Related
Is there any real reason not to make a member function virtual in C++? Of course, there's always the performance argument, but that doesn't seem to stick in most situations since the overhead of virtual functions is fairly low.
On the other hand, I've been bitten a couple of times with forgetting to make a function virtual that should be virtual. And that seems to be a bigger argument than the performance one. So is there any reason not to make member functions virtual by default?
One way to read your questions is "Why doesn't C++ make every function virtual by default, unless the programmer overrides that default." Without consulting my copy of "Design and Evolution of C++": this would add extra storage to every class unless every member function is made non-virtual. Seems to me this would have required more effort in the compiler implementation, and slowed down the adoption of C++ by providing fodder to the performance obsessed (I count myself in that group.)
Another way to read your questions is "Why do C++ programmers do not make every function virtual unless they have very good reasons not to?" The performance excuse is probably the reason. Depending on your application and domain, this might be a good reason or not. For example, part of my team works in market data ticker plants. At 100,000+ messages/second on a single stream, the virtual function overhead would be unacceptable. Other parts of my team work in complex trading infrastructure. Making most functions virtual is probably a good idea in that context, as the extra flexibility beats the micro-optimization.
Stroustrup, the designer of the language, says:
Because many classes are not designed to be used as base classes. For example, see class complex.
Also, objects of a class with a virtual function require space needed by the virtual function call mechanism - typically one word per object. This overhead can be significant, and can get in the way of layout compatibility with data from other languages (e.g. C and Fortran).
See The Design and Evolution of C++ for more design rationale.
There are several reasons.
First, performance: Yes, the overhead of a virtual function is relatively low seen in isolation. But it also prevents the compiler from inlining, and that is a huge source of optimization in C++. The C++ standard library performs as well as it does because it can inline the dozens and dozens of small one-liners it consists of. Additionally, a class with virtual methods is not a POD datatype, and so a lot of restrictions apply to it. It can't be copied just by memcpy'ing, it becomes more expensive to construct, and takes up more space. There are a lot of things that suddenly become illegal or less efficient once a non-POD type is involved.
And second, good OOP practice. The point in a class is that it makes some kind of abstraction, hides its internal details, and provides a guarantee that "this class will behave so and so, and will always maintain these invariants. It will never end up in an invalid state".
That is pretty hard to live up to if you allow others to override any member function. The member functions you defined in the class are there to ensure that the invariant is maintained. If we didn't care about that, we could just make the internal data members public, and let people manipulate them at will. But we want our class to be consistent. And that means we have to specify the behavior of its public interface. That may involve specific customizability points, by making individual functions virtual, but it almost always also involves making most methods non-virtual, so that they can do the job of ensuring that the invariant is maintained. The non-virtual interface idiom is a good example of this:
http://www.gotw.ca/publications/mill18.htm
Third, inheritance isn't often needed, especially not in C++. Templates and generic programming (static polymorphism) can in many cases do a better job than inheritance (runtime polymorphism). Yes, you sometimes still need virtual methods and inheritance, but it is certainly not the default. If it is, you're Doing It Wrong. Work with the language, rather than try to pretend it was something else. It's not Java, and unlike Java, in C++ inheritance is the exception, not the rule.
I'll ignore performance and memory cost, because I have no way to measure them for the "in general" case...
Classes with virtual member functions are non-POD. So if you want to use your class in low-level code which relies on it being POD, then (among other restrictions) any member functions must be non-virtual.
Examples of things you can portably do with an instance of a POD class:
copy it with memcpy (provided the target address has sufficient alignment).
access fields with offsetof()
in general, treat it as a sequence of char
... um
that's about it. I'm sure I've forgotten something.
Other things people have mentioned that I agree with:
Many classes are not designed for inheritance. Making their methods virtual would be misleading, since it implies child classes might want to override the method, and there shouldn't be any child classes.
Many methods are not designed to be overridden: same thing.
