C++ standard on export of Templates, can any one explain it? - c++

A namespace-scope declaration or definition of a non-inline function template, a
non-inline member function template, a non-inline member function of a class
template or a static data member of a class template may be preceded by the export
keyword. If such a template is defined in the same translation unit in which it is
declared as exported, the definition is considered to be exported. The first
declaration of the template containing the export keyword must not follow the
definition.
What is actually meant in the above statement?
Please any one expalin with program?

This complex paragraph means that if you declare a templated class as exported before defining it, and then in the same translation unit (effectively, file after preprocessing) you actually define the class, the class definition is exported. But if you define the class and then have a prototype with the "export" keyword, it's not.
There, that's English, right?

The export keyword is meant to enable templates being declared in header files, but defined in implementation files - the way it is usually done with any other function.
Unfortunately, compiler manufacturers have more or less ignored the export keyword for the last decade. GCC maintainers and Microsoft will tell you there is not enough "demand" for that feature (how surprising - next-to-no-one supports it, so no-one knows about it, as your question aptly proves). They'll also tell you that it is too difficult to implement effectively.
(Background: That's what the EDG people said in the C++ committee meetings, but the others insisted on adding it to the standard. In the end, the EDG people were the first and, sadly, the only ones to this day who actually implemented this feature in their compiler frontend, as far as I know.)
So, for all practical purposes, you can ignore the above statement. Templates have to be defined in header files, and cannot be "declared" at all, because all compiler frontends except the EDG one are not standard compliant in this regard.

Related

Should I use static or inline?

I am writing a header-only library, and I can’t make up my mind between declaring the functions I provide to the user static or inline. Is there any reason why I should prefer one to the other in that case?
They both provide different functionalities.
There are two implications of using the inline keyword(§ 7.1.3/4):
It hints the compiler that substitution of function body at the point of call is preferable over the usual function call mechanism.
Even if the inline substitution is omitted, the other rules(especially w.r.t One Definition Rule) for inline are followed.
The static keyword on the function forces the inline function to have an internal linkage(inline functions have external linkage) Each instance of such a function is treated as a separate function(address of each function is different) and each instance of these functions have their own copies of static local variables & string literals(an inline function has only one copy of these)
Note: this answer is for C++. For C, see caf's answer. The two languages differ.
static has two relevant meanings:
For a function at namespace scope, static gives the function internal linkage, which in practical terms means that the name is not visible to the linker. static can also be used this way for data, but for data this usage was deprecated in C++03 (§D.2 in C++03 Annex D, normative). Still, constants have internal linkage by default (it's not a good idea to make that explicit, since the usage for data is deprecated).
For a function in a class, static removes the implicit this argument, so that the function can be called without an object of the class.
In a header one would usually not use internal linkage for functions, because one doesn't want a function to be duplicated in every compilation unit where the header is included.
A common convention is to instead use a nested namespace called detail, when one needs classes or functions that are not part of the public module interface, and wants to reduce the pollution the ordinary namespace (i.e., reduce the potential for name conflict). This convention is used by the Boost library. In the same way as with include guard symbols this convention signifies a lack of module support in current C++, where one is essentially reduced to simulating some crucial language features via conventions.
The word inline also has two relevant meanings:
For a function at namespace scope it tells the compiler that the definition of the function is intentionally provided in every compilation unit where it’s used. In practical terms this makes the linker ignore multiple definitions of the function, and makes it possible to define non-template functions in header files. There is no corresponding language feature for data, although templates can be used to simulate the inline effect for data.
It also, unfortunately, gives the compiler a strong hint that calls to the function should preferably be expanded “inline” in the machine code.
The first meaning is the only guaranteed meaning of inline.
In general, apply inline to every function definition in a header file. There is one exception, namely a function defined directly in a class definition. Such a function is automatically declared inline (i.e., you avoid linker protests without explicitly adding the word inline, so that one practical usage in this context is to apply inline to a function declaration within a class, to tell a reader that a definition of that function follows later in the header file).
So, while it appears that you are a bit confused about the meanings of static and inline – they're not interchangable! – you’re essentially right that static and inline are somehow connected. Moving a (free) function out of a class to namespace scope, you would change static → inline, and moving a function from namespace scope into a class, you would change inline → static. Although it isn’t a common thing to do, I have found it to be not uncommon while refactoring header-only code.
Summing up:
Use inline for every namespace scope function defined in a header. In particular, do use inline for a specialization of a function template, since function templates can only be fully specialized, and the full specialization is an ordinary function. Failure to apply inline to a function template specialization in a header file, will in general cause linking errors.
Use some special nested namespace e.g. called detail to avoid pollution with internal implementation detail names.
Use static for static class members.
Don't use static to make explicit that a constant has internal linkage, because this use of static is deprecated in C++03 (even though apparently the deprecation was removed in C++11).
Keep in mind that while inline can’t be applied to data, it is possible to achieve just about the same (in-practice) effect by using templates. But where you do need some big chunk of shared constant data, implemented in a header, I recommend producing a reference to the data via an inline function. It’s much easier to code up, and much easier to understand for a reader of the code. :-)
static and inline are orthogonal. In otherwords, you can have either or both or none. Each has its own separate uses which determine whether or not to use them.
If that function is not sharing the class state: static. To make a function static can benefit from being called at anywhere.
If the function is relatively small and clear: inline
(This answer is based on the C99 rules; your question is tagged with both C and C++, and the rules in C++ may well be different)
If you declare the function as just inline, then the definition of your function is an inline definition. The compiler is not required to use the inline definition for all calls to the function in the translation unit - it is allowed to assume that there is an external definition of the same function provided in another translation unit, and use that for some or all calls. In the case of a header-only library, there will not be such an external definition, so programs using it may fail at link time with a missing definition.
On the other hand, you may declare the function as both inline and static. In this case, the compiler must use the definition you have provided for all calls to the function in the translation unit, whether it actually inlines them or not. This is appropriate for a header-only library (although the compiler is likely to behave exactly the same for a function declared inline static as for one declared static only, in both cases inlining where it feels it would be beneficial, so in practice there is probably little to be gained over static only).

