OpenGL - Using texture's alpha channel AND a "global" opacity level - opengl

I'm trying to get a fairly simple effect; I'd like my sprites to be able to have their alpha channels used by GL (that is, translucent across parts of the image, but not all of it) as well as the entire sprite to have an "opacity" level that affects the entire sprite.
I've got the latter part, that was a simple enough matter of using GL_MODULATE and passing a color4d(opacity, opacity, opacity, opacity). Works like a dream.
But the problem is in the first part; partially translucent images. I'd thought that i could just fling out a glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); and enable blending, but unfortunately it doesn't do it. What it seems to do is "whiten" the color of the image in question, rather than making it translucent. Any other sprites passing under it behave as if it were a solid block of color, and get directly cut off.
For reference, i've disabled lighting, z-buffer, color material, and alpha test. Did shade model flat, just in case. But other than that, i'm using default ortho settings. I'm using teximage2d for the texture in question, and i've been sure the formats and GL_RGBA are all set correctly.
How can i get GL to consider the texture's alpha channel during blending?

The simplest and fastest solution is to have a fragment shader.
uniform float alpha;
uniform sampler2D texture;
main(){
gl_FragColor = texture2d(texture, gl_TexCoords);
gl_FragColor.a *= alpha;
}

GL_MODULATE is the way to tell GL to use the texture alpha for the final alpha of the fragment (it's also the default).
Your blending is also correct as to how to use that generated alpha in the blending stage.
So the problem lies elsewhere... Your description sounds like you did not in fact disable Z-test, and you do not render your sprites back to front. Alpha blending in GL will only do what you want if you draw your sprites back to front. Otherwise, the sprites get blended in the wrong order, and this does not produce the correct output.
It would be easier to verify this with a picture of what you observe though.

Related

How do I make my object transparent but still show the texture?

I'm trying to render a model in OpenGL. I'm on Day 4 of C++ and OpenGL (Yes, I have learned this quickly) and I'm at a bit of a stop with textures.
I'm having a bit of trouble making my texture alpha work. In this image, I have this character from Spiral Knights. As you can see on the top of his head, there's those white portions.
I've got Blending enabled and my blend function set to glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
What I'm assuming here, and this is why I ask this question, is that the texture transparency is working, but the triangles behind the texture are still showing.
How do I make those triangles invisible but still show my texture?
Thanks.
There are two important things to be done when using blending:
You must sort primitives back to front and render in that order (order independent transparency in depth buffer based renderers is still an ongoing research topic).
When using textures to control the alpha channel you must either write a shader that somehow gets the texture's alpha values passed down to the resulting fragment color, or – if you're using the fixed function pipeline – you have to use GL_MODULATE texture env mode, or GL_DECAL with the primitive color alpha value set to 0, or use GL_REPLACE.

glow around composited framebuffers

I am trying to draw brush strokes made of quads with a rough texture into framebuffers that are then composited together. The problem is that the framebuffer texture initial color is 0,0,0,0 and it blends in creating a dark glow around the edges. here is an example image
im using
gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.SRC_ALPHA, gl.ONE );
I think Iv tried every possible combination of blending settings and none work the way I want.
here is a demo of the problem
This looks like a pre-multiplication issue to me. Either your brush stroke textures aren't pre-multiplied and they should be, or they are pre-multiplied and they shouldn't be - I forget which.
For compositing you most likely want to use pre-multiplied alpha to get the effect you want. Either pre-multiply the texture when you upload the data
gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);
or pre-multiply in the shader
gl_FragColor = vec4(color.rgb * color.a, color.a);
And blend with
gl.blendFunc(gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
A quick google of "pre-multiplied alpha blending" brought up this great explanation of the issue

how to get gl_BackColor using webGL glsl?