Also, even when things are intended to be subclassed / overridden, they aren't necessarily intended for run-time polymorphism. Very occasionally, despite what OO best practice says, what you want inheritance for is code reuse. For example if you're using CRTP for simulated dynamic binding. So again you don't want to imply your class will play nicely with runtime polymorphism by making its methods virtual, when they should never be called that way.
In summary, things which are intended to be overridden for runtime polymorphism should be marked virtual, and things which don't, shouldn't. If you find that almost all your member functions are intended to be virtual, then mark them virtual unless there's a reason not to. If you find that most of your member functions are not intended to be virtual, then don't mark them virtual unless there's a reason to do so.
It's a tricky issue when designing a public API, because flipping a method from one to the other is a breaking change, so you have to get it right first time. But you don't necessarily know before you have any users, whether your users are going to want to "polymorph" your classes. Ho hum. The STL container approach, of defining abstract interfaces and banning inheritance entirely, is safe but sometimes requires users to do more typing.
The following post is mostly opinion, but here goes:
Object oriented design is three things, and encapsulation (information hiding) is the first of these things. If a class design is not solid on this, then the rest doesn't really matter very much.
It has been said before that "inheritance breaks encapsulation" (Alan Snyder '86) A good discussion of this is present in the group of four design pattern book. A class should be designed to support inheritance in a very specific manner. Otherwise, you open the possibility of misuse by inheritors.
I would make the analogy that making all of your methods virtual is akin to making all your members public. A bit of a stretch, I know, but that's why I used the word 'analogy'
As you are designing your class hierarchy, it may make sense to write a function that should not be overridden. One example is if you are doing the "template method" pattern, where you have a public method that calls several private virtual methods. You would not want derived classes to override that; everyone should use the base definition.
There is no "final" keyword, so the best way to communicate to other developers that a method should not be overridden is to make it non-virtual. (other than easily ignored comments)
At the class level, making the destructor non-virtual communicates that the class should not be used as a base class, such as the STL containers.
Making a method non-virtual communicates how it should be used.
The Non-Virtual Interface idiom makes use of non-virtual methods. For more information please refer to Herb Sutter "Virtuality" article.
http://www.gotw.ca/publications/mill18.htm
And comments on the NVI idiom:
http://www.parashift.com/c++-faq-lite/strange-inheritance.html#faq-23.3
http://accu.org/index.php/journals/269 [See sub-section]
I know why and how virtual methods work, and most of the time people tell me I should always mark a method virtual, but, I don't understand why if I'm not going to override it. And I also know there's a tiny memory issue.
Please explain me why I should mark all methods virtual and what's the trade-off.
Code example:
class Point
{
int x, y;
public:
virtual void setX(int i);
virtual void setY(int i);
};
(That question is not equal to Should I mark all methods virtual? because I want to know the trade-off and because the programming language in the case is C++, not C#)
OBS: I'm sorry if there's any grammar error, English is not my native language.
No, you should not "mark all methods as virtual".
If you want the method to be virtual, then mark it as such. If not, leave the keyword out.
There is an overhead for virtual methods compared to regular ones. If you want to read more about this, check out the Wikipedia side about VTables.
The real reason to make member functions non-virtual is to enforce class invariants.
Advice to make all member functions virtual generally means that either:
The people giving the advice don't understand the class, or
the people giving the advice don't understand OO design.
Yes, there are a few cases (e.g., some abstract base classes, where the only class invariant is the existence of specific functions) in which all the functions should be virtual. Those are the exception though. In most classes, virtual functions should be restricted to those that you really intend to allow derived classes to provide new/different behavior.
As for the discussion of things like vtables and the overhead of virtual function calls, I'd say they're correct as far as they go, but they miss the really big point. Whether a particular function should or shouldn't be virtual is primarily a question of class design and only secondarily a question of function call overhead. The two don't do the same thing, so trying to compare overhead rarely makes sense.
