Stream Analytics Output - azure-eventhub

I have a project that uses an event hub to receive data, this is sent every second, the data is received by a website using SignalR, this is all working fine, i have been storing the data in to blob storage via a Stream Analytics Job, but this is really slow to access, and with the amount of data i am receiving off just 6 devices, it will get even slower as this increases, i need to access the data to display historical data on via graphs on the website, and then this is topped up with the live data coming in.
I don't really need to store the data every second, so thought about only storing it every 30 seconds instead, but into a SQL DB, what i am trying to do, is still receive the data every second but only store it every 30, i have tried a tumbling window, but from what i can see, this just dumps everything every 30 seconds instead of the single entries.
am i miss understanding the Tumbling, Sliding and Hopping windows, i am guessing i cannot use them in this way ? if that is the case, i am guessing the only way to do it, would be to have the output db as an input, so i can cross reference the timestamp with the current time ?
unless anyone has any other ideas ? any help would be appreciated.
Thanks

am i miss understanding the Tumbling, Sliding and Hopping windows
You are correct that this will put all events within the Tumbling/Sliding/Hopping window together. However, this is only valid within a group by case, which requires a aggregate function over this group.
There is a aggregate function Collect() which will create an array of the events within a group.
I think this should be possible when you group every event within a 30 second tumbling window using Collect(), then in the next step, CROSS APPLY each record, which should output all received events within the 30 seconds.
With Grouper AS (
SELECT Collect() AS records
FROM Input TIMESTAMP BY time
GROUP BY TumblingWindow(second, 30)
)
SELECT
record.ArrayValue.FieldA AS FieldA,
record.ArrayValue.FieldB AS FieldB
INTO Output
FROM Grouper
CROSS APPLY GetArrayElements(Grouper.records) AS record

If you are trying to aggregate 30 entries into one summary row every 30 seconds then a tumbling window is a good choice. Something like the following should work:
SELECT System.TimeStamp AS OutTime, TollId, COUNT(*) as cnt, sum(TollCharge) as TollCharge
FROM Input TIMESTAMP BY EntryTime
GROUP BY TollId, TumblingWindow(second, 30)

Thanks for the response, I have been speaking to my contact at Microsoft and he suggested something similar, I had also found something like that in various examples online. what I actually want to do, is only update the database with the data every 30 seconds. so I will receive the event, store it, and I will not store it again until 30 seconds have passed. I am not sure how I can do it with and ASA job to be honest, as I need to have a record of the last time it was updated, I actually have a connection to the event hub from my web site, so in the receiver, I am going to perform a simple check, and then store the data from there.

