seen anyone mention, is the simplicity of string comparison. Consider the comparison standard which returns a signed result for less-than, equal, or greater-than. For length-prefixing the algorithm has to be something along the following lines:
Compare the two lengths; record the smaller, and note if they are equal (this last step might be deferred to step 3).
Scan the two character sequences, subtracting characters at matching indices (or use a dual pointer scan). Stop either when the difference is nonzero, returning the difference, or when the number of characters scanned is equal to the smaller length.
When the smaller length is reached, one string is a prefix of the other. Return negative or positive value according to which is shorter, or zero if of equal length.
Contrast this with the NUL-termination algorithm:
Scan the two character sequences, subtracting characters at matching indices [note that this is handled better with moving pointers]. Stop when the difference is nonzero, returning the difference. NOTE: If one string is a PROPER prefix of the other, one of the characters in the subtraction will be NUL, i.e zero, and the comparison will naturally stop there.
If the difference is zero, -only then- check if either character is NUL. If so, return zero, otherwise continue to next character.
The NUL-terminated case is simpler, and very easy to implement efficiently with a dual pointer scan. The length-prefixed case does at least as much work, nearly always more. If your algorithm has to do a lot of string comparisons [e.g a compiler!], the NUL-terminated case wins out. Nowadays that might not be as important, but back in the day, heck yeah.
gcc accept the codes below:
char s[4] = "abcd";
and it's ok if we treat is as an array of chars but not string. That is, we can access it with s[0], s[1], s[2], and s[3], or even with memcpy(dest, s, 4). But we'll get messy characters when we trying with puts(s), or worse with strcpy(dest, s).
I think the better question is why you think C owes you anything? C was designed to give you what you need, nothing more. You need to loose the mentality that the language must provide you with everything. Or just continue to use your higher level languages that will give you the luxary of String, Calendar, Containers; and in the case of Java you get one thing in tonnes of variety. Multiple types String, multiple types of unordered_map(s).
Too bad for you, this was not the purpose of C. C was not designed to be a bloated language that offers from a pin to an anchor. Instead you must rely on third party libraries or your own. And there is nothing easier than creating a simple struct that will contain a string and its size.
struct String
{
const char *s;
size_t len;
};
You know what the problem is with this though. It is not standard. Another language might decide to organize the len before the string. Another language might decide to use a pointer to end instead. Another might decide to use six pointers to make the String more efficient. However a null terminated string is the most standard format for a string; which you can use to interface with any language. Even Java JNI uses null terminated strings.
Lastly, it is a common saying; the right data structure for the task. If you find that need to know the size of a string more than anything else; well use a string structure that allows you to do that optimally. But don't make claims that that operation is used more than anything else for everybody. Like, why is knowing the size of a string more important than reading its contents. I find that reading the contents of a string is what I mostly do, so I use null terminated strings instead of std::string; which saves me 5 pointers on a GCC compiler. If I can even save 2 pointers that is good.
I know that you can get the digits of a number using modulus and division. The following is how I've done it in the past: (Psuedocode so as to make students reading this do some work for their homework assignment):
int pointer getDigits(int number)
initialize int pointer to array of some size
initialize int i to zero
while number is greater than zero
store result of number mod 10 in array at index i
divide number by 10 and store result in number
increment i
return int pointer
Anyway, I was wondering if there is a better, more efficient way to accomplish this task? If not, is there any alternative methods for this task, avoiding the use of strings? C-style or otherwise?
Thanks. I ask because I'm going to be wanting to do this in a personal project of mine, and I would like to do it as efficiently as possible.
Any help and/or insight is greatly appreciated.
The time it takes to extract the digits will be dwarfed by the time required to dynamically allocate the array. Consider returning the result in a struct:
struct extracted_digits
{
int number_of_digits;
char digits[12];
};
You'll want to pick a suitable value for the maximum number of digits (12 here, which is enough for a 32-bit integer). Alternatively, you could return a std::array<char, 12> and encode the terminal by using an invalid value (so, after the last value, store a 10 or something else that isn't a digit).
Depending on whether you want to handle negative values, you'll also have to decide how to report the unary minus (-).
Unless you want the representation of the number in a base that's a power of 2, that's about the only way to do it.
Smacks of premature optimisation. If profiling proves it matters, then be sure to compare your algo to itoa - internally it may use some CPU instructions that you don't have explicit access to from C++, and which your compiler's optimiser may not be clever enough to employ (e.g. AAM, which divs while saving the mod result). Experiment (and benchmark) coding the assembler yourself. You might dig around for assembly implementations of ITOA (which isn't identical to what you're asking for, but might suggest the optimal CPU instructions).
By "avoiding the use of strings", I'm going to assume you're doing this because a string-only representation is pretty inefficient if you want an integer value.
