C++ pipes in Objective-C - c++

I made the transition from C++ to objective-C a while ago, and am now finding NSLog() tiresome. Instead, still in Objective-C, I would like to be able to write something like
stdout << "The answer is " << 42 << "\n";
(I know that NSLog prints to stderr, I could put up with writing stderr << "Hello world";)
Basically, I just want to be able to use the C++ pipe syntax in Objective-C.
I don't care about speed (within reason) or if the only method uses precompiler macros or other hack-ish things.

You really should get used to format strings as in NSLog. The C++ style syntax may be easy to write, but it is a nightmare to maintain. Think about internationalization. A format string can easily be loaded at runtime. Cocoa provides the function NSLocalizedString for that. But for C++’s stream operators you probably have to write different code for every language.

What you're wanting is stream operations.
There isn't a really 'good' way to do this in Cocoa, I have a library that I never really fleshed out that would allow you to do something 'near' this, but still wouldn't get a lot of the benifits.
http://github.com/jweinberg/Objective-Curry/blob/master/OCFileStream.m
Starting from there you would be able to write a class that did
[[[stdOutStream write:#"10"] write:[bleh description]] write:#"more stuff"];

Related

How to write custom input function for Flex in C++ mode?

I have a game engine and a shader parser. The engine has an API for reading from a virtual file system. I would like to be able to load shaders through this API. I was thinking about implementing my own std::ifstream but I don't like it, my api is very simple and I don't want to do a lot of unnecessary work. I just need to be able to read N bytes from the VFS. I used a C++ mod for more convenience, but in the end I can not find a solution to this problem, since there is very little official information about this. Everything is there for the C API, at least I can call the scan_string function, I did not find such a function in the yyFlexParser interface.
To be honest, I wanted to abandon the std::ifstream in the parser, and return only the C api . The only thing I used the Flex C++ mode for is to interact with the Bison C++ API and so that the parser can be used in a multi-threaded environment, but this can also be achieved with the C API.
I just couldn't compile the C parser with the C++ compiler.
I would be happy if there is a way to add such functionality through some kind of macro.
I wouldn't mind if there was a way to return the yy_scan_string function, I could read the whole file myself and provide just a string.
The simple solution, if you just want to provide a string input, is to make the string into a std::istringstream, which is a valid std::istream. The simplicity of this solution reduces the need for an equivalent to yy_scan_string.
On the other hand, if you have a data source you want to read from which is not derived from std::istream, you can easily create a lexical scanner which does whatever is necessary. Just subclass yyFlexLexer, add whatever private data members you will need and a constructor which initialises them, and override int LexerInput(char* buffer, size_t maxsize); to read at least one and no more than maxsize bytes into buffer, returning the number of characters read. (YY_INPUT also works in the C++ interface, but subclassing is more convenient precisely because it lets you maintain your own reader state.)
Notes:
If you decide to subclass and override LexerInput, you need to be aware that "interactive" mode is actually implemented in LexerInput. So if you want your lexer to have an interactive mode, you'll have to implement it in your override, too. In interactive mode, LexerInput always reads exactly one character (unless, of course, it's at the end of the file).
As you can see in the Flex code repository, a future version of Flex will use refactored versions of these functions, so you might need to be prepared to modify your code in the future, although Flex generally maintains backwards compatibility for a long time.

How to compile c++ code at runtime (like eval in Python)?