What are the inlining rules within C++ classes?

From what I read somewhere long time ago, it seems that if you want class member function to be inlined during the compilation phase, the function has to be defined inside class declaration block.
But this has a downside of a detail leak. IMHO, other programmers should only see class interface when opening .h file.
Is the first statement still true in modern C++, was it ever? Is there a way to force inlining for functions that are declared, preferably in another file altogether?
Is it generally better to keep short member functions inside class declaration block, or not?
It seems that if you want class member function to be inlined during the compilation phase, the function has to be defined inside class declaration block.
That is not really true. A function that is defined inside the class definition is implicitly marked as inline. But you don't need to defined the function inside the class for it to be inline, you can explicitly request it:
struct X {
void f();
};
inline void f() {}
The inline keyword on the other hand, does not mean that the function will be inlined, but rather that it can be defined in multiple translation units, that is, if multiple translation units include the same header that contains that definition, the linker will not fail with a multiple definition error.
Now, on actual inlining, the compiler can decide to inline or not any function, regardless of whether the function is declared as inline provided that it sees the definition of that function (the code that it will inline), which is the reason why in general functions that are meant to be inlined should be defined in the header (either inside the class definition or marked inline outside.
Additionally, newer toolchains can perform whole program optimization or other link time optimizations, by which the linker can also decide that a function should be inlined. In this case, the function definition needs not be visible at the call site, so it could be defined inside the .cpp file. But if you really want the function to be inlined it is better not to depend on this feature and just define the function in the header.
Q: Is there a way to force inlining for functions?
A: No
No matter how you designate a function as inline, it is a request that
the compiler is allowed to ignore: it might inline-expand some, all,
or none of the calls to an inline function.
Q: What are the inlining rules within C++ classes?
Inline member functions in C++
As far as Standard C++ is concerned, a inline function must be defined
in every translation unit in which it is used
...
This is different from non-inline functions which must be defined only
once in an entire program (one-definition-rule)...
For member-functions, if you define your function in the class, it is
implicitly inline. And because it appears in the header, the rule that
it has to be defined in every translation unit in which it is used is
automatically satisfied.
Here is a great FAQ (one that's more "practical" than "pedantic"):
http://www.parashift.com/c++-faq-lite/inline-functions.html
Is the first statement still true in modern C++, was it ever?
As David explained, there's the inline keyword as well. It can be ignored, as Paul stated.
Is there a way to force inlining for functions that are declared,
preferably in another file altogether?
Probably by configuring your compiler. It might be doing some inling behind your back anyway. Eg. gcc has -finline-functions etc. that will be switched on for certain optimisation levels
Is it generally better to keep short member functions inside class declaration block, or no?
Up to you. Be aware though that if you have an inline method used lots of times, then you can be increasing the size of your object files, and so potentially bloat the size of what you're building and maybe slow it down.
FWIW I only tend to put implementations in header files out of laziness :)

