Why is the C++ syntax so complicated? [closed] - c++

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 13 years ago.
I'm a novice at programming although I've been teaching myself Python for about a year and I studied C# some time ago.
This month I started C++ programming courses at my university and I just have to ask; "why is the C++ code so complicated?"
Writing "Hello world." in Python is as simple as "print 'Hello world.'" but in C++ it's:
# include <iostream>
using namespace std;
int main ()
{
cout << "Hello world.";
return 0;
}
I know there is probably a good reason for all of this but, why...
... do you have to include the <iostream> everytime? Do you ever not need it?
... same question for the standard library, when do you not need std::*?
... is the "main" part a function? Do you ever call the main function? Why is it an integer? Why does C++ need to have a main function but Python doesn't?
... do you need "std::cout << "? Isn't that needlessly long and complicated compared to Python?
... do you need to return 0 even when you are never going to use it?
This is probably because I'm learning such basic C++ but every program I've made so far looks like this, so I have to retype the same code over and over again. Isn't that redundant? Couldn't the compiler just input this code itself, since it's always the same (i.e. afaik you always include <iostream>, std, int main, return 0)

C++ is a more low-level language that executes without the context of an interpreter. As such, it has many different design choices than does Python, because C++ has no environment which it can rely on to manage information like types and memory. C++ can be used to write an operating system kernel where there is no code running on the machine except for the program itself, which means that the language (some library facilities are not available for so-called freestanding implementations) must be self-contained. This is why C++ has no equivalent to Python's eval, nor a means of determining members, etc. of a class, nor other features that require an execution environment (or a massive overhead in the program itself instead of such an environment)
For your individual questions:
do you have to include the <iostream> everytime? Do you ever not need it?
#include <iostream> is the directive that imports the <iostream> header into your program. <iostream> contains the standard input/output objects - in particular, cout. If you aren't using standard I/O objects (for instance, you use only file I/O, or your program uses a GUI library, or are writing an operating system kernel), you do not need <iostream>
same question for the standard library, when do you not need std::*?
std is the namespace containing all of the standard library. using namespace std; is sort of like from std import *, whereas a #include directive is (in this regard) more like a barebones import std statement. (in actual fact, the mechanism is rather different, because C++ does not use using namespace std; to automatically lookup objects in std; the using-directive only imports the names into the global namespace.)
I'll note here that using-directives (using namespace) are frequently frowned upon in C++ code, as they import a lot of names and can cause name clashes. using-declarations (using std::cout;) are preferred when possible, as is limiting the scope of a using-directive (for instance, to one function or to one source file). Don't ever put using namespace in a header without good reason.
is the "main" part a function? Do you ever call the main function? Why is it an integer? Why does C++ need to have a main function but Python doesn't?
main is the entry point to the program - where execution starts. In Python, the __main__ module serves the same purpose. C++ does not execute code outside a defined function like Python does, so its entry point is a function rather than a module.
do you need "std::cout << "? Isn't that needlessly long and complicated compared to Python?
std::cout is only needed if you don't import the cout name into the global namespace, either by a using-directive (using namespace std;) or by a using-declaration (using std::cout). In this regard, it is once again much like the distinction between Python's import std and from std import * or from std import cout.
The << is an overloaded operator for standard stream objects. cout << value calls cout's function to output value. Python needs no such extra code because print is built into the language; this does not make sense for C++, where there may not even be an operating system, much less an I/O library.
do you need to return 0 even when you are never going to use it?
No. main (and no other function) has an implicit return 0; at the end. The return value of main (or, if the exit function is called, the value passed to it) is passed back to the operating system as the exit code. 0 indicates the program successfully executed - that it encountered no errors, etc. If an error is encountered, a non-zero value should be returned (or passed to exit).