To that end, I'm going to suggest a slightly unorthodox approach which may be suitable. Don't store them in one form, store them in both. The code below is in C - it will work in C++ but you may want to consider using c++ equivalents - the idea behind it doesn't change however.
By "storing both forms", I mean you can have a structure like:
typedef struct {
int ival;
char sval[sizeof("-2147483648")]; // enough for 32-bits
int dirtyS;
} tIntStr;
and pass around this structure (or its address) rather than the integer itself.
By having macros or inline functions like:
inline void intstrSetI (tIntStr *is, int ival) {
is->ival = i;
is->dirtyS = 1;
}
inline char *intstrGetS (tIntStr *is) {
if (is->dirtyS) {
sprintf (is->sval, "%d", is->ival);
is->dirtyS = 0;
}
return is->sval;
}
Then, to set the value, you would use:
tIntStr is;
intstrSetI (&is, 42);
And whenever you wanted the string representation:
printf ("%s\n" intstrGetS(&is));
fprintf (logFile, "%s\n" intstrGetS(&is));
This has the advantage of calculating the string representation only when needed (the fprintf above would not have to recalculate the string representation and the printf only if it was dirty).
This is a similar trick I use in SQL with using precomputed columns and triggers. The idea there is that you only perform calculations when needed. So an extra column to hold the indexed lowercased last name along with an insert/update trigger to calculate it, is usually a lot more efficient than select lower(non_lowercased_last_name). That's because it amortises the cost of the calculation (done at write time) across all reads.
In that sense, there's little advantage if your code profile is set-int/use-string/set-int/use-string.... But, if it's set-int/use-string/use-string/use-string/use-string..., you'll get a performance boost.
Granted this has a cost, at the bare minimum extra storage required, but most performance issues boil down to a space/time trade-off.
And, if you really want to avoid strings, you can still use the same method (calculate only when needed), it's just that the calculation (and structure) will be different.
As an aside: you may well want to use the library functions to do this rather than handcrafting your own code. Library functions will normally be heavily optimised, possibly more so than your compiler can make from your code (although that's not guaranteed of course).
It's also likely that an itoa, if you have one, will probably outperform sprintf("%d") as well, given its limited use case. You should, however, measure, not guess! Not just in terms of the library functions, but also this entire solution (and the others).
It's fairly trivial to see that a base-100 solution could work as well, using the "digits" 00-99. In each iteration, you'd do a %100 to produce such a digit pair, thus halving the number of steps. The tradeoff is that your digit table is now 200 bytes instead of 10. Still, it easily fits in L1 cache (obviously, this only applies if you're converting a lot of numbers, but otherwise efficientcy is moot anyway). Also, you might end up with a leading zero, as in "0128".
Yes, there is a more efficient way, but not portable, though. Intel's FPU has a special BCD format numbers. So, all you have to do is just to call the correspondent assembler instruction that converts ST(0) to BCD format and stores the result in memory. The instruction name is FBSTP.
Mathematically speaking, the number of decimal digits of an integer is 1+int(log10(abs(a)+1))+(a<0);.
You will not use strings but go through floating points and the log functions. If your platform has whatever type of FP accelerator (every PC or similar has) that will not be a big deal ,and will beat whatever "sting based" algorithm (that is noting more than an iterative divide by ten and count)
To achieve higher performance, would you propose using the method below when copying strings specially when there are a lot of characters in the string, lot more than 12?
unsigned char one[12]={1,2,3,4,5,6,7,8,9,10,11,12};
unsigned char two[12];
unsigned int (& three)[3]=reinterpret_cast<unsigned int (&)[3]>(one);
unsigned int (& four)[3]=reinterpret_cast<unsigned int (&)[3]>(two);
for (unsigned int i=0;i<3;i++)
four[i]=three[i];
No, (almost) never. Use std::strcpy (although not in this case, since your “strings” aren’t zero terminated), or std::copy, or the std::string copy constructor.
These methods are optimized to do the job for you. If your code (or something similar) happens to be faster than naive character by character copying, rest assured that strcpy will use it underneath. In fact, that is what happens (depending on the architecture).
Don’t try to outsmart modern compilers and frameworks, unless you’re a domain expert (and usually not even then).
Perhaps memcpy / std::copy? Wouldn't those be optimized anyway?
I believe most today's compilers already optimizes string copy. Anyway you should benchmark this, and also compare with memcpy, but I don't think the optimization is worth the loss of readability.
I agree with the other replies here. Usually, attempts to optimize block copying more often than not end up being slower than what your target OS provides. For example, memcpy(), memmove() and the like, usually implement some variation of this algorithm: copy words/halfwords/bytes using GP registers until you hit 16 byte alignment, then use SSE to copy 4 words at a time ( that's 16 chars at a time, provided sizeof(char) == 1 ).