Class member function declaration doubt

I'm reading a C++ tutorial and I've ran into this sentence:
The only difference between defining a class member function
completely within its class or to include only the prototype and later
its definition, is that in the first case the function will
automatically be considered an inline member function by the compiler,
while in the second it will be a normal (not-inline) class member
function, which in fact supposes no difference in behavior.
I know what an inline function is, my doubt is about which style to choose. Should I define every function inside its class or outside? Perhaps the simplest functions inside and the other outside?
I fear that defining every function inside a class (i.e. having complex inline functions) might mess up the resulting code and introduce debugging problems or weird behaviors during execution. And, finally, there's the "coding style" issue. So,
which approach is better?
Thank you :)
My style: I sometimes will put extremely short (one or two liner) functions in the class itself. Anything longer that I still want as an inlined function go as inline qualified implementations after the class definition, and oftentimes in a separate file that the header #includes at the end of the class definition.
The rationale for putting an inlined function outside the class is that the implementation of some function usually just gets in the way of a human reader's overall understanding of the class. A twenty line function can usually be summarized in a one line comment -- and that comment is all that is needed when you are reading the class definition. If you need more, go to the function definition, or better yet, Read The Fine Documentation. (Expecting someone to Read The F*** Code is a poor substitute for Fine Documentation.)
The best solution is to separate interface and implementation. Interface is your h-file. Put only prototypes there. Implementation goes to cpp-file. This approach has the following advantages:
Compilation goes faster because there is no need to compile function bodies several times.
Header dependency is simpler because there is no need to include all headers to h-file. Some of the headers are needed only in cpp-file and you can use forward declarations in h-file. Also you can avoid circular dependencies.
The last but not the least - it is easier for human beings to understand interface of your class. There is no code mess.
To answer the part of "Which approach is better?" - From C++ FAQ -
There are no simple answers: You have to play with it to see what is best. Do not settle for simplistic answers like, "Never use inline functions" or "Always use inline functions" or "Use inline functions if and only if the function is less than N lines of code." These one-size-fits-all rules may be easy to write down, but they will produce sub-optimal results.
Neither approach is better per se its a matter of preference and style. Personally I always think that defining the functions explicitly in a seperate .inline file is the best way. This way you are very explicit over what you do and you keep the header file clean.
Furthermore if you use a macro such as INLINE which is defined as follows:
#ifdef DEBUG
#define INLINE
#else
#define INLINE inline
#endif
You can then include the inline file from the header in release and from the CPP in debug. This means that even if the compiler inlines functions in debug you won't have any difficulties when debugging. Admittedly, though, this isn't such a problem for compilers these days so you may want to skip doing this unless using an old compiler.
Generally speaking, a member function which has only one or two statements is probably best with its body written in the class declaration—especially if there are many of them. A member function with more than 20-50 statements is probably best not in the class declaration. For lengths and complexities between, it depends on many factors.
For example, having the function body in a class module helps prevent unnecessary recompiling of dependent modules when the class declaration does not change—only a member function body. This can greatly increase productivity when developing the class. Once the class is stable, this becomes much less important.

Separating template interface and implementation in C++

This is a follow up question to:
Using export keyword with templates
As mentioned in the answers of the original questions 'export' is deprecated in C++0x and rarely supported by compilers even for C++03. Given this situation, in what way can one hide actual implementations in lib files and just expose declarations through header files, So that end user can know what are the signatures of the exposed API but not have access to the source code implementing the same?
In practice you cannot.
Only if you have a certain set of specializations, you can put these in a library. The base template cannot be put there.
On the other hand, using export did not hide the source. The compiler still needed it to instantiate new classes from the template.
In short, you can't. The export keyword was a failed attempt to achieve something akin to non-source template libraries (though not even approaching the level of obfuscation that binary code achieves), and there is no replacement in the offing.
One thing I have often noticed is that a good chunk of template code, is not so template in fact, and can be moved to non-template functions.
It also happens that function template specialization are considered as regular functions: you can either define them inline (and mark them so) or declare them in a header and implement them in a source file.
Of course, specialization means that you know with which type it will be executed...
Note that what you are asking for is somewhat antithetic.
The very goal of template is to create a "pattern" so that the compiler can generate classes and functions for a multitude of unrelated types. If you hide this pattern, how do you expect the compiler to be able to generate those classes and functions ?
You can use extern template in most recent compilers : http://en.wikipedia.org/wiki/C%2B%2B0x#Extern_template
However, it's unperfect as it only limit template instantiation. The idea is that you separate the template declaration and implementation in two seperate files.
Then when you need the template, you use extern template first, to make sure it's not instantiated yet. Then for each instantiation you need ( one for std::vector, one for std::vector, etc) , put the instantiation in a typedef that will be in a unique cpp.
As it makes the code clearly harder to understand, it's not the best solution yet. But it does works : it helps minimize template instantiations.