In response to your questions at the end of the post, it can be summed up with the philosophy of C++:
You don't pay for what you don't use.
You don't always need to use stdin or stdout (Windows/GUI apps?), nor will you always be using the STL, nor will everything you write necessarily use the standard main (winAPI) etc. As a previous poster said, C++ is lower level than Python. You will be exposed to more of the details, which offers you more control over what you're doing.

... do you have to include the
everytime? Do you ever not
need it?
You don't need it if you're not going to use iostreams in that module. In larger programs, few modules do any actual IO directly, and so few actually need to use iostreams.
Turning the question around: in python you need to import sys and/or os in most non-trivial programs. Why?
... same question for the standard
library, when do you not need std::*?
You can have the using line or you can use the std:: prefix. This is very similar to the choice python gives you of either saying "from sys import *" or "import sys" and then having to prefix things with "sys.". In python you have to say "sys.stdout". Is "std::cout" really any worse?
... is the "main" part a function? Do
you ever call the main function? Why
is it an integer? Why does C++ need to
have a main function but Python
doesn't?
Yes, main is a function. Typically you wouldn't call main yourself. The name "main" is reserved for the entry-point of your program. It returns an integer because the value returned is used as the status code of your program. In Python you can use sys.exit if you want to return a non-zero status code.
Python doesn't have the same convention because with Python you can have code in a module not in a function. This code is executed when you load the module. Interestingly, many people feel it is bad style to have code at the top-level of a module and will instead create a main function by doing something like this:
def main(argv):
# program goes here
return 0
if __name__ == '__main__':
sys.exit(main(sys.argv))
Also, in Python you tell the interpreter with module is the "main" module when you run it. eg: "python foo.py". In C, the "main" module is (effectively) the one with a function called main. (If there are multiple modules with a main function, it's a linker error.)
... do you need "std::cout << "? Isn't
that needlessly long and complicated
compared to Python?
The equivalent in Python is actually "sys.stdout.write(...)". Python's print statement is a special-case short-hand.
That said, many people do feel the iostreams convention of using bit-shifting operators for IO was a bad idea. Ironically, Python seems to have been "inspired" by this syntax. If you want to use print to write to somewhere other than stdout you can say:
print >>file, "Hello"
... do you need to return 0 even when
you are never going to use it?
You aren't going to use it, but your program will. As mentioned earlier, the value you return is the status code of your program.
Aside: I actually do feel that C++ is overcomplicated, but not because of any of the points you mention. All of the differences you mention go away (in the sense that you need just as much complexity in Python) once you start writing non-trivial programs that have multiple modules and do more than just writing to stdout.

You include <iostream> when you want to output things to the console. Since printing "Hello world" involves console output, you need iostream.
The main function is called by the operating system, basically. It gets called with the command-line arguments passed to the program. It returns an integer because the program must return an error code to the operating system (this is the standard way for determining if the last command was successful).
You can always use printf("hello world"); instead of std::cout << "hello world"; if you want to go C style. It's a bit quicker to write and lets you do formatted output.
You return 0 from main to indicate that the program executed successfully.
The compiler does not automatically include all the standard libraries and use namespace std because sometimes name collisions can result between your code and library code that you may not actually need at all. You don't always need all the libraries. Likewise, sometimes you are using a different main routine (Windows development comes to mind with its own, different WinMain starting function). The compiler also does not automatically return 0 because sometimes the program needs to indicate that it completed unsuccessfully.

There are good reasons for all these things. C++ is a very broad language it is used for everything from small embedded systems to giant applications built by 100s of programmers. The use case of a guy building a small program to run on a desktop is by no means the only one. So sometimes you are building library components. In that case no main(). Sometimes you are working on a tiny system with no standard library. In that case no std. Sometimes you want to build a Unix tool that works with other Unix text tools and signals its completion status with an int returned from main().
In other words the things you complain about are boilerplate to you. But they are vital details that vary to other users of the language.