Related

How to get only the latest row from a window

I am working with Kinesis Analytics and I am trying to understand how to write my application to give me a sliding window over 24 hours. What I have generates the right data, but it looks like it regenerates it every time, which might be what it's supposed to do and my own ignorance prevents me from looking at the problem right?
What I want to do:
I have a few devices that feed a Kinesis Stream, which this Kinesis analytics application is hooked up to.
Now, when a record comes in, what I want to do is SUM a value over the last 24 hours and store that. So after Kinesis Analytics does it's job I'm connecting it to a Lambda to finalize some things.
My issue is, when I simulate sending in some data, 5 records in this case, everything runs, it runs multiple times, not 5. It LOOKS like each time a record comes in it redoes everything in the window (expected) which triggers the lambda for each row that's emitted. As the table grows, it's bad news. What I really want is just the latest value from the window from NOW - 24 HOUR, with the "id" field so I can join that "id" back to a record stored elsewhere.
My Application looks like this:
CREATE OR REPLACE STREAM "DEVICE_STREAM" (
"id" VARCHAR(64),
"timestamp_mark" TIMESTAMP,
"device_id" VARCHAR(64),
"property_a_id" VARCHAR(64),
"property_b_id" VARCHAR(64),
"value" DECIMAL
);
CREATE OR REPLACE PUMP "DEVICE_PUMP" AS
INSERT INTO "DEVICE_STREAM"
SELECT STREAM "id",
"timestamp_mark",
"device_id",
"x_id",
"y_id",
SUM("value") OVER W1 AS "value",
FROM "SOURCE_SQL_STREAM_001"
WINDOW W1 AS (
PARTITION BY "device_id", "property_a_id", "property_b_id" ORDER BY "SOURCE_SQL_STREAM_001".ROWTIME
RANGE INTERVAL '24' HOUR PRECEDING
);
Hmmm.. this might be a better idea, Do the aggregation in a sub-select and select from that. It looks like I need that second window (W2 below) to ensure I get each record that was given back out.
CREATE OR REPLACE STREAM "DEVICE_STREAM" (
"id" VARCHAR(64),
"timestamp_mark" TIMESTAMP,
"device_id" VARCHAR(64),
"property_a_id" VARCHAR(64),
"property_b_id" VARCHAR(64),
"value" DECIMAL
);
CREATE OR REPLACE PUMP "DEVICE_PUMP" AS
INSERT INTO "DEVICE_STREAM"
SELECT STREAM s."id",
s."timestamp_mark",
s."device_id",
s."property_a_id",
s."property_b_id",
v."value"
FROM "SOURCE_SQL_STREAM_001" OVER W2 AS s, (
SELECT STREAM "SOURCE_SQL_STREAM_001"."ROWTIME", "id",
"timestamp_mark",
"device_id",
"property_a_id",
"property_b_id",
SUM("value") OVER W1 AS "value",
FROM "SOURCE_SQL_STREAM_001"
WINDOW W1 AS (
PARTITION BY "device_id", "property_a_id", "property_b_id" ORDER BY "SOURCE_SQL_STREAM_001".ROWTIME
RANGE INTERVAL '24' HOUR PRECEDING
)
) AS v
WHERE s."id" = v."id"
WINDOW W2 AS (
RANGE INTERVAL '1' SECOND PRECEDING
);
Also I notice that if I restart the Kinesis Analytics application, the SUM values reset, so clearly it doesn't persist across restarts, which might make it unsuitable for this solution. I might have to just setup a SQL server and periodically delete old records.
In general using Streaming Analytics solutions (and Kinesis Analytics in particular) is recommended when you need to do something based on the data in the events and not something external like wall clock time.
The reason is simple: if you need to do something once every 24h, you create a job bringing the data from storage (DB) once, performing your task and then "going to sleep" for another 24h - no complexities, manageable overhead. Now if you need to do something based on the data (e.g. when SUM of some field across multiple events exceeds X) you are in trouble with conventional solution since there is no simple criteria for when it should run. If you run it periodically, it might be invoked many times until the data driven criteria is met, creating a clear overhead.
In the latest case Streaming Analytics solution will be used as designed and trigger your logic just when needed, minimizing the overhead.
If you prefer using Streaming Analytics (which I personally don't recommend based on description of your problem), but struggling with Kinesis Analytics syntax, you might consider using Drools Kinesis Analytics. Among its features are crons and collectors, which provide you with very simple way to trigger jobs on time basis.
Note, that my answer is biased since I'm a CTO at Streamx.

How to handle limitation of Dynamodb BatchWriteItem

Just wondering whats the best way to handle the fact that dynamodb can only write batch sizes of max 25.
I have 3 Lambdas (there are more but I am simplifying down so we don't get side tracked)
GetNItemsFromExternalSourceLambda
SaveAllToDynamoDBLambda
AnalyzeDynamoDBLambda
Here is what happens:
GetNItemsFromExternalSourceLambda can potentially fetch 250 items in 1 rest call it makes to an external api.
It then invokes SaveAllToDynamoDBLambda and passes a) all these items and b) paging info e.g. {pageNum:1, pageSize : 250, numPages:5 } in the payload
SaveAllToDynamoDBLambda needs to save all items to a dynamodb table and then , based on the paging info will either a) re-invoke GetNItemsFromExternalSourceLambda (to fetch next page of data) or b) invoke AnalyzeDynamoDBLambda
these steps can loop many times obviously until we have got all the data from the external source before finally proceeding to last step
the final AnalyzeDynamoDBLambda then is some lambda that processes all the data that was fetched and saved to the db
So my problems lies in fact that SaveAllToDynamoDBLambda can only write 25 items in a batch, which means I would have to tell my GetNItemsFromExternalSourceLambda to only fetch 25 items at a time from the external source which is not ideal. (being able to fetch 250 at a time would be a lot better)
One could extend the timeout period of the SaveAllToDynamoDBLambda so that it could do multiple batch writes inside one invocation but i dont like that approach.
I could also zip up the 250 items and save to s3 in one upload which could trigger a stream event but I would have same issue on the other side of that solution.
just wondering whats a better approach while still being able to invoke AnalyzeDynamoDBLambda only after all info from all rest calls has been saved to dynamodb.
Basically the problem is you need a way of subdividing the large batch (250 items in this case) down to batches of 25 of less.
A very simple solution would be to use a Kinesis stream in the middle. Kinesis can take up to 500 records per PutRecords call. You can then use GetRecords with a Limit of 25 and put the records into Dynamo with a single BatchWriteItem call.
Make sure you look at the size limits as well before deciding if this solution will work for you.