That is not the case, ie, if you dont need a virtual function then dont use it. Also as per Bjarne Stroustrup Pay per use
In C++: --
Virtual functions have a slight performance penalty. Normally it is too small to make any difference but in a tight loop it might be
significant.
A virtual function increases the size of each object by one pointer. Again this is typically insignificant, but if you create
millions of small objects it could be a factor.
Classes with virtual functions are generally meant to be inherited from. The derived classes may replace some, all or none of the
virtual functions. This can create additional complexity and
complexity is the programmers mortal enemy. For example, a derived
class may poorly implement a virtual function. This may break a part
of the base class that relies on the virtual function.
One of C++'s basic principles is that you don't pay for what you don't need. virtual functions cost more than normal member functions in both time and space. Therefore you shouldn't always use them irregardless of whether or not you'll actually ever need them or not.
Making methods virtual has slight costs (more code, more complexity, larger binaries, slower method calls), and if the class is not inherited from it brings no benefit. Classes need to be designed for inheritance, otherwise inheriting from them is just begging to shoot yourself in the foot. So no, you should not always make every method virtual. The people who tell you this are probably just too inheritance-happy.
It is not true that all functions should be marked as virtual.
Indeed, there's a pattern for enforcing pre/postconditions which explicitly requires that public members are not virtual. It works as follows:
class Whatever
{
public:
int frobnicate(int);
protected:
virtual int do_frobnicate(int);
};
int Whatever::frobnicate(int x)
{
check_preconditions(x);
int result = do_frobnicate(x);
check_postconditions(x, result);
return result;
}
Since derived classes cannot override the public function, they cannot remove the pre/postcondition checks. They can, however, override the protected do_frobnicate which does the actual work.
(Edit - I got to this question by way of a duplicate C# question, but the answer is still useful, I think! Edited to reflect that:)
Actually, C# has a good "official" reason: https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/versioning-with-the-override-and-new-keywords
The first sentence there is:
The C# language is designed so that versioning between base and derived classes in different libraries can evolve and maintain backward compatibility.
So if you're writing a class and it's possible end-users will make derived classes, and it's possible different versions will get out of sync...all of a sudden it starts to be important. If you have carefully protected core aspects of your code, then if you update things, people can still use the old derived class (hopefully).
On the other hand, if you are okay with no one being able to used derived classes until their authors have updated to your newest version, everything can be virtual. I have seen this scenario in several "early access" games that allow modding - when the game version increases, all of a sudden a lot of mods are broken because they relied on things working one way...and they changed. (Okay, not all changes are related to this, but some are.)
It really depends on your usage scenario. If people can keep using your old version, maybe they don't care if you've updated it and are happy to keep using it with their derived classes. In a large business scenario, making everything virtual may very well be a recipe for breaking many things at once when someone updates something.
Does this apply to C++ as well? I don't see why not - C++ is also used for massive projects and would also face the dangers of multiple simultaneous versions.
I'm writing a large abstract base class with 30 something purely virtual methods*.
Finding all the functions to implement in a base class in the implementation classes is a little tedious, mostly because MSVC++ does not tell you which function you failed to implement with compiler error "Cannot construct abstract class"
So, I'm wondering is my large abstract base class a bad idea, or should I split it up into several interfaces, or is there a compiler warning I can activate that'll tell me WHICH method I failed to provide an implementation for.. or is this just a part of coding with abstract classes and I should get used to it.
*What it does is provide a layer of common functionality between a few different rendering subsystems.
There's no obvious correct answer to this question. Deciding whether to factor apart the base class into multiple abstract base classes should probably be a decision you make based on whether or not the base class logically represents several different concepts, rather than on poor compiler error messages. If the only reason you'd do this is for the compiler error messages, you might want to check and see if you can upgrade the compiler or if there's some other reason to do this. Most modern compilers should provide very nice, detailed errors about this.