In some other version of GLSL,gl_BackColor seems to provide the access to the color behind the current rendering fragment.This is useful for some custom alpha blending.But glsl for webgl seems not to support it.On the other hand,read from gl_FragColor before assign any value to it seems get the correct backColor, but only works in my Ubuntu.On my Mac Book Pro, it fails and seems to get only some useless random color.
So my question is,is there any direct way to gain access to the backColor behind the current rendering fragment?If not,how can I do it?
In some other version of GLSL,gl_BackColor seems to provide the access to the color behind the current rendering fragment.
No, this has never been the case. gl_BackColor was the backface color, for doing two-sided lighting. And it was never accessible from the fragment shader; it was a vertex shader variable.
For two-sided lighting, you wrote to both gl_FrontColor and gl_BackColor in the vertex shader. The fragment shader's gl_Color variable is filled in with which ever side's color is facing the camera. So if the back-face of the triangle is forward, then it gets the interpolated gl_BackColor.
What you are asking for has never been available in GLSL.
There is no direct way, as Nicol Bolas write.
However you can use an indirect way, by using a render to texture approach:
First render the opaque objects (if any) to a offscreen texture instead of the screen.
Render the offscreen texture to the screen
Render the transparent "custom blending" object to the screen using a shader that does the custom blending. (Since you are doing the blending manually the GL's Blend flag should not be enabled). You should add the offscreen texture as a uniform to the fragment-shader which let you sample the background color and calculate your custom blending.
If you need to render multiple transparent objects you can use two offscreen textures and ping-pong between them and finally render the result to the screen when all objects has been rendered.

OpenGL: Weird transparency blending result

I'm working on creating a transparent GUI in OpenGL, and am trying to get text rendered over some semi-transparent quads, but the results are odd.
If I render the text by itself, with nothing behind it, it looks fine:
However, if I render a semi-transparent quad behind it (rendering the quad before rendering the text), I get this:
I have blending set to (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA). The font texture is an all-white texture with the character shapes in the alpha channel.
Do I need to be doing something special when performing alpha-transparency over an existing layer of transparency? Or is there something else I need to check?
The alpha value of your font texture seems to be off. It should be 0 for texels that you want to be invisible and 1 (or 255 in bytes) for visible texels. You should check the texture and make sure alpha values are correct.
Instead of alpha blending, you can use alpha testing. This will completely get rid of fragments, that have a alpha value below a certain threshold and is often much faster than blending.
glDisbale(GL_BLEND);
glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_GREATER, 0.96f); // Or some fitting threshold for your texture
This might work even if your texture's alpha is off in some places, but doesn't look like it is the case here, as the 's' and 't' seem to have a low alpha in places where it should be 1.
Thanks for the responses. There was nothing wrong with my font texture, but your suggestions led me to try a few other things. Turns out the problem wasn't the transparency at all. There was a problem with rendering the background quad, which caused it to also render the text quads, but using the background texture. Bah...

Alpha blending with multiple textures leaves colored border

Following problem: I have two textures and I want to combine these two into a new texture. Thus, one texture is used as background, the other will be overlaid. The overlay texture is getting initialized with glClearColor(1.0, 1.0, 1.0, 0.0). Objects are draw onto the texture, these objects do have alpha values.
Now blending between the two textures leaves a white border around the objects. The border comes from the fact that the background color in the second texture is white, isn't it?
How can I use alpha blending where I do not have to think about the background color of the overlaying texture?
I solved the problem myself, but thanks a lot to all of you guys!
The problem was following: to combine both textures I used glblend(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) which does not work due to the fact that OpenGL uses pre-multiplied alpha values. Blending with glblend(GL_ONE, GL_ONE_MINUS_SRC_ALPHA), works as the source term now will be:
1*src_alpha*src_color!
How can i use alpha blending where i do not have to think about the background color of the overlaying texture?
You can't; your blend function incorporates the background color into it, because it may not actually be the "background". You render multiple objects to the texture, so the "background" color may in fact be a previously rendered object.
Your best bet is to minimize the impact. There's no particular need for the background color to be white. Just make it black. This won't make the artifacts go away; it will hopefully just make it less noticeable.
The simple fact is that blending in graphics cards simply isn't designed to be able to do the kinds of compositing you're doing. It works best when what you're blending with is opaque. Even if there are layers of transparency between the opaque surface and what you're rendering, it still works.
But if the background is actually transparent, with no fully opaque color, the math simply stops working. You will get artifacts; the question is how noticeable they will be.
If you have access to more advanced hardware, you could use some shader-based programmatic blending techniques. But these will have a performance impact.
Although I think you probably get better results with a black background, as Nicol Bolas pointed out. But you should double check your blending functions, because as you point out, it SHOULD not matter...
1.0 * 0.0 + 0.734 * 1.0 = 0.734
What I don't really get is why your base texture is fully transparent? Is that intended? Unless you blend the textures and then use them somewhere else initializing to Alpha = 1.0 is a batter idea.
Make sure you disable depth writing before you draw the transparent texture (so one transparent texture can't "block" another, preventing part of it from being drawn). To do so just call glDepthMask(false). Once you are done drawing transparent objects, call glDepthMask(true) to set depth writing back to normal.