Depth of sys.dm_pdw_exec_requests on Azure SQL Data Warehouse

I am running tests that take many hours to complete on ADW and the amount of SQL involved rolls off the 10,000 row limit of sys.dm_pdw_exec_requests (as documented at https://learn.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-service-capacity-limits ) in less than 30 minutes.
Is my only option to create a process to capture into a table in my database the data on sys.dm_pdw_exec_requests every N minutes (where N << 30 )?
I'm not sure what your use case is, but perhaps you can get the same useful information out of the audit logs?
https://learn.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-auditing-overview
You might be able to use something that was already built for that purpose, instead of reinventing the wheel:
https://github.com/andrealibero/Azure_SQL_DWH_Perf_Stats
the PowerShell script can collect output of DMVs (configured in an XML file) in a loop or for a number of specified iterations.
Given how quickly the DMVs roll out for you this might help in your scenario.

Reliably get Latest Event Log Record with WQL

I have written an application which collects windows logs from linux, via the Zenoss wmi-client package.
It uses WQL to query the Event log and parses the return. My problem is trying to find the latest entry in the log.
I stumbled across this which tells me to use the NumberOfRecords column in a query such as this
Select NumberOfRecords from Win32_NTEventLogFile Where LogFileName = 'Application'
and use the return value from that as the highest log.
My question is, I have heard that the Windows Event log is a circular buffer, that is it overwrites it's oldest logs with new ones as the log gets full. Will this have an impact on NumberOfRecords, as if that happens, the "RecordNumber" property of the events will continue to increase, however the actual Number of Records in the event log wouldn't change (as for every entry written, one is dropped).
Can anyone shed some insight to how this actually works (whether NumberOfRecords is the highest RecordNumber, or the actual number of events in the log), and perhaps suggest a solution?
Update
So we know now that NumberOfRecords won't work on it's own because the Event Log is a ring buffer. The MS Solution is to get the Oldest record and add it to NumberOfRecords to get the actual latest record.
This is possible through WinAPI, but I am calling remotely from Linux. Does anyone know how I might achieve this in my scenario?
Thanks
NumberOfRecords will not always be the max record number because the log is circular and the log can be cleared and you may have 1 entry but it's record number is 1000.
The way you would do this using the win api would be to get the oldest record number and add the number of records in the log to get the max record number. It doesn't look like Win32_NTEventLogFile has a oldest record number field to use.
Are you trying to get the latest record every time you query the log? You can use TimeGenerated when you query Win32_NTLogEvent to get everything > NOW. You can iterate that list to find your max record number.
You need the RecordNumber of the newest record, but there is no fast way to get it.
Generally, you have to:
SELECT RecordNumber FROM Win32_NTLogEvent WHERE LogFile='Application'
And find the max RecordNumber through results. But this can take tens of seconds or minutes if the size of log file is big...it's very slow.
But!
You can get number of records:
SELECT NumberOfRecords FROM Win32_NTEventlogFile WHERE LogfileName='Application'
This is very fast. And then reduce the selection to speedup the search of the newest record:
SELECT RecordNumber FROM Win32_NTLogEvent WHERE LogFile='Application' AND RecordNumber>='_number_of_records_'
The execution time of this <= than in general case.

