Writing a C++ version of the algebra game 24 - c++

I am trying to write a C++ program that works like the game 24. For those who don't know how it is played, basically you try to find any way that 4 numbers can total 24 through the four algebraic operators of +, -, /, *, and parenthesis.
As an example, say someone inputs 2,3,1,5
((2+3)*5) - 1 = 24
It was relatively simple to code the function to determine if three numbers can make 24 because of the limited number of positions for parenthesis, but I can not figure how code it efficiently when four variables are entered.
I have some permutations working now but I still cannot enumerate all cases because I don't know how to code for the cases where the operations are the same.
Also, what is the easiest way to calculate the RPN? I came across many pages such as this one:
http://www.dreamincode.net/forums/index.php?showtopic=15406
but as a beginner, I am not sure how to implement it.
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
bool MakeSum(int num1, int num2, int num3, int num4)
{
vector<int> vi;
vi.push_back(num1);
vi.push_back(num2);
vi.push_back(num3);
vi.push_back(num4);
sort(vi.begin(),vi.end());
char a1 = '+';
char a2 = '-';
char a3 = '*';
char a4 = '/';
vector<char> va;
va.push_back(a1);
va.push_back(a2);
va.push_back(a3);
va.push_back(a4);
sort(va.begin(),va.end());
while(next_permutation(vi.begin(),vi.end()))
{
while(next_permutation(va.begin(),va.end()))
{
cout<<vi[0]<<vi[1]<<vi[2]<<vi[3]<< va[0]<<va[1]<<va[2]<<endl;
cout<<vi[0]<<vi[1]<<vi[2]<<va[0]<< vi[3]<<va[1]<<va[2]<<endl;
cout<<vi[0]<<vi[1]<<vi[2]<<va[0]<< va[1]<<vi[3]<<va[2]<<endl;
cout<<vi[0]<<vi[1]<<va[0]<<vi[2]<< vi[3]<<va[1]<<va[2]<<endl;
cout<<vi[0]<<vi[1]<<va[0]<<vi[2]<< va[1]<<vi[3]<<va[2]<<endl;
}
}
return 0;
}
int main()
{
MakeSum(5,7,2,1);
return 0;
}

So, the simple way is to permute through all possible combinations. This is slightly tricky, the order of the numbers can be important, and certainly the order of operations is.
One observation is that you are trying to generate all possible expression trees with certain properties. One property is that the tree will always have exactly 4 leaves. This means the tree will also always have exactly 3 internal nodes. There are only 3 possible shapes for such a tree:
A
/ \
N A
/ \ (and the mirror image)
N A
/ \
N N
A
/ \
N A
/ \
A N (and the mirror image)
/ \
N N
A
/` `\
A A
/ \ / \
N N N N
In each spot for A you can have any one of the 4 operations. In each spot for N you can have any one of the numbers. But each number can only appear for one N.
Coding this as a brute force search shouldn't be too hard, and I think that after you have things done this way it will become easier to think about optimizations.
For example, + and * are commutative. This means that mirrors that flip the left and right children of those operations will have no effect. It might be possible to cut down searching through all such flips.
Someone else mentioned RPN notation. The trees directly map to this. Here is a list of all possible trees in RPN:
N N N N A A A
N N N A N A A
N N N A A N A
N N A N N A A
N N A N A N A
That's 4*3*2 = 24 possibilities for numbers, 4*4*4 = 64 possibilities for operations, 24 * 64 * 5 = 7680 total possibilities for a given set of 4 numbers. Easily countable and can be evaluated in a tiny fraction of a second on a modern system. Heck, even in basic on my old Atari 8 bit I bet this problem would only take minutes for a given group of 4 numbers.

You can just use Reverse Polish Notation to generate the possible expressions, which should remove the need for parantheses.
An absolutely naive way to do this would be to generate all possible strings of 4 digits and 3 operators (paying no heed to validity as an RPN), assume it is in RPN and try to evaluate it. You will hit some error cases (as in invalid RPN strings). The total number of possibilities (if I calculated correctly) is ~50,000.
A more clever way should get it down to ~7500 I believe (64*24*5 to be exact): Generate a permutation of the digits (24 ways), generate a triplet of 3 operators (4^3 = 64 ways) and now place the operators among the digits to make it valid RPN(there are 5 ways, see Omnifarious' answer).
You should be able to find permutation generators and RPN calculators easily on the web.
Hope that helps!
PS: Just FYI: RPN is nothing but the postorder traversal of the corresponding expression tree, and for d digits, the number is d! * 4^(d-1) * Choose(2(d-1), (d-1))/d. (The last term is a catalan number).