This reminds me of The Evolution of a Programmer. Some of the languages and technologies demonstrated are a bit dated now, but you should get the general idea. :)

One of the reasons C++ is rather complicated is because it was designed to address problems that crop up in large programs. At the time C++ was created as AT&T, their biggest C program was about 10 million lines of code. At that scale, C doesn't function very well. C++ addresses many of the problems you get with that kind of program.
With that said, it's also possible to answer the original questions:
You would include <iostream> where it's needed. If you've got 10.000 C++ files, it's quite common that less than 1000, sometimes less than 100 will produce user-visible output.
A statement like print "Hello, world" assumes that there is a default output, but makes it hard to generalize. The cout << "Hello, world" form makes it explicit where the output goes, but the same form also allows cerr << "Goodbye, world" and MyTmpFile << "Starting phase #" << i
The standard library is in the std:: namespace. My 10.000 files will be in an additional 25 namespaces.
main is an oddity in many ways, being the startup function.

Baldur:
You don't always need <iostream>. The only things that you will always need are:
A main function (or a WinMain, if you're writing Win32 apps).
Variables, functions, operators, language constructs (if, while, etc.).
The ability to include functionality from libraries into your program.
Everything else is application-specific.
As other posters say, the return value of the main function is an error code1. If main returns 0, be happy: everything worked OK!
1This is useful when you write programs that "communicate" with other programs. The most simple way that a program can "tell" another whether it executed properly is using an error code.

As people have said, the simple answer is that they're different languages, with different goals. To answer your specific questions...
... do you have to include the <iostream> everytime? Do you ever not need it?
<iostream> is one of the header files for iostreams, the part of the C++ standard library responsible for input/output; in this instance, you need it to gain access to std::cout. If you're not doing I/O operations in a source file, you don't need to include it -- for example, most files containing class definitions probably won't need <iostream>.
... same question for the standard library, when do you not need std::*?
std is the name of namespace containing classes in the standard library; it's there to avoid name collisions. Python has packages and modules to do this.
You can use the using statement to bring items from another namespace into your current scope, see this FAQ entry for an example (and an explanation of why it's bad to blindly bring all of std into scope!).
... why is the "main" part a function? Do you ever call the main function? Why is it an integer? Why does C++ need to have a main function but Python doesn't?
Executable statements in C++ have to be contained within a function, and the main function is defined as where execution begins. In Python, executable statements can be placed at the top-level of a file, and execution is defined to .
You can call main() if you wish -- it's just a function, after all -- but there's not often a reason to do this. Behind the scenes, most implementations of C++ call main() for you once some startup housekeeping has been done by the runtime library.
The return value of main() is returned back to the operating system. This stems from C and UNIX, in which application programs are required to provide a 1-byte exit status code, and returning that value from main() is a clear way of expressing this.
... why do you need "std::cout << "? Isn't that needlessly long and complicated compared to Python?
This is just a design difference. iostreams is a fairly complex beast with lots of features, and one of the side-effects of this is that the syntax is a bit ugly for simple tasks at times.
... why do you need to return 0 even when you are never going to use it?
You do use it; this is the value returned to the operating system as the exit status of the program.

Python is high-level language. C++ is middle-level language.

Related

how to share a lib between process and called script subprocess using SWIG?

