I have written an application which collects windows logs from linux, via the Zenoss wmi-client package.
It uses WQL to query the Event log and parses the return. My problem is trying to find the latest entry in the log.
I stumbled across this which tells me to use the NumberOfRecords column in a query such as this
Select NumberOfRecords from Win32_NTEventLogFile Where LogFileName = 'Application'
and use the return value from that as the highest log.
My question is, I have heard that the Windows Event log is a circular buffer, that is it overwrites it's oldest logs with new ones as the log gets full. Will this have an impact on NumberOfRecords, as if that happens, the "RecordNumber" property of the events will continue to increase, however the actual Number of Records in the event log wouldn't change (as for every entry written, one is dropped).
Can anyone shed some insight to how this actually works (whether NumberOfRecords is the highest RecordNumber, or the actual number of events in the log), and perhaps suggest a solution?
Update
So we know now that NumberOfRecords won't work on it's own because the Event Log is a ring buffer. The MS Solution is to get the Oldest record and add it to NumberOfRecords to get the actual latest record.
This is possible through WinAPI, but I am calling remotely from Linux. Does anyone know how I might achieve this in my scenario?
Thanks
NumberOfRecords will not always be the max record number because the log is circular and the log can be cleared and you may have 1 entry but it's record number is 1000.
The way you would do this using the win api would be to get the oldest record number and add the number of records in the log to get the max record number. It doesn't look like Win32_NTEventLogFile has a oldest record number field to use.
Are you trying to get the latest record every time you query the log? You can use TimeGenerated when you query Win32_NTLogEvent to get everything > NOW. You can iterate that list to find your max record number.
You need the RecordNumber of the newest record, but there is no fast way to get it.
Generally, you have to:
SELECT RecordNumber FROM Win32_NTLogEvent WHERE LogFile='Application'
And find the max RecordNumber through results. But this can take tens of seconds or minutes if the size of log file is big...it's very slow.
But!
You can get number of records:
SELECT NumberOfRecords FROM Win32_NTEventlogFile WHERE LogfileName='Application'
This is very fast. And then reduce the selection to speedup the search of the newest record:
SELECT RecordNumber FROM Win32_NTLogEvent WHERE LogFile='Application' AND RecordNumber>='_number_of_records_'
The execution time of this <= than in general case.
Related
After couple of weeks working with Kinesis Analytics I have a bunch of questions:
Does it have something like watermarks? like in flink
As what I fount, even stagger window are emitted based on real time:
The records are grouped by one-minute stagger windows. The stagger
window starts when the application receives the first AMZN record
(with a ROWTIME of 11:00:20). When the 1-minute stagger window expires
(at 11:00:20) {I guess that is a typo probrbly it should be 11:01:20},
a record with the results that fall within the stagger window (based
on ROWTIME and EVENT_TIME) is written to the output stream. Using a
stagger window, all of the records with a ROWTIME and EVENT_TIME
within a one-minute window are emitted in a single result. taken
here
On the page about sliding windows I found some examples and as far as there you can only choose field for "partition by" I can assume that the only field based on which windowing is made is ROWTIME.
WINDOW W1 AS (
PARTITION BY ticker_symbol
RANGE INTERVAL '1' MINUTE PRECEDING);
Please don't consider this as post of hate, I am using AWS a lot and most of the services are reliable and user friendly. It is more an attempt to point to on some features which are maybe needed by some more users (not only me).
Or if you know how this could already be used in Kinesis Analytics, it would be interesting to know as I did not found anything about those features in documentation.
From what I've read in their documentation here and here
For a time-based windowed query, you specify the window size in terms of time (for example, a one-minute window). This requires a timestamp column in your in-application stream that is monotonically increasing. (The timestamp for a new row is greater than or equal to the previous row.) Amazon Kinesis Data Analytics provides such a timestamp column called ROWTIME for each in-application stream. You can use this column when specifying time-based queries. For your application, you might choose some other timestamp option. For more information, see Timestamps and the ROWTIME Column.
you can have event-time windows, but the timestamps have to be monotonically increasing, which suggests that there is only simple watermarking. A search for watermark does find some hits on this page.
We are implementing support for tracking of Mailgun events in our application. We reviewed the proposed event polling algorithm but find ourselves not quite comfortable with it. First, we would prefer not to discard the data that we have already fetched and then retry from scratch after a pause. It is not very efficient and leaves a door open for a long loop of retries, as it is not clear when the loop is supposed to end. Second, the "threshold age" seems to be the key to determine "trustworthiness", but its value is not defined, only a very large "half an hour" is suggested.
It is our understanding that the events become "trustworthy" after some threshold delay, let us call it D_max, when the events are guaranteed to reside in the event storage. If so, we can implement this algorithm in a different way, so that we do not fetch the data that we know are not "trustworthy" and make use of all data which have been fetched.