Then again, you can also test the performance of your implementation vs memcpy()/strcpy() and see what you get.
I'm not sure why you're using references here at all.
Do this:
memcpy(two, one, sizeof(two));
Note that your usage is more of a "byte array", especially it being unsigned. Furthermore if you do feel the need to "group" the bytes like that, you'd have more luck grouping them 4s or 8s, given they match typical register sizes.
If you have an issue with string copying, there is always the llvm::StringRef way: provide a reference to the underlying string that cannot alter it. The class attributes are limited to a char const* and a size_t.
Of course, the downside is that YOU have to ensure that the underlying buffer stays allocated for the duration of the use of the StringRef
Using str* is possibly the simplest way to build null-terminated strings in C at least. The performance angle is that before a copy is actually possible the destination position in the destination string needs to be calculated (i e the position of the null byte found). Then the length of the source string must be calculated to ensure that you have enough memory in the destination. This adds overhead (more the longer the string) compared to using memcpy where it is up to you to have a large enough buffer and to keep track of how many bytes you have utilized.
(Then you may have additional complexity if your compiler settings specifies 2-byte characters)
So if your string is 3000 bytes long and you append strings "a" and then "b" each will require scanning through 3000 and 3001 bytes before being able to write the two bytes each in "a" and "b" ('a' + null and 'b' + null). Try to optimize that! Appending "b" to "a" before appending to the 3000 byte string would be much faster.
I personally would use memcpy for destination strings larger than 50 bytes or so. The code becomes a bit more complex but once you've done it a few times it's easy.
Is it possible to compare whole memory regions in a single processor cycle? More precisely is it possible to compare two strings in one processor cycle using some sort of MMX assembler instruction? Or is strcmp-implementation already based on that optimization?
EDIT:
Or is it possible to instruct C++ compiler to remove string duplicates, so that strings can be compared simply by their memory location? Instead of memcmp(a,b) compared by a==b (assuming that a and b are both native const char* strings).
Just use the standard C strcmp() or C++ std::string::operator==() for your string comparisons.
The implementations of them are reasonably good and are probably compiled to a very highly optimized assembly that even talented assembly programmers would find challenging to match.
So don't sweat the small stuff. I'd suggest looking at optimizing other parts of your code.
You can use the Boost Flyweight library to intern your immutable strings. String equality/inequality tests then become very fast since all it has to do at that point is compare pointers (pun not intended).
Not really. Your typical 1-byte compare instruction takes 1 cycle.
Your best bet would be to use the MMX 64-bit compare instructions( see this page for an example). However, those operate on registers, which have to be loaded from memory. The memory loads will significantly damage your time, because you'll be going out to L1 cache at best, which adds some 10x time slowdown*. If you are doing some heavy string processing, you can probably get some nifty speedup there, but again, it's going to hurt.
Other people suggest pre-computing strings. Maybe that'll work for your particular app, maybe it won't. Do you have to compare strings? Can you compare numbers?
Your edit suggests comparing pointers. That's a dangerous situation unless you can specifically guarantee that you won't be doing substring compares(ie, you are comparing some two byte strings: [0x40, 0x50] with [0x40, 0x42]. Those are not "equal", but a pointer compare would say they are).
Have you looked at the gcc strcmp() source? I would suggest that doing that would be the ideal starting place.
* Loosely speaking, if a cycle takes 1 unit, a L1 hit takes 10 units, an L2 hit takes 100 units, and an actual RAM hit takes really long.
It's not possible to perform general-purpose string operations in one cycle, but there are many optimizations you can apply with extra information.
If your problem domain allows the use of an aligned, fixed-size buffer for strings that fits in a machine register, you can perform single-cycle comparisons (not counting the load instructions).
If you always keep track of the lengths of your strings, you can compare lengths and use memcmp, which is faster than strcmp. If your application is multi-cultural, keep in mind that this only works for ordinal string comparison.
It appears you are using C++. If you only need equality comparisons with immutable strings, you can use a string interning solution (copy/paste link since I'm a new user) to guarantee that equal strings are stored at the same memory location, at which point you can simply compare pointers. See en.wikipedia.org/wiki/String_interning
Also, take a look at the Intel Optimization Reference Manual, Chapter 10 for details on the SSE 4.2's instructions for text processing. www.intel.com/products/processor/manuals/
Edit: If your problem domain allows the use of an enumeration, that is your single-cycle comparison solution. Don't fight it.
If you're optimizing for string comparisons, you may want to employ a string table (then you only need to compare the indexes of the two strings, which can be done in a single machine instruction).