I have a C++ program foobar which starts with main() and then the flow of control goes through a first part, then the second part of the program. If I change main to foobar_main, I can then compile the whole program and a SWIG Python wrapper to a shared library foobar.so, and import this to Python, call foobar_main from within Python and everything works fine.
The second part communicates with the first one by some respectable C++ constructs. Specifically: the first part creates some single objects of some classes, and the second part uses class static methods to get those objects.
Now I want to run only the first part from main() and the second part from Python. That is, I want to start the C++ program foobar and then after the first part is finished, run a Python script (programmatically from within C++) that continues with the second part.
To do this, I:
compile the second part and a SWIG wrapper to foobar2.so
replace the second part of C++ code with system("python foobar2.py")
compile the modified C++ program to foobar1.so and load to foobar
write the script foobar2.py which imports foobar1 and foobar2 and then equivalent to the second part
Then I attempt to run foobar. It does not work, because it appears, that the routines in the second part complain that certain steps which should have been done in the first part, are not done.
This is embarasing but obviously I have some deep flaws here in my understanding of how computers work :) Can somebody clue me in what I am missing, including possibly simplifying the above process?
I'm going to assume your C++ code looks like this:
void part1()
{}
void part2()
{}
int main()
{
part1();
part2();
}
And that you have a Python version of part2() that is implemented with some other wrapped C++ functions. If these assumptions are wrong let me know.
I think the easiest way to go is to wrap part1() along with the other wrapped part2-related functions, then have a Python script like this:
import foobar
foobar.part1()
py_part2()
This of course means that the program starts in Python. If you need to start a C++ program for some reason (i.e. you need main()) then in order to use py_part2() you'll have to embed the Python interpreter inside your C++ program. This is a much more difficult and involved process, this answer has good info about how to get started.
Since you're learning I'll explain why system("python foobar2.py") doesn't work. In this scheme you have your C++ program start another process (program), named python, and then wait for it to finish. These are two completely different programs that in your case don't talk to each other and don't share anything in common. Hence why it doesn't work.
In general, reconsider anything that involves system. Its primary use seems to be to point out beginner programmers.

How to implement Python function exec() in C++?

The Python function exec() is a very good tool for programming.
For example:
/******************************************************
* we have array names={"ali","hamed"}
* goal is declare string ali="ali" and hamed="hamed"
******************************************************/
Python code:
# used for command
# below line is a syntax python
# in python we dont declare variable
list=["ali","hamed"] #python syntax
#in python we dont wite {
#python work with tab insteed of {}
for i in list:
temp = i + ' = "' + i + '"' #temp is a string
exec(temp)
My question: Is there a similar function exists in C++? If not, how to implement it in C++?
Python's exec, and similar features in other languages (i.e. eval in JavaScript) only work because those are interpreted languages where variables are defined at run time.
You can't do what you're asking in directly C++ because it's a compiled language that requires that all variables and their names are known at compile time.
You can do it, but it's not trivial, and it will only work on
systems where a C++ compiler is installed. Basically, C++ is
compiled, so if you want to execute some string which is C++,
you'll have to compile it: write it to a file (probably with
additional boilerplate like some includes), invoke the compiler
(with system) to build a DLL, and then load the DLL.
In practice, even if you went to all that effort, you'd probably
find it less useful than you think. Because C++ requires static
declarations for just about everything, it's much harder to
write small snippets like that and have them usable. (You
would, for example, have to wrap it in a function, and generate
extern for all of the variables it uses.) C++ doesn't support
this sort of thing for software engineering reasons; the very
features which make languages like Python so flexible for small,
quickly written programs, cause severe maintenance problems when
used in large scale robust software. Different languages are
designed for different purposes. It's very easy to create
a mixed language system using Python for the top level glue
(where you would want a facility such as you describe), and
calling into C++ for the heavy work (where such a facility would
allow the user to trigger core dumps at will).
Alternatively, you can implement a small language in C++. For
keeping user defined variables, for example, use std::map,
rather than declaring the variables. (That is, after all, what
Python does under the hood.)
If you are planning to use strings as parameters,it is NOT a good idea!
you can simply use an id generator function and give an id to every string that you are gonna use ,or if you are using a class you can put that function in the constructor.
no need to that exec() at all!!

directly calling from what user inputs and Is there a concept of generating a function at run time?