We would be fetching data periodically, and on each iteration we would:
Make a request to the events API specifying an ascending time range from T_1 to T_2 = now() - D_max. For the first iteration, T_1 can be set to some time in the past, "e.g., half an hour ago". For the subsequent iterations, T_1 is set to the value of T_2 from the previous iteration.
Fetch all pages one by one while the next page URL is returned.
Use all fetched events, as they are all "trustworthy".
My questions are:
Q1: Are there any problems with this approach?
Q2: What is the minimum realistic value of D_max? Obviously, we can use "half an hour" for it, but we would like to be more agile in tracking events, so it would be great to know what is the minimum value we can set it to and still reliably fetch all events.
Thanks!
1: I see no problems with this solution (in fact I'm doing something very similar). I'm also storing ID's of the events to validate I'm not inserting duplicate entries.
2: I've been working through this similar process. Right now I am testing with D_max at 10 minutes.
Additionally, While going through a testing process I'm running an additional task nightly that goes back over the entire day to validate a few things:
Am I missing existing metrics?
Diagnose if there is a problem with the assumptions I've made about D_max.
I have a project that uses an event hub to receive data, this is sent every second, the data is received by a website using SignalR, this is all working fine, i have been storing the data in to blob storage via a Stream Analytics Job, but this is really slow to access, and with the amount of data i am receiving off just 6 devices, it will get even slower as this increases, i need to access the data to display historical data on via graphs on the website, and then this is topped up with the live data coming in.
I don't really need to store the data every second, so thought about only storing it every 30 seconds instead, but into a SQL DB, what i am trying to do, is still receive the data every second but only store it every 30, i have tried a tumbling window, but from what i can see, this just dumps everything every 30 seconds instead of the single entries.
am i miss understanding the Tumbling, Sliding and Hopping windows, i am guessing i cannot use them in this way ? if that is the case, i am guessing the only way to do it, would be to have the output db as an input, so i can cross reference the timestamp with the current time ?
unless anyone has any other ideas ? any help would be appreciated.
Thanks
am i miss understanding the Tumbling, Sliding and Hopping windows
You are correct that this will put all events within the Tumbling/Sliding/Hopping window together. However, this is only valid within a group by case, which requires a aggregate function over this group.
There is a aggregate function Collect() which will create an array of the events within a group.
I think this should be possible when you group every event within a 30 second tumbling window using Collect(), then in the next step, CROSS APPLY each record, which should output all received events within the 30 seconds.
With Grouper AS (
SELECT Collect() AS records
FROM Input TIMESTAMP BY time
GROUP BY TumblingWindow(second, 30)
)
SELECT
record.ArrayValue.FieldA AS FieldA,
record.ArrayValue.FieldB AS FieldB
INTO Output
FROM Grouper
CROSS APPLY GetArrayElements(Grouper.records) AS record
If you are trying to aggregate 30 entries into one summary row every 30 seconds then a tumbling window is a good choice. Something like the following should work:
SELECT System.TimeStamp AS OutTime, TollId, COUNT(*) as cnt, sum(TollCharge) as TollCharge
FROM Input TIMESTAMP BY EntryTime
GROUP BY TollId, TumblingWindow(second, 30)
Thanks for the response, I have been speaking to my contact at Microsoft and he suggested something similar, I had also found something like that in various examples online. what I actually want to do, is only update the database with the data every 30 seconds. so I will receive the event, store it, and I will not store it again until 30 seconds have passed. I am not sure how I can do it with and ASA job to be honest, as I need to have a record of the last time it was updated, I actually have a connection to the event hub from my web site, so in the receiver, I am going to perform a simple check, and then store the data from there.
I understand SimpleDB doesn't have an auto increment but I am working on a script where I need to query the database by sending the id of the last record I've already pulled and pull all subsequent records. In a normal SQL fashion if there were 6200 records I already have 6100 of them when I run the script I query records with an ID greater than > 6100. Looking at the response object, I don't see anything I can use. It just seems like there should be a sequential index there. The other option I was thinking would be a real time stamp. Any ideas are much appreciated.
Using a timestamp was perfect for what I needed to do. I followed this article to help me on my way:http://aws.amazon.com/articles/1232 I would still welcome if anyone knows if there is a way to get an incremental index number.
Long story short, I'm rewriting a piece of a system and am looking for a way to store some hit counters in AWS SimpleDB.
For those of you not familiar with SimpleDB, the (main) problem with storing counters is that the cloud propagation delay is often over a second. Our application currently gets ~1,500 hits per second. Not all those hits will map to the same key, but a ballpark figure might be around 5-10 updates to a key every second. This means that if we were to use a traditional update mechanism (read, increment, store), we would end up inadvertently dropping a significant number of hits.