I'm compiling some C++ code at runtime, which I'm then calling in a sort of plugin system, see also my other question. What I do is I create the source code, write it to a file, compile that file and write the output to another file. However, this process feels kinda ugly so I was hoping for some input.
//Open a file
std::ofstream fout("SOURCECODEPATH");
//Write actual function to file
fout << "extern \"C\" void testFunc(float testArray[]) {\n"
" testArray[0] = 1.0;\n"
" testArray[1] = 2.0;\n"
" testArray[2] = 3.0;\n"
"}" << std::endl;
//Compile the file, and write the stdout and stderr to PROCESSOUTPUTPATH using "&>"
system("c++ -shared -fPIC -std=c++14 SOURCECODEPATH -o COMPILEDLIBRARYPATH &> PROCESSOUTPUTPATH");
//Read PROCESSOUTPUTPATH (not implemented)
Currently it's creating 3 files, SOURCECODEPATH, COMPILEDLIBRARYPATH, and PROCESSOUTPUTPATH. However, I would much rather not have the SOURCECODEPATH and PROCESSOUTPUTPATH written to the OS, but rather have them used internally. So pipe (?) the sourcecode to the process and get back the output (preferable split into stderr and stdout). What would be the easiest way to do this?
Please reconsider what you're doing. C++ and Python are very different languages in very many ways, not least in their build and execution models. It seems very unlikely that runtime compilation is the real solution to your underlying problem (which you have not shared with us). Simply put, C++ was not designed to support this, Python was.
Technically, there are a few solutions for runtime compilation of C++, but they require much more management and effort than eval in Python. However, they are pretty specialised and, again, unlikely to be a good solution to your underlying problem.

How to find a pointer to a function by string

I have a list of functions in a text file that I'd like to expose to LLVM for its execution engine at run time, I'm wondering if its possible to find pointers to the functions at runtime rather than hard code in all the GlobalMappings by hand as I'd probably like to add in more later. For example:
// File: InternalFunctions.txt
PushScreen
PopScreen
TopScreen
// File: ExposeEngine.cpp
// Somehow figure out the address of the function specified in a string
void* addy = magicAddress("PushScreen");
jit->addGlobalMapping(llvmfunction, addy);
If this is possible I love to know how to do it, as I am trying to write my game engine by jit-ing c++. I was able to create some results earlier, but I had to hard-code in the mappings. I noticed that Gtk uses something along the lines of what I'm asking. When you use glade and provide a signal handler, the program you build in c will automatically find the function in your executable referenced by the string provided in the glade file. If getting results requires me to look into this Gtk thing I'd be more than happy to, but I don't know what feature or part of the api deals with that - I've already tried to look it up. I'd love to hear suggestions or advice.
Yes, you can do this. Look at the man pages for dlopen() and dlsym(): these functions are standard on *nix systems and let you look up symbols (functions or variables) by name. There is one significant issue, which is that C++ function names are usually "mangled" to encode type information. A typical way around this is to define a set of wrapper functions in an extern "C" {} block: these will be non-member, C-style functions which can then call into your C++ code. Their names will not be mangled, making them easy to look up using dlsym().
This is a pretty standard way that some plugin architectures work. Or at least used to work, before everyone started using interpreted languages!

let the user use a function in c++ [duplicate]

This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
Dynamic source code in C++
is it possible to let the user type in a function and then run that function without using a lot of if's or a huge switch?
It is not possible to execute arbitrary c++ code in your program, since you than need a c++ compiler inside your program. But you could try to embed Python to your program. Boost python makes this relatively easy. The user can than write a python function that is executed and can interact with the classes and functions of your program. You need to make your functions explicitely visible to python.
What ever a user types in will be text, or a string. The only way I know to have it get mapped to a function is to use if/else or switch statements. That or the cringe inducing option of mapping each of your functions to a UI widget.
The end of the story, is it's your code. You have to write, and live with it. Just be careful, your program may be wildly successful, and you may not write code anymore, and then someone else will have to maintain your code. So be nice to the maintenance programmer who may follow you, and write code that isn't too tricky to figure out.
I assume you want something like eval from php.
You can try to play with command design pattern, but I doubt it will be an easy task. Basically you need to write simple C++ interpreter.
What type of function do you mean? A C++ function? If so, then you will have to either (1)interpret it or (2)compile and execute it. Interpretation would be the more likely choice here. I'm not sure if there are libraries out there already to do this but I'd assume there are.
If you don't like mega-if's or huge switches, you may be SoL on any solution for anything ever, but then again there is seldom one perfect way to do things. Consider looking in to various logic structures and algorithms to see how to do something that would normally be the job of a 23-case switch could be done another way. Like I said initially, however, sometimes you really do just need a million nested if's to do what you want to.
No, in C++ this is not possible. C++ is a compiled language. When the program runs, the compiler doesn't need to be accessible, or even installed on the machine that runs the program.
If you want to do this in C++, you need to write your own interpreter that parses whatever the user enters.
Here is my best idea, but it is a tad memory intensive.
First, create a class, lets call it MyFuncPtr to store a union of several different types of pointers to functions and an integer to tell which type it is. Overload the () operator to call the function stored with a variable length argument list. Make sure to include some sort of run-time argument checking.
Finally create a map of strings to MyFuncPtrs. Store your functions in this map along with their names. Then all you need to do is feed the name into the [] command to get a function that can be easily called. Templates could probably be used to aid in the making of MyFuncPtr instances.
This would be the easiest if it were plain C functions and no name mangling is performed on the symbols (use extern "C" { ... })
With some platform-specific code you can get the address of a function by its name. Then you cast the address as a function pointer which you can use to call the function.
On windows you must be using GetProcAddress and dlsym on Posix compliant platforms.