Is there a way out to call a function directly from the what the user inputs ?
For example : If the user inputs greet the function named greet is called.
I don't want any cases or comparison for the call to generate.
#include <iostream>
#include<string>
using namespace std;
void nameOfTheFunction(); // prototype
int main() {
string nameOfTheFunction;
getline(cin,nameOfTheFunction); // enter the name of Function
string newString = nameOfTheFunction + "()"; // !!!
cout << newString;
// now call the function nameOfTheFunction
}
void nameOfTheFunction() {
cout << "hello";
}
And is there a concept of generating the function at run time ?
You mean run time function generation ??
NO.
But you can use a map if you already know which all strings a user might give as input (i.e you are limiting the inputs).
For the above you can probably use std::map &lt std::string, boost::function &lt... &gt &gt
Check boost::function HERE
In short, no this isn't possible. Names in C++ get turned into memory offsets (addresses), and then the names are discarded**. At runtime C++ has no knowledge of the function or method names it's actually running.
** If debug symbols are compiled in, then the symbols are there, but impractical to get access to.
Generating a function at runtime has a lot of drawbacks (if it is possible at all) and there is generally no good reason to do it in a language like C++. You should leave that to scripting languages (like Perl or Python), many offer a eval() function that can interpret a string like script code and execute it.
If you really, really need to do have something like eval() in a compiled language such as C++, you have a few options:
Define your own scripting language and write a parser/interpreter for it (lots of work)
Define a very simple imperative or math language that can be easily parsed and evaluated using well-known design patterns (like Interpreter)
Use an existing scripting language that can be easily integrated into your code through a library (example: Lua)
Stuff the strings of code you want to execute at runtime through an external interpreter or compiler and execute them through the operating system or load them into your program using dlopen/LoadLibrary/etc.
(3.) is probably the easiest and best approach. If you want to keep external dependencies to a minimum or if you need direct access to functionality and state inside your main program, I suggest you should go for (2.) Note that you can have callbacks into your own code in that case, so calling native functions from the script is not a problem. See here for a tutorial
If you can opt for a language like Java or C#, there's also the option to use the compiler built into the runtime itself. Have a look here for how to do this in Java

let the user use a function in c++ [duplicate]

This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
Dynamic source code in C++
is it possible to let the user type in a function and then run that function without using a lot of if's or a huge switch?
It is not possible to execute arbitrary c++ code in your program, since you than need a c++ compiler inside your program. But you could try to embed Python to your program. Boost python makes this relatively easy. The user can than write a python function that is executed and can interact with the classes and functions of your program. You need to make your functions explicitely visible to python.
What ever a user types in will be text, or a string. The only way I know to have it get mapped to a function is to use if/else or switch statements. That or the cringe inducing option of mapping each of your functions to a UI widget.
The end of the story, is it's your code. You have to write, and live with it. Just be careful, your program may be wildly successful, and you may not write code anymore, and then someone else will have to maintain your code. So be nice to the maintenance programmer who may follow you, and write code that isn't too tricky to figure out.
I assume you want something like eval from php.
You can try to play with command design pattern, but I doubt it will be an easy task. Basically you need to write simple C++ interpreter.
What type of function do you mean? A C++ function? If so, then you will have to either (1)interpret it or (2)compile and execute it. Interpretation would be the more likely choice here. I'm not sure if there are libraries out there already to do this but I'd assume there are.
If you don't like mega-if's or huge switches, you may be SoL on any solution for anything ever, but then again there is seldom one perfect way to do things. Consider looking in to various logic structures and algorithms to see how to do something that would normally be the job of a 23-case switch could be done another way. Like I said initially, however, sometimes you really do just need a million nested if's to do what you want to.
No, in C++ this is not possible. C++ is a compiled language. When the program runs, the compiler doesn't need to be accessible, or even installed on the machine that runs the program.
If you want to do this in C++, you need to write your own interpreter that parses whatever the user enters.
Here is my best idea, but it is a tad memory intensive.
First, create a class, lets call it MyFuncPtr to store a union of several different types of pointers to functions and an integer to tell which type it is. Overload the () operator to call the function stored with a variable length argument list. Make sure to include some sort of run-time argument checking.
Finally create a map of strings to MyFuncPtrs. Store your functions in this map along with their names. Then all you need to do is feed the name into the [] command to get a function that can be easily called. Templates could probably be used to aid in the making of MyFuncPtr instances.
This would be the easiest if it were plain C functions and no name mangling is performed on the symbols (use extern "C" { ... })
With some platform-specific code you can get the address of a function by its name. Then you cast the address as a function pointer which you can use to call the function.
On windows you must be using GetProcAddress and dlsym on Posix compliant platforms.