Amazon SimpleDB Woes: Implementing counter attributes

Long story short, I'm rewriting a piece of a system and am looking for a way to store some hit counters in AWS SimpleDB.
For those of you not familiar with SimpleDB, the (main) problem with storing counters is that the cloud propagation delay is often over a second. Our application currently gets ~1,500 hits per second. Not all those hits will map to the same key, but a ballpark figure might be around 5-10 updates to a key every second. This means that if we were to use a traditional update mechanism (read, increment, store), we would end up inadvertently dropping a significant number of hits.
One potential solution is to keep the counters in memcache, and using a cron task to push the data. The big problem with this is that it isn't the "right" way to do it. Memcache shouldn't really be used for persistent storage... after all, it's a caching layer. In addition, then we'll end up with issues when we do the push, making sure we delete the correct elements, and hoping that there is no contention for them as we're deleting them (which is very likely).
Another potential solution is to keep a local SQL database and write the counters there, updating our SimpleDB out-of-band every so many requests or running a cron task to push the data. This solves the syncing problem, as we can include timestamps to easily set boundaries for the SimpleDB pushes. Of course, there are still other issues, and though this might work with a decent amount of hacking, it doesn't seem like the most elegant solution.
Has anyone encountered a similar issue in their experience, or have any novel approaches? Any advice or ideas would be appreciated, even if they're not completely flushed out. I've been thinking about this one for a while, and could use some new perspectives.
The existing SimpleDB API does not lend itself naturally to being a distributed counter. But it certainly can be done.
Working strictly within SimpleDB there are 2 ways to make it work. An easy method that requires something like a cron job to clean up. Or a much more complex technique that cleans as it goes.
The Easy Way
The easy way is to make a different item for each "hit". With a single attribute which is the key. Pump the domain(s) with counts quickly and easily. When you need to fetch the count (presumable much less often) you have to issue a query
SELECT count(*) FROM domain WHERE key='myKey'
Of course this will cause your domain(s) to grow unbounded and the queries will take longer and longer to execute over time. The solution is a summary record where you roll up all the counts collected so far for each key. It's just an item with attributes for the key {summary='myKey'} and a "Last-Updated" timestamp with granularity down to the millisecond. This also requires that you add the "timestamp" attribute to your "hit" items. The summary records don't need to be in the same domain. In fact, depending on your setup, they might best be kept in a separate domain. Either way you can use the key as the itemName and use GetAttributes instead of doing a SELECT.
Now getting the count is a two step process. You have to pull the summary record and also query for 'Timestamp' strictly greater than whatever the 'Last-Updated' time is in your summary record and add the two counts together.
SELECT count(*) FROM domain WHERE key='myKey' AND timestamp > '...'
You will also need a way to update your summary record periodically. You can do this on a schedule (every hour) or dynamically based on some other criteria (for example do it during regular processing whenever the query returns more than one page). Just make sure that when you update your summary record you base it on a time that is far enough in the past that you are past the eventual consistency window. 1 minute is more than safe.
This solution works in the face of concurrent updates because even if many summary records are written at the same time, they are all correct and whichever one wins will still be correct because the count and the 'Last-Updated' attribute will be consistent with each other.
This also works well across multiple domains even if you keep your summary records with the hit records, you can pull the summary records from all your domains simultaneously and then issue your queries to all domains in parallel. The reason to do this is if you need higher throughput for a key than what you can get from one domain.
This works well with caching. If your cache fails you have an authoritative backup.
The time will come where someone wants to go back and edit / remove / add a record that has an old 'Timestamp' value. You will have to update your summary record (for that domain) at that time or your counts will be off until you recompute that summary.
This will give you a count that is in sync with the data currently viewable within the consistency window. This won't give you a count that is accurate up to the millisecond.
The Hard Way
The other way way is to do the normal read - increment - store mechanism but also write a composite value that includes a version number along with your value. Where the version number you use is 1 greater than the version number of the value you are updating.
get(key) returns the attribute value="Ver015 Count089"
Here you retrieve a count of 89 that was stored as version 15. When you do an update you write a value like this:
put(key, value="Ver016 Count090")
The previous value is not removed and you end up with an audit trail of updates that are reminiscent of lamport clocks.
This requires you to do a few extra things.
the ability to identify and resolve conflicts whenever you do a GET
a simple version number isn't going to work you'll want to include a timestamp with resolution down to at least the millisecond and maybe a process ID as well.
in practice you'll want your value to include the current version number and the version number of the value your update is based on to more easily resolve conflicts.
you can't keep an infinite audit trail in one item so you'll need to issue delete's for older values as you go.
What you get with this technique is like a tree of divergent updates. you'll have one value and then all of a sudden multiple updates will occur and you will have a bunch of updates based off the same old value none of which know about each other.
When I say resolve conflicts at GET time I mean that if you read an item and the value looks like this:
11 --- 12
/
10 --- 11
\
11