Why is the C++ syntax so complicated? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 13 years ago.
I'm a novice at programming although I've been teaching myself Python for about a year and I studied C# some time ago.
This month I started C++ programming courses at my university and I just have to ask; "why is the C++ code so complicated?"
Writing "Hello world." in Python is as simple as "print 'Hello world.'" but in C++ it's:
# include <iostream>
using namespace std;
int main ()
{
cout << "Hello world.";
return 0;
}
I know there is probably a good reason for all of this but, why...
... do you have to include the <iostream> everytime? Do you ever not need it?
... same question for the standard library, when do you not need std::*?
... is the "main" part a function? Do you ever call the main function? Why is it an integer? Why does C++ need to have a main function but Python doesn't?
... do you need "std::cout << "? Isn't that needlessly long and complicated compared to Python?
... do you need to return 0 even when you are never going to use it?
This is probably because I'm learning such basic C++ but every program I've made so far looks like this, so I have to retype the same code over and over again. Isn't that redundant? Couldn't the compiler just input this code itself, since it's always the same (i.e. afaik you always include <iostream>, std, int main, return 0)
C++ is a more low-level language that executes without the context of an interpreter. As such, it has many different design choices than does Python, because C++ has no environment which it can rely on to manage information like types and memory. C++ can be used to write an operating system kernel where there is no code running on the machine except for the program itself, which means that the language (some library facilities are not available for so-called freestanding implementations) must be self-contained. This is why C++ has no equivalent to Python's eval, nor a means of determining members, etc. of a class, nor other features that require an execution environment (or a massive overhead in the program itself instead of such an environment)
For your individual questions:
do you have to include the <iostream> everytime? Do you ever not need it?
#include <iostream> is the directive that imports the <iostream> header into your program. <iostream> contains the standard input/output objects - in particular, cout. If you aren't using standard I/O objects (for instance, you use only file I/O, or your program uses a GUI library, or are writing an operating system kernel), you do not need <iostream>
same question for the standard library, when do you not need std::*?
std is the namespace containing all of the standard library. using namespace std; is sort of like from std import *, whereas a #include directive is (in this regard) more like a barebones import std statement. (in actual fact, the mechanism is rather different, because C++ does not use using namespace std; to automatically lookup objects in std; the using-directive only imports the names into the global namespace.)
I'll note here that using-directives (using namespace) are frequently frowned upon in C++ code, as they import a lot of names and can cause name clashes. using-declarations (using std::cout;) are preferred when possible, as is limiting the scope of a using-directive (for instance, to one function or to one source file). Don't ever put using namespace in a header without good reason.
is the "main" part a function? Do you ever call the main function? Why is it an integer? Why does C++ need to have a main function but Python doesn't?
main is the entry point to the program - where execution starts. In Python, the __main__ module serves the same purpose. C++ does not execute code outside a defined function like Python does, so its entry point is a function rather than a module.
do you need "std::cout << "? Isn't that needlessly long and complicated compared to Python?
std::cout is only needed if you don't import the cout name into the global namespace, either by a using-directive (using namespace std;) or by a using-declaration (using std::cout). In this regard, it is once again much like the distinction between Python's import std and from std import * or from std import cout.
The << is an overloaded operator for standard stream objects. cout << value calls cout's function to output value. Python needs no such extra code because print is built into the language; this does not make sense for C++, where there may not even be an operating system, much less an I/O library.
do you need to return 0 even when you are never going to use it?
No. main (and no other function) has an implicit return 0; at the end. The return value of main (or, if the exit function is called, the value passed to it) is passed back to the operating system as the exit code. 0 indicates the program successfully executed - that it encountered no errors, etc. If an error is encountered, a non-zero value should be returned (or passed to exit).