Do you really need a main() in C++?

From what I can tell you can kick off all the action in a constructor when you create a global object. So do you really need a main() function in C++ or is it just legacy?
I can understand that it could be considered bad practice to do so. I'm just asking out of curiosity.
If you want to run your program on a hosted C++ implementation, you need a main function. That's just how things are defined. You can leave it empty if you want of course. On the technical side of things, the linker wants to resolve the main symbol that's used in the runtime library (which has no clue of your special intentions to omit it - it just still emits a call to it). If the Standard specified that main is optional, then of course implementations could come up with solutions, but that would need to happen in a parallel universe.
If you go with the "Execution starts in the constructor of my global object", beware that you set yourself up to many problems related to the order of constructions of namespace scope objects defined in different translation units (So what is the entry point? The answer is: You will have multiple entry points, and what entry point is executed first is unspecified!). In C++03 you aren't even guaranteed that cout is properly constructed (in C++0x you have a guarantee that it is, before any code tries to use it, as long as there is a preceeding include of <iostream>).
You don't have those problems and don't need to work around them (wich can be very tricky) if you properly start executing things in ::main.
As mentioned in the comments, there are however several systems that hide main from the user by having him tell the name of a class which is instantiated within main. This works similar to the following example
class MyApp {
public:
MyApp(std::vector<std::string> const& argv);
int run() {
/* code comes here */
return 0;
};
};
IMPLEMENT_APP(MyApp);
To the user of this system, it's completely hidden that there is a main function, but that macro would actually define such a main function as follows
#define IMPLEMENT_APP(AppClass) \
int main(int argc, char **argv) { \
AppClass m(std::vector<std::string>(argv, argv + argc)); \
return m.run(); \
}
This doesn't have the problem of unspecified order of construction mentioned above. The benefit of them is that they work with different forms of higher level entry points. For example, Windows GUI programs start up in a WinMain function - IMPLEMENT_APP could then define such a function instead on that platform.
Yes! You can do away with main.
Disclaimer: You asked if it were possible, not if it should be done. This is a totally un-supported, bad idea. I've done this myself, for reasons that I won't get into, but I am not recommending it. My purpose wasn't getting rid of main, but it can do that as well.
The basic steps are as follows:
Find crt0.c in your compiler's CRT source directory.
Add crt0.c to your project (a copy, not the original).
Find and remove the call to main from crt0.c.
Getting it to compile and link can be difficult; How difficult depends on which compiler and which compiler version.
Added
I just did it with Visual Studio 2008, so here are the exact steps you have to take to get it to work with that compiler.
Create a new C++ Win32 Console Application (click next and check Empty Project).
Add new item.. C++ File, but name it crt0.c (not .cpp).
Copy contents of C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\crt\src\crt0.c and paste into crt0.c.
Find mainret = _tmain(__argc, _targv, _tenviron); and comment it out.
Right-click on crt0.c and select Properties.
Set C/C++ -> General -> Additional Include Directories = "C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\crt\src".
Set C/C++ -> Preprocessor -> Preprocessor Definitions = _CRTBLD.
Click OK.
Right-click on the project name and select Properties.
Set C/C++ -> Code Generation -> Runtime Library = Multi-threaded Debug (/MTd) (*).
Click OK.
Add new item.. C++ File, name it whatever (app.cpp for this example).
Paste the code below into app.cpp and run it.
(*) You can't use the runtime DLL, you have to statically link to the runtime library.
#include <iostream>
class App
{
public: App()
{
std::cout << "Hello, World! I have no main!" << std::endl;
}
};
static App theApp;
Added
I removed the superflous exit call and the blurb about lifetime as I think we're all capable of understanding the consequences of removing main.
Ultra Necro
I just came across this answer and read both it and John Dibling's objections below. It was apparent that I didn't explain what the above procedure does and why that does indeed remove main from the program entirely.
John asserts that "there is always a main" in the CRT. Those words are not strictly correct, but the spirit of the statement is. Main is not a function provided by the CRT, you must add it yourself. The call to that function is in the CRT provided entry point function.