Splitting the interface into pieces may be a good idea if your design suggests that you might actually want to have multiple different classes that implement just small pieces of the base class. If you expect to do this, it may be advantageous to factor the interface apart. You will see some added complexity from this, however. For example, if you have a pointer of one interface type to an object implementing multiple interfaces, you may have to do some sort of cross-cast to obtain the correct type, or you may have to introduce a new abstract class that represents something inheriting from all the different interface types. Multiple inheritance with interface classes might also lead to some name collisions, though this typically isn't a problem if the interfaces are designed correctly.
In short, I'd strongly suggest not doing this for the compiler error reason, but if you think it's a good design decision then by all means go for it. Compilers are good enough these days that you rarely (but not never) need to build your design around them.
Interface classes in my opinion are inherently bad, however the question as posed makes this particular application sound suspect.
If you have classes that are deriving from this interface, and it's not clear exactly what functions you need to override, that seems to indicate that all those functions may not be necessary.
When you craft an abstract base class, the number of pure virtual methods isn't important (to me), but it should be clear why every class that derives from this interface has to implement each pure virtual function. If you find yourself thinking "Why do I have to implement this function?", it may be appropriate to break the abstract class up into several distinct interfaces.
Anyway such a big class is a mess, God class antipatern. Use aggregation/composition to split a class and take a look at SOLID development principles, looks like 30 methods for a single class do not follows single responsibility principle, at least... so I wold like recommend to reconsider a design of class. Good luck!
Usually, right after the error "Cannot instantiate abstract class" (which is thrown at the line it was called), if you copied and pasted the interface into the class before writing the implementations, you'll get a linker error "Unresolved external error"pointing to the method you forgot to implement.
Simple answer would be Protocol.
The another point is that it is said that all methods in ObjectC are virtual, so no need to say virtual in ObjC.
I find it hard to understand this concept.
Any comments to figure out more clear around this question ?
Thanks for commenting.
Simple answer would be Protocol.
Simple but wrong. A protocol is an interface specification. It's a collection of messages that an object must (ignoring the #optional keyword for now) respond to.
The term "virtual function" has no direct counterpart in Objective-C. In Objective-C you don't call functions on objects, you send messages to them. The object itself then decides how to respond to the message, typically by looking up the message in its class object, finding the associated method and invoking it. Note that this all happens at run time, not compile time.
The mapping between messages (or "selectors" to give them their technical term) and methods is built entirely from the #implementation. The method declarations in the #interface are only there to give the compiler the information it needs to warn you that you may have forgotten a method implementation. And it is only a warning because you can't tell until run time whether whether the object really does respond to the message or not. For example, somebody else could add a category to an existing class that provides implementations for missing methods, or a class could override forwardingTargetForSelector: to forward messages it doesn't respond to elsewhere.
Methods on objects in Objective-C are not virtual functions, they are real functions.
I beg to differ, methods in Obj-C aren't quite real like one would expect. They behave just like virtual functions in C++ do, except you cannot make a 'pure virtual' function in Objective-C.
Cheers,
Raxit
Should be a newbie question...
I have existing code in an existing class, A, that I want to extend in order to override an existing method, A::f().
So now I want to create class B to override f(), since I don't want to just change A::f() because other code depends on it.
To do this, I need to change A::f() to a virtual method, I believe.
My question is besides allowing a method to be dynamically invoked (to use B's implementation and not A's) are there any other implications to making a method virtual? Am I breaking some kind of good programming practice? Will this affect any other code trying to use A::f()?
Please let me know.
Thanks,
jbu
edit: my question was more along the lines of is there anything wrong with making someone else's method virtual? even though you're not changing someone else's implementation, you're still having to go into someone's existing code and make changes to the declaration.
If you make the function virtual inside of the base class, anything that derives from it will also have it virtual.
Once virtual, if you create an instance of A, then it will still call A::f.
If you create an instance of B and store it in a pointer of type A*. And then you call A*::->f, then it will call B's B::f.