In response to your questions at the end of the post, it can be summed up with the philosophy of C++:
You don't pay for what you don't use.
You don't always need to use stdin or stdout (Windows/GUI apps?), nor will you always be using the STL, nor will everything you write necessarily use the standard main (winAPI) etc. As a previous poster said, C++ is lower level than Python. You will be exposed to more of the details, which offers you more control over what you're doing.
... do you have to include the
everytime? Do you ever not
need it?
You don't need it if you're not going to use iostreams in that module. In larger programs, few modules do any actual IO directly, and so few actually need to use iostreams.
Turning the question around: in python you need to import sys and/or os in most non-trivial programs. Why?
... same question for the standard
library, when do you not need std::*?
You can have the using line or you can use the std:: prefix. This is very similar to the choice python gives you of either saying "from sys import *" or "import sys" and then having to prefix things with "sys.". In python you have to say "sys.stdout". Is "std::cout" really any worse?
... is the "main" part a function? Do
you ever call the main function? Why
is it an integer? Why does C++ need to
have a main function but Python
doesn't?
Yes, main is a function. Typically you wouldn't call main yourself. The name "main" is reserved for the entry-point of your program. It returns an integer because the value returned is used as the status code of your program. In Python you can use sys.exit if you want to return a non-zero status code.
Python doesn't have the same convention because with Python you can have code in a module not in a function. This code is executed when you load the module. Interestingly, many people feel it is bad style to have code at the top-level of a module and will instead create a main function by doing something like this:
def main(argv):
# program goes here
return 0
if __name__ == '__main__':
sys.exit(main(sys.argv))
Also, in Python you tell the interpreter with module is the "main" module when you run it. eg: "python foo.py". In C, the "main" module is (effectively) the one with a function called main. (If there are multiple modules with a main function, it's a linker error.)
... do you need "std::cout << "? Isn't
that needlessly long and complicated
compared to Python?
The equivalent in Python is actually "sys.stdout.write(...)". Python's print statement is a special-case short-hand.
That said, many people do feel the iostreams convention of using bit-shifting operators for IO was a bad idea. Ironically, Python seems to have been "inspired" by this syntax. If you want to use print to write to somewhere other than stdout you can say:
print >>file, "Hello"
... do you need to return 0 even when
you are never going to use it?
You aren't going to use it, but your program will. As mentioned earlier, the value you return is the status code of your program.
Aside: I actually do feel that C++ is overcomplicated, but not because of any of the points you mention. All of the differences you mention go away (in the sense that you need just as much complexity in Python) once you start writing non-trivial programs that have multiple modules and do more than just writing to stdout.
You include <iostream> when you want to output things to the console. Since printing "Hello world" involves console output, you need iostream.
The main function is called by the operating system, basically. It gets called with the command-line arguments passed to the program. It returns an integer because the program must return an error code to the operating system (this is the standard way for determining if the last command was successful).
You can always use printf("hello world"); instead of std::cout << "hello world"; if you want to go C style. It's a bit quicker to write and lets you do formatted output.
You return 0 from main to indicate that the program executed successfully.
The compiler does not automatically include all the standard libraries and use namespace std because sometimes name collisions can result between your code and library code that you may not actually need at all. You don't always need all the libraries. Likewise, sometimes you are using a different main routine (Windows development comes to mind with its own, different WinMain starting function). The compiler also does not automatically return 0 because sometimes the program needs to indicate that it completed unsuccessfully.