If that's not feasible, you can also create a hashed string object that contains the string and a hash. Then most of the time you only have to compare the hashes if the strings aren't equal. If the hashes do match you'll have to do a full comparison though to make sure it wasn't a false positive.
It depends on how much preprocessing you do. C# and Java both have a process called interning strings which makes every string map to the same address if they have the same contents. Assuming a process like that, you could do a string equality comparison with one compare instruction.
Ordering is a bit harder.
EDIT: Obviously this answer is sidestepping the actual issue of attempting to do a string comparison within a single cycle. But it's the only way to do it unless you happen to have a sequence of instructions that can look at an unbounded amount of memory in constant time to determine the equivalent of a strcmp. Which is improbable, because if you had such an architecture the person who sold it to you would say "Hey, here's this awesome instruction that can do a string compare in a single cycle! How awesome is that?" and you wouldn't need to post a question on stackoverflow.
But that's just my reasoned opinion.
Or is it possible to instruct c++
compiler to remove string duplicates,
so that strings can be compared simply
by their memory location?
No. The compiler may remove duplicates internally, but I know of no compiler that guarantees or provides facilities for accessing such an optimisation (except possibly to turn it off). Certainly the C++ standard has nothing to say in this area.
Assuming you mean x86 ... Here is the Intel documentation.
But off the top of my head, no, I don't think you can compare more than the size of a register at a time.
Out of curiosity, why do you ask? I'm the last to invoke Knuth prematurely, but ... strcmp usually does a pretty good job.
Edit: Link now points to the modern documentation.
You can certainly compare more than one byte in a cycle. If we take the example of x86-64, you can compare up to 64-bits (8 bytes) in a single instruction (cmps), this isn't necessarily one cycle but will normally be in the low single digits (the exact speed depends on the specific processor version).
However, this doesn't mean you'll be able to all the work of comparing two arrays in memory much faster than strcmp :-
There's more than just the compare - you need to compare the two values, check if they are the same, and if so move to next chunk.
Most strcmp implementations will already be highly optimised, including checking if a and b point to the same address, and any suitable instruction-level optimisations.
Unless you're seeing alot of time spent in strcmp, I wouldn't worry about it - have you got a specific problem / use case you are trying to improve?
Even if both strings were cached, it wouldn't be possible to compare (arbitrarily long) strings in a single processor cycle. The implementation of strcmp in a modern compiler environment should be pretty much optimized, so you shouldn't bother to optimize too much.
EDIT (in reply to your EDIT):
You can't instruct the compiler to unify ALL duplicate strings - most compilers can do something like this, but it's best-effort only (and I don't know any compiler where it works across compilation units).
You might get better performance by adding the strings to a map and comparing iterators after that... the comparison itself might be one cycle (or not much more) then
If the set of strings to use is fixed, use enumerations - that's what they're there for.
Here's one solution that uses enum-like values instead of strings. It supports enum-value-inheritance and thus supports comparison similar to substring comparison. It also uses special character "¤" for naming, to avoid name collisions. You can take any class, function, or variable name and make it into enum-value (SomeClassA will become ¤SomeClassA).
struct MultiEnum
{
vector<MultiEnum*> enumList;
MultiEnum()
{
enumList.push_back(this);
}
MultiEnum(MultiEnum& base)
{
enumList.assign(base.enumList.begin(),base.enumList.end());
enumList.push_back(this);
}
MultiEnum(const MultiEnum* base1,const MultiEnum* base2)
{
enumList.assign(base1->enumList.begin(),base1->enumList.end());
enumList.assign(base2->enumList.begin(),base2->enumList.end());
}
bool operator !=(const MultiEnum& other)
{
return find(enumList.begin(),enumList.end(),&other)==enumList.end();
}
bool operator ==(const MultiEnum& other)
{
return find(enumList.begin(),enumList.end(),&other)!=enumList.end();
}
bool operator &(const MultiEnum& other)
{
return find(enumList.begin(),enumList.end(),&other)!=enumList.end();
}
MultiEnum operator|(const MultiEnum& other)
{
return MultiEnum(this,&other);
}
MultiEnum operator+(const MultiEnum& other)
{
return MultiEnum(this,&other);
}
};
MultiEnum
¤someString,
¤someString1(¤someString), // link to "someString" because it is a substring of "someString1"
¤someString2(¤someString);
void Test()
{
MultiEnum a = ¤someString1|¤someString2;
MultiEnum b = ¤someString1;
if(a!=¤someString2){}
if(b==¤someString2){}
if(b&¤someString2){}
if(b&¤someString){} // will result in true, because someString is substring of someString1
}
PS. I had definitely too much free time on my hands this morning, but reinventing the wheel is just too much fun sometimes... :)