One potential solution is to keep the counters in memcache, and using a cron task to push the data. The big problem with this is that it isn't the "right" way to do it. Memcache shouldn't really be used for persistent storage... after all, it's a caching layer. In addition, then we'll end up with issues when we do the push, making sure we delete the correct elements, and hoping that there is no contention for them as we're deleting them (which is very likely).
Another potential solution is to keep a local SQL database and write the counters there, updating our SimpleDB out-of-band every so many requests or running a cron task to push the data. This solves the syncing problem, as we can include timestamps to easily set boundaries for the SimpleDB pushes. Of course, there are still other issues, and though this might work with a decent amount of hacking, it doesn't seem like the most elegant solution.
Has anyone encountered a similar issue in their experience, or have any novel approaches? Any advice or ideas would be appreciated, even if they're not completely flushed out. I've been thinking about this one for a while, and could use some new perspectives.
The existing SimpleDB API does not lend itself naturally to being a distributed counter. But it certainly can be done.
Working strictly within SimpleDB there are 2 ways to make it work. An easy method that requires something like a cron job to clean up. Or a much more complex technique that cleans as it goes.
The Easy Way
The easy way is to make a different item for each "hit". With a single attribute which is the key. Pump the domain(s) with counts quickly and easily. When you need to fetch the count (presumable much less often) you have to issue a query
SELECT count(*) FROM domain WHERE key='myKey'
Of course this will cause your domain(s) to grow unbounded and the queries will take longer and longer to execute over time. The solution is a summary record where you roll up all the counts collected so far for each key. It's just an item with attributes for the key {summary='myKey'} and a "Last-Updated" timestamp with granularity down to the millisecond. This also requires that you add the "timestamp" attribute to your "hit" items. The summary records don't need to be in the same domain. In fact, depending on your setup, they might best be kept in a separate domain. Either way you can use the key as the itemName and use GetAttributes instead of doing a SELECT.
Now getting the count is a two step process. You have to pull the summary record and also query for 'Timestamp' strictly greater than whatever the 'Last-Updated' time is in your summary record and add the two counts together.
SELECT count(*) FROM domain WHERE key='myKey' AND timestamp > '...'
You will also need a way to update your summary record periodically. You can do this on a schedule (every hour) or dynamically based on some other criteria (for example do it during regular processing whenever the query returns more than one page). Just make sure that when you update your summary record you base it on a time that is far enough in the past that you are past the eventual consistency window. 1 minute is more than safe.
This solution works in the face of concurrent updates because even if many summary records are written at the same time, they are all correct and whichever one wins will still be correct because the count and the 'Last-Updated' attribute will be consistent with each other.
This also works well across multiple domains even if you keep your summary records with the hit records, you can pull the summary records from all your domains simultaneously and then issue your queries to all domains in parallel. The reason to do this is if you need higher throughput for a key than what you can get from one domain.
This works well with caching. If your cache fails you have an authoritative backup.
The time will come where someone wants to go back and edit / remove / add a record that has an old 'Timestamp' value. You will have to update your summary record (for that domain) at that time or your counts will be off until you recompute that summary.
This will give you a count that is in sync with the data currently viewable within the consistency window. This won't give you a count that is accurate up to the millisecond.
The Hard Way
The other way way is to do the normal read - increment - store mechanism but also write a composite value that includes a version number along with your value. Where the version number you use is 1 greater than the version number of the value you are updating.
get(key) returns the attribute value="Ver015 Count089"
Here you retrieve a count of 89 that was stored as version 15. When you do an update you write a value like this:
put(key, value="Ver016 Count090")
The previous value is not removed and you end up with an audit trail of updates that are reminiscent of lamport clocks.
This requires you to do a few extra things.
the ability to identify and resolve conflicts whenever you do a GET
a simple version number isn't going to work you'll want to include a timestamp with resolution down to at least the millisecond and maybe a process ID as well.
in practice you'll want your value to include the current version number and the version number of the value your update is based on to more easily resolve conflicts.
you can't keep an infinite audit trail in one item so you'll need to issue delete's for older values as you go.
What you get with this technique is like a tree of divergent updates. you'll have one value and then all of a sudden multiple updates will occur and you will have a bunch of updates based off the same old value none of which know about each other.
When I say resolve conflicts at GET time I mean that if you read an item and the value looks like this:
11 --- 12
/
10 --- 11
\
11
You have to to be able to figure that the real value is 14. Which you can do if you include for each new value the version of the value(s) you are updating.
It shouldn't be rocket science
If all you want is a simple counter: this is way over-kill. It shouldn't be rocket science to make a simple counter. Which is why SimpleDB may not be the best choice for making simple counters.
That isn't the only way but most of those things will need to be done if you implement an SimpleDB solution in lieu of actually having a lock.