There are good reasons for all these things. C++ is a very broad language it is used for everything from small embedded systems to giant applications built by 100s of programmers. The use case of a guy building a small program to run on a desktop is by no means the only one. So sometimes you are building library components. In that case no main(). Sometimes you are working on a tiny system with no standard library. In that case no std. Sometimes you want to build a Unix tool that works with other Unix text tools and signals its completion status with an int returned from main().
In other words the things you complain about are boilerplate to you. But they are vital details that vary to other users of the language.
This reminds me of The Evolution of a Programmer. Some of the languages and technologies demonstrated are a bit dated now, but you should get the general idea. :)
One of the reasons C++ is rather complicated is because it was designed to address problems that crop up in large programs. At the time C++ was created as AT&T, their biggest C program was about 10 million lines of code. At that scale, C doesn't function very well. C++ addresses many of the problems you get with that kind of program.
With that said, it's also possible to answer the original questions:
You would include <iostream> where it's needed. If you've got 10.000 C++ files, it's quite common that less than 1000, sometimes less than 100 will produce user-visible output.
A statement like print "Hello, world" assumes that there is a default output, but makes it hard to generalize. The cout << "Hello, world" form makes it explicit where the output goes, but the same form also allows cerr << "Goodbye, world" and MyTmpFile << "Starting phase #" << i
The standard library is in the std:: namespace. My 10.000 files will be in an additional 25 namespaces.
main is an oddity in many ways, being the startup function.
Baldur:
You don't always need <iostream>. The only things that you will always need are:
A main function (or a WinMain, if you're writing Win32 apps).
Variables, functions, operators, language constructs (if, while, etc.).
The ability to include functionality from libraries into your program.
Everything else is application-specific.
As other posters say, the return value of the main function is an error code1. If main returns 0, be happy: everything worked OK!
1This is useful when you write programs that "communicate" with other programs. The most simple way that a program can "tell" another whether it executed properly is using an error code.
As people have said, the simple answer is that they're different languages, with different goals. To answer your specific questions...
... do you have to include the <iostream> everytime? Do you ever not need it?
<iostream> is one of the header files for iostreams, the part of the C++ standard library responsible for input/output; in this instance, you need it to gain access to std::cout. If you're not doing I/O operations in a source file, you don't need to include it -- for example, most files containing class definitions probably won't need <iostream>.
... same question for the standard library, when do you not need std::*?
std is the name of namespace containing classes in the standard library; it's there to avoid name collisions. Python has packages and modules to do this.
You can use the using statement to bring items from another namespace into your current scope, see this FAQ entry for an example (and an explanation of why it's bad to blindly bring all of std into scope!).
... why is the "main" part a function? Do you ever call the main function? Why is it an integer? Why does C++ need to have a main function but Python doesn't?
Executable statements in C++ have to be contained within a function, and the main function is defined as where execution begins. In Python, executable statements can be placed at the top-level of a file, and execution is defined to .
You can call main() if you wish -- it's just a function, after all -- but there's not often a reason to do this. Behind the scenes, most implementations of C++ call main() for you once some startup housekeeping has been done by the runtime library.
The return value of main() is returned back to the operating system. This stems from C and UNIX, in which application programs are required to provide a 1-byte exit status code, and returning that value from main() is a clear way of expressing this.
... why do you need "std::cout << "? Isn't that needlessly long and complicated compared to Python?
This is just a design difference. iostreams is a fairly complex beast with lots of features, and one of the side-effects of this is that the syntax is a bit ugly for simple tasks at times.
... why do you need to return 0 even when you are never going to use it?
You do use it; this is the value returned to the operating system as the exit status of the program.
Python is high-level language. C++ is middle-level language.