Why do C++ template definitions need to be in the header? [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
Why should the implementation and the declaration of a template class be in the same header file?
e.g when defining a template class why do the implementations of the class methods need to be in the header? Why can't they be in a implementation file (cpp/cxx)?
A template class is not a class, it's a template that can be used to create a class. When you instantiate such a class, e.g. MyTemplate<int>, the compiler creates the class on the spot. In order to create it, it has to see all the templated member functions (so that it can use the templates to create actual member functions such as MyTemplate<int>::foo() ), and therefore these templated member functions must be in the header.
If the members are not in the header, the compiler will simply assume that they exist somewhere else and just create actual function declarations from the templated function declarations, and this gives you linker errors.
The "export" keyword is supposed to fix this, but few compilers support it (I only know of Comeau).
You can also explicitly instantiate MyTemplate<int> - then the compiler will create actual member functions for MyTemplate<int> when it compiles the cpp files containing the MyTemplate member function definition templates.
They need to be visible for the compiler when they are instantiated. That basically means that if you are publishing the template in a header, the definitions have to be visible by all translation units that include that header if you depend on implicit instantiation.
They need not be defined in the header if you are going to explicitly instantiate the templates, but this is in most cases not a good idea.
As to the reason, it basically boils down to the fact that templates are not compiled when the compiler parses the definition, but rather when they are instantiated, and then they are compiled for the particular instantiation type.
If your compiler supports export, then it doesn't. Only EDG-based compilers support export, and it's going to be removed from C++0x because of that.
Non-exported templates require that the compiler can see the full template definition, in order to instantiate it for the particular types you supply as arguments. For example:
template<typename T>
struct X {
T t;
X(int i): t(i) {}
};
Now, when you write X<float>(5) in some translation unit, the compiler as part of compiling that translation unit must check that the constructor of X is type-correct, generate the code for it, and so on. Hence it must see the definition of X, so that it can permit X<float>(5) but forbid X<char*>(5).
The only sensible way to ensure that the compiler sees the same template definition in all translation units that use it, is to put the definition in a header file. As far as the standard is concerned, though, you're welcome to copy-and-paste it manually, or to define a template in a cpp file that is used only in that one translation unit.
export in effect tells the compiler that it must output a parsed form of the template definition into a special kind of object file. Then the linker performs template instantiation. With normal toolchains, the compiler is smart enough to perform template instantiation and the linker isn't. Bear in mind that template instantiation has to do pretty much everything that the compiler does beyond basic parsing.
They can be in a CPP file.
The problem arises from the fact that the compiler builds the code for a specific instantiation of a template class (eg std::vector< int >) on a per translation unit basis. The problem with defining the functions in a CPP file is that you will need to define every possible form in that CPP file (this is called template specialization).
So for that int vector exampled above you could define a function in a CPP file for the int case using specialization.
e.g
template<> void std::vector< int >::push_back( int& intVal )
Of course doing this can produce the advantage of optimisation for specific cases but it does give you an idea of just how much code bloat can be introduced by STL! At least all the functions aren't defined as inline as a certain compiler used to do ;)
That aspect of template is called the compilation model, not to be confused with the instantiation mechanism which was the subject of How does C++ link template instances.
The instantiation mechanism is the answer to the question "When is the instantiation generated?", the instantiation model is the answer to "Where the source are found?"
There are two standards compilation model:
inclusion, the one that you know, where the definition must be available,
separated, which allows to put the definition somewhere else with the help of the keyword export. That one has been removed from the standard and won't be available in C++0X. One of the raison for removal was that it wasn't widely implemented (only one implementation).
See C++ Templates, The Complete Guide by David Vandevoorde and Nicolai Josuttis or http://www.bourguet.org/v2/cpplang/export.pdf for more information, the separated compilation model being the subject of that later paper.