Don't get me wrong, I actually like this method precisely because there is no lock and the bound on the number of processes that can use this counter simultaneously is around 100. (because of the limit on the number of attributes in an item) And you can get beyond 100 with some changes.
Note
But if all these implementation details were hidden from you and you just had to call increment(key), it wouldn't be complex at all. With SimpleDB the client library is the key to making the complex things simple. But currently there are no publicly available libraries that implement this functionality (to my knowledge).
To anyone revisiting this issue, Amazon just added support for Conditional Puts, which makes implementing a counter much easier.
Now, to implement a counter - simply call GetAttributes, increment the count, and then call PutAttributes, with the Expected Value set correctly. If Amazon responds with an error ConditionalCheckFailed, then retry the whole operation.
Note that you can only have one expected value per PutAttributes call. So, if you want to have multiple counters in a single row, then use a version attribute.
pseudo-code:
begin
attributes = SimpleDB.GetAttributes
initial_version = attributes[:version]
attributes[:counter1] += 3
attributes[:counter2] += 7
attributes[:version] += 1
SimpleDB.PutAttributes(attributes, :expected => {:version => initial_version})
rescue ConditionalCheckFailed
retry
end
I see you've accepted an answer already, but this might count as a novel approach.
If you're building a web app then you can use Google's Analytics product to track page impressions (if the page to domain-item mapping fits) and then to use the Analytics API to periodically push that data up into the items themselves.
I haven't thought this through in detail so there may be holes. I'd actually be quite interested in your feedback on this approach given your experience in the area.
Thanks
Scott
For anyone interested in how I ended up dealing with this... (slightly Java-specific)
I ended up using an EhCache on each servlet instance. I used the UUID as a key, and a Java AtomicInteger as the value. Periodically a thread iterates through the cache and pushes rows to a simpledb temp stats domain, as well as writing a row with the key to an invalidation domain (which fails silently if the key already exists). The thread also decrements the counter with the previous value, ensuring that we don't miss any hits while it was updating. A separate thread pings the simpledb invalidation domain, and rolls up the stats in the temporary domains (there are multiple rows to each key, since we're using ec2 instances), pushing it to the actual stats domain.
I've done a little load testing, and it seems to scale well. Locally I was able to handle about 500 hits/second before the load tester broke (not the servlets - hah), so if anything I think running on ec2 should only improve performance.
Answer to feynmansbastard:
If you want to store huge amount of events i suggest you to use distributed commit log systems such as kafka or aws kinesis. They allow to consume stream of events cheap and simple (kinesis's pricing is 25$ per month for 1K events per seconds) – you just need to implement consumer (using any language), which bulk reads all events from previous checkpoint, aggregates counters in memory then flushes data into permanent storage (dynamodb or mysql) and commit checkpoint.
Events can be logged simply using nginx log and transfered to kafka/kinesis using fluentd. This is very cheap, performant and simple solution.
Also had similiar needs/challenges.
I looked at using google analytics and count.ly. the latter seemed too expensive to be worth it (plus they have a somewhat confusion definition of sessions). GA i would have loved to use, but I spent two days using their libraries and some 3rd party ones (gadotnet and one other from maybe codeproject). unfortunately I could only ever see counters post in GA realtime section, never in the normal dashboards even when the api reported success. we were probably doing something wrong but we exceeded our time budget for ga.
We already had an existing simpledb counter that updated using conditional updates as mentioned by previous commentor. This works well, but suffers when there is contention and conccurency where counts are missed (for example, our most updated counter lost several million counts over a period of 3 months, versus a backup system).
We implemented a newer solution which is somewhat similiar to the answer for this question, except much simpler.
We just sharded/partitioned the counters. When you create a counter you specify the # of shards which is a function of how many simulatenous updates you expect. this creates a number of sub counters, each which has the shard count started with it as an attribute :
COUNTER (w/5shards) creates :
shard0 { numshards = 5 } (informational only)
shard1 { count = 0, numshards = 5, timestamp = 0 }
shard2 { count = 0, numshards = 5, timestamp = 0 }
shard3 { count = 0, numshards = 5, timestamp = 0 }
shard4 { count = 0, numshards = 5, timestamp = 0 }
shard5 { count = 0, numshards = 5, timestamp = 0 }
Sharded Writes
Knowing the shard count, just randomly pick a shard and try to write to it conditionally. If it fails because of contention, choose another shard and retry.
If you don't know the shard count, get it from the root shard which is present regardless of how many shards exist. Because it supports multiple writes per counter, it lessens the contention issue to whatever your needs are.
Sharded Reads
if you know the shard count, read every shard and sum them.
If you don't know the shard count, get it from the root shard and then read all and sum.
Because of slow update propogation, you can still miss counts in reading but they should get picked up later. This is sufficient for our needs, although if you wanted more control over this you could ensure that- when reading- the last timestamp was as you expect and retry.