The entry point of every C/C++ program is a function in a module named 'crt0'. I'm not sure if this is a convention or part of the language specification, but every C/C++ compiler I've come across (which is a lot) uses it. This function basically does three things:
Initialize the CRT
Call main
Tear down
In the example above, the call is _tmain but that is some macro magic to allow for the various forms that 'main' can have, some of which are VS specific in this case.
What the above procedure does is it removes the module 'crt0' from the CRT and replaces it with a new one. This is why you can't use the Runtime DLL, there is already a function in that DLL with the same entry point name as the one we are adding (2). When you statically link, the CRT is a collection of .lib files, and the linker allows you to override .lib modules entirely. In this case a module with only one function.
Our new program contains the stock CRT, minus its CRT0 module, but with a CRT0 module of our own creation. In there we remove the call to main. So there is no main anywhere!
(2) You might think you could use the runtime DLL by renaming the entry point function in your crt0.c file, and changing the entry point in the linker settings. However, the compiler is unaware of the entry point change and the DLL contains an external reference to a 'main' function which you're not providing, so it would not compile.
Generally speaking, an application needs an entry point, and main is that entry point. The fact that initialization of globals might happen before main is pretty much irrelevant. If you're writing a console or GUI app you have to have a main for it to link, and it's only good practice to have that routine be responsible for the main execution of the app rather than use other features for bizarre unintended purposes.
Well, from the perspective of the C++ standard, yes, it's still required. But I suspect your question is of a different nature than that.
I think doing it the way you're thinking about would cause too many problems though.
For example, in many environments the return value from main is given as the status result from running the program as a whole. And that would be really hard to replicate from a constructor. Some bit of code could still call exit of course, but that seems like using a goto and would skip destruction of anything on the stack. You could try to fix things up by having a special exception you threw instead in order to generate an exit code other than 0.
But then you still run into the problem of the order of execution of global constructors not being defined. That means that in any particular constructor for a global object you won't be able to make any assumptions about whether or not any other global object yet exists.
You could try to solve the constructor order problem by just saying each constructor gets its own thread, and if you want to access any other global objects you have to wait on a condition variable until they say they're constructed. That's just asking for deadlocks though, and those deadlocks would be really hard to debug. You'd also have the issue of which thread exiting with the special 'return value from the program' exception would constitute the real return value of the program as a whole.
I think those two issues are killers if you want to get rid of main.
And I can't think of a language that doesn't have some basic equivalent to main. In Java, for example, there is an externally supplied class name who's main static function is called. In Python, there's the __main__ module. In perl there's the script you specify on the command line.
If you have more than one global object being constructed, there is no guarantee as to which constructor will run first.
If you are building static or dynamic library code then you don't need to define main yourself, but you will still wind up running in some program that has it.
If you are coding for windows, do not do this.
Running your app entirely from within the constructor of a global object may work just fine for quite awhile, but sooner or later you will make a call to the wrong function and end up with a program that terminates without warning.
Global object constructors run during the startup of the C runtime.
The C runtime startup code runs during the DLLMain of the C runtime DLL
During DLLMain, you are holding the DLL loader lock.
Tring to load another DLL while already holding the DLL loader lock results in a swift death for your process.
Compiling your entire app into a single executable won't save you - many Win32 calls have the potential to quietly load system DLLs.
There are implementations where global objects are not possible, or where non-trivial constructors are not possible for such objects (especially in the mobile and embedded realms).