You have to to be able to figure that the real value is 14. Which you can do if you include for each new value the version of the value(s) you are updating.
It shouldn't be rocket science
If all you want is a simple counter: this is way over-kill. It shouldn't be rocket science to make a simple counter. Which is why SimpleDB may not be the best choice for making simple counters.
That isn't the only way but most of those things will need to be done if you implement an SimpleDB solution in lieu of actually having a lock.
Don't get me wrong, I actually like this method precisely because there is no lock and the bound on the number of processes that can use this counter simultaneously is around 100. (because of the limit on the number of attributes in an item) And you can get beyond 100 with some changes.
Note
But if all these implementation details were hidden from you and you just had to call increment(key), it wouldn't be complex at all. With SimpleDB the client library is the key to making the complex things simple. But currently there are no publicly available libraries that implement this functionality (to my knowledge).
To anyone revisiting this issue, Amazon just added support for Conditional Puts, which makes implementing a counter much easier.
Now, to implement a counter - simply call GetAttributes, increment the count, and then call PutAttributes, with the Expected Value set correctly. If Amazon responds with an error ConditionalCheckFailed, then retry the whole operation.
Note that you can only have one expected value per PutAttributes call. So, if you want to have multiple counters in a single row, then use a version attribute.
pseudo-code:
begin
attributes = SimpleDB.GetAttributes
initial_version = attributes[:version]
attributes[:counter1] += 3
attributes[:counter2] += 7
attributes[:version] += 1
SimpleDB.PutAttributes(attributes, :expected => {:version => initial_version})
rescue ConditionalCheckFailed
retry
end
I see you've accepted an answer already, but this might count as a novel approach.
If you're building a web app then you can use Google's Analytics product to track page impressions (if the page to domain-item mapping fits) and then to use the Analytics API to periodically push that data up into the items themselves.
I haven't thought this through in detail so there may be holes. I'd actually be quite interested in your feedback on this approach given your experience in the area.
Thanks
Scott
For anyone interested in how I ended up dealing with this... (slightly Java-specific)
I ended up using an EhCache on each servlet instance. I used the UUID as a key, and a Java AtomicInteger as the value. Periodically a thread iterates through the cache and pushes rows to a simpledb temp stats domain, as well as writing a row with the key to an invalidation domain (which fails silently if the key already exists). The thread also decrements the counter with the previous value, ensuring that we don't miss any hits while it was updating. A separate thread pings the simpledb invalidation domain, and rolls up the stats in the temporary domains (there are multiple rows to each key, since we're using ec2 instances), pushing it to the actual stats domain.
I've done a little load testing, and it seems to scale well. Locally I was able to handle about 500 hits/second before the load tester broke (not the servlets - hah), so if anything I think running on ec2 should only improve performance.
Answer to feynmansbastard:
If you want to store huge amount of events i suggest you to use distributed commit log systems such as kafka or aws kinesis. They allow to consume stream of events cheap and simple (kinesis's pricing is 25$ per month for 1K events per seconds) – you just need to implement consumer (using any language), which bulk reads all events from previous checkpoint, aggregates counters in memory then flushes data into permanent storage (dynamodb or mysql) and commit checkpoint.
Events can be logged simply using nginx log and transfered to kafka/kinesis using fluentd. This is very cheap, performant and simple solution.
Also had similiar needs/challenges.
I looked at using google analytics and count.ly. the latter seemed too expensive to be worth it (plus they have a somewhat confusion definition of sessions). GA i would have loved to use, but I spent two days using their libraries and some 3rd party ones (gadotnet and one other from maybe codeproject). unfortunately I could only ever see counters post in GA realtime section, never in the normal dashboards even when the api reported success. we were probably doing something wrong but we exceeded our time budget for ga.
We already had an existing simpledb counter that updated using conditional updates as mentioned by previous commentor. This works well, but suffers when there is contention and conccurency where counts are missed (for example, our most updated counter lost several million counts over a period of 3 months, versus a backup system).
We implemented a newer solution which is somewhat similiar to the answer for this question, except much simpler.
We just sharded/partitioned the counters. When you create a counter you specify the # of shards which is a function of how many simulatenous updates you expect. this creates a number of sub counters, each which has the shard count started with it as an attribute :
COUNTER (w/5shards) creates :
shard0 { numshards = 5 } (informational only)
shard1 { count = 0, numshards = 5, timestamp = 0 }
shard2 { count = 0, numshards = 5, timestamp = 0 }
shard3 { count = 0, numshards = 5, timestamp = 0 }
shard4 { count = 0, numshards = 5, timestamp = 0 }
shard5 { count = 0, numshards = 5, timestamp = 0 }
Sharded Writes
Knowing the shard count, just randomly pick a shard and try to write to it conditionally. If it fails because of contention, choose another shard and retry.
If you don't know the shard count, get it from the root shard which is present regardless of how many shards exist. Because it supports multiple writes per counter, it lessens the contention issue to whatever your needs are.
Sharded Reads
if you know the shard count, read every shard and sum them.
If you don't know the shard count, get it from the root shard and then read all and sum.
Because of slow update propogation, you can still miss counts in reading but they should get picked up later. This is sufficient for our needs, although if you wanted more control over this you could ensure that- when reading- the last timestamp was as you expect and retry.