As for side effects, there probably won't be any side effects, other than a slight (unnoticeable) performance loss.
There is a very small side effect as well, there could be a class C that also derives from A, and it may implement C::f, and expect that if A*::->f was called, then it expects A::f to be called. But this is not very common.
But more than likely, if C exists, then it does not implement C::f at all, and in which case everything is fine.
Be careful though, if you are using an already compiled library and you are modifying it's header files, what you are expecting to work probably will not. You will need to recompile the header and source files.
You could consider doing the following to avoid side effects:
Create a type A2 that derives from A and make it's f virtual
Use pointers of type A2 instead of A
Derive B from type A2.
In this way anything that used A will work in the same way guaranteed
Depending on what you need you may also be able to use a has-a relationship instead of a is-a.
There is a small implied performance penalty of a vtable lookup every time a virtual function is called. If it were not virtual, function calls are direct, since the code location is known at compile time. Wheras at runtime, a virtual function address must be referenced from the vtable of the object you're calling upon.
To do this, I need to change A::f() to
a virtual method, I believe.
Nope, you do not need to change it to a virtual method in order to override it. However, if you are using polymorphism you need to, i.e. if you have a lot of different classes deriving from A but stored as pointers to A.
There's also a memory overhead for virtual functions because of the vtable (apart from what spoulson mentioned)
There are other ways of accomplishing your goal. Does it make sense for B to be an A? For example, it makes sense for a Cat to be an Animal, but not for a Cat to be a Dog. Perhaps both A and B should derive from a base class, if they are related.
Is there just common functionality you can factor out? It sounds to me like you'll never be using these classes polymorphically, and just want the functionality. I would suggest you take that common functionality out and then make your two separate classes.
As for cost, if you're using A ad B directly, the compile will by-pass any virtual dispatching and just go straight to the functions calls, as if they were never virtual. If you pass a B into a place expecting `A1 (as a reference or pointer), then it will have to dispatch.
There are 2 performance hits when speaking about virtual methods.
vtable dispatching, its nothing to really worry about
virtual functions are never inlined, this can be much worse than the previous one, function inlining is something that can really speed things in some situations, it can never happen with a virtual function.
How kosher it is to change somebody else's code depends entirely on the local mores and customs. It isn't something we can answer for you.
The next question is whether the class was designed to be inherited from. In many cases, classes are not, and changing them to be useful base classes, without changing other aspects, can be tricky. A non-base class is likely to have everything private except the public functions, so if you need to access more of the internals in B you'll have to make more modifications to A.
If you're going to use class B instead of class A, then you can just override the function without making it virtual. If you're going to create objects of class B and refer to them as pointers to A, then you do need to make f() virtual. You also should make the destructor virtual.
It is good programming practise to use virtual methods where they are deserved. Virtual methods have many implications as to how sensible your C++ Class is.
Without virtual functions you cannot create interfaces in C++. A interface is a class with all undefined virtual functions.
However sometimes using virtual methods is not good. It doesn't always make sense to use a virtual methods to change the functionality of an object, since it implies sub-classing. Often you can just change the functionality using function objects or function pointers.
As mentioned a virtual function creates a table which a running program will reference to check what function to use.
C++ has many gotchas which is why one needs to be very aware of what they want to do and what the best way of doing it is. There aren't as many ways of doing something as it seems when compared to runtime dynamic OO programming languages such as Java or C#. Some ways will be either outright wrong, or will eventually lead to undefined behavior as your code evolves.
Since you have asked a very good question :D, I suggest you buy Scott Myer's Book: Effective C++, and Bjarne Stroustrup's book: The C++ Programming Language. These will teach you the subtleties of OO in C++ particularly when to use what feature.
If thats the first virtual method the class is going to have, you're making it no longer a POD. This can break things, although the chances for that are slim.
POD: http://en.wikipedia.org/wiki/Plain_old_data_structures