Edited: The solution below is wrong. We also need to consider the numbers makeable with just x_2 and x_4, and with just x_1 and x_4. This approach can still work, but it's going to be rather more complex (and even less efficient). Sorry...
Suppose we have four numbers x_1, x_2, x_3, x_4. Write
S = { all numbers we can make just using x_3, x_4 },
Then we can rewrite the set we're interested in, which I'll call
T = { all numbers we can make using x_1, x_2, x_3, x_4 }
as
T = { all numbers we can make using x_1, x_2 and some s from S }.
So an algorithm is to generate all possible numbers in S, then use each number s in S in turn to generate part of T. (This will generalise fairly easily to n numbers instead of just 4).
Here's a rough, untested code example:
#include <set> // we can use std::set to store integers without duplication
#include <vector> // we might want duplication in the inputs
// the 2-number special case
std::set<int> all_combinations_from_pair(int a, int b)
{
std::set results;
// here we just use brute force
results.insert(a+b); // = b+a
results.insert(a-b);
results.insert(b-a);
results.insert(a*b); // = b*a
// need to make sure it divides exactly
if (a%b==0) results.insert(a/b);
if (b%a==0) results.insert(b/a);
return results;
}
// the general case
std::set<int> all_combinations_from(std::vector<int> inputs)
{
if (inputs.size() == 2)
{
return all_combinations_from_pair(inputs[0], inputs[1]);
}
else
{
std::set<int> S = all_combinations_from_pair(inputs[0], inputs[1]);
std::set<int> T;
std::set<int> rest = S;
rest.remove(rest.begin());
rest.remove(rest.begin()); // gets rid of first two
for (std::set<int>.iterator i = S.begin(); i < S.end(); i++)
{
std::set<int> new_inputs = S;
new_inputs.insert(*i);
std::set<int> new_outputs = all_combinations_from(new_inputs);
for (std::set<int>.iterator j = new_outputs.begin(); j < new_outputs.end(); j++)
T.insert(*j); // I'm sure you can do this with set_union()
}
return T;
}
}

If you are allowed to use the same operator twice, you probably don't want to mix the operators into the numbers. Instead, perhaps use three 0's as a placeholder for where operations will occur (none of the 4 numbers are 0, right?) and use another structure to determine which operations will be used.
The second structure could be a vector<int> initialized with three 1's followed by three 0's. The 0's correspond to the 0's in the number vector. If a 0 is preceded by zero 1's, the corresponding operation is +, if preceded by one 1, it's -, etc. For example:
6807900 <= equation of form ( 6 # 8 ) # ( 7 # 9 )
100110 <= replace #'s with (-,-,/)
possibility is (6-8)-(7/9)
Advance through the operation possibilities using next_permutation in an inner loop.
By the way, you can also return early if the number-permutation is an invalid postfix expression. All permutations of the above example less than 6708090 are invalid, and all greater are valid, so you could start with 9876000 and work your way down with prev_permutation.

Look up the Knapsack problem (here's a link to get you started: http://en.wikipedia.org/wiki/Knapsack_problem), this problem is pretty close to that, just a little harder (and the Knapsack problem is NP-complete!)

One thing that might make this faster than normal is parallelisation. Check out OpenMP. Using this, more than one check is carried out at once (your "alg" function) thus if you have a dual/quad core cpu, your program should be faster.
That said, if as suggested above the problem is NP-complete, it'll be faster, not necessarily fast.

i wrote something like this before. You need a recursive evaluator. Call evaluate, when you hit "(" call evaluate again otherwise run along with digits and operators till you hit ")", now return the result of the -+*/ operations the the evaluate instance above you

Related

How to make my program work faster?

I tried to run this code but it shows time limit exceeded in few cases, how can i shorten the time?
I need to understand what I have used in my program for which time is taking much, like some functions etc.. I understand by improving the iteration and complexity i can reduce execution time but its not helping much.please help
The program is simple, I take point a and point b and calculate the numbers of all the palindrome numbers.
#include<stdio.h>
int ifpalin(int g)
{
int rev=0;
int tmp=g;
while(tmp>0)
{
rev=rev*10+(tmp%10);
tmp=tmp/10;
}
if(rev==g)
return 1;
else
return 0;
}
int findpalin(int a1,int b1)
{
int sm=0;
for(int i=a1;i<=b1;i++)
{
if (ifpalin(i)==1)
sm++;
}
printf("%d",sm);
printf("\n");
return 0;
}
int main()
{
int a,b,n;
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%d",&a);
scanf("%d",&b);
findpalin(a,b);
}
return 0;
}
Your code is already pretty efficient (as an implementation of your algorithm, which is the thing that can be improved). These challenges want to you to find a "non-obvious", but more efficient, algorithm. I.e., in this particular case, you should not check every number between a and b.
There is another solution here, i.e. you can "know" the number of palidromes directly. Think about it´like this:
With one digit, there are 10 palidromes [0, ..., 9],
With two digits, there are 9 palindromes [11, ..., 99].
With three digits, there are 9 possibilities where the first and last digit are equal [1, ..., 9]. For a viable palindrom, the middle has to be a palindrome as well. Since the middle has one digit, we know there are 10 possibilities for palindromes here and thus we have 9 * 10 = 90 palindromes with 3 digits.
With four digits, we got 9 * 10 (two-digit palindromes, 00 now also allowed) and with 5 digits 9 * 100 (3-digit p, starting with 0 allowed).
Thus you can derive a formula for n-digit numbers.
Then, you can directly derive the number for large streaks between a and b and only have to worry about which number of digits are relevant and how many numbers are lost in the beginning and end due to a and b not being 10^(n-1) and and 10^n - 1
Your int ifpalin(int g) fnction, for each given g, could be run in parallel because it seems like different input data for this function, has no effect on other data. you can run this function in parallel.
In int findpalin(int a1,int b1) function, there is a for loop which its complexity order is N, this is where you can run your threads. (each thread, runs function ifpalin). Of course, a good parallelism plan is needed.
You can run this function in some logical bunch, and aggregate the results.
On the other hand, any benchmark should be performed in release mode.
I hope it helps.
Excuse me if my writing in English is bad, and please correct me.
In ifpalin
Convert the number to string
Reverse the string
Compare with the original
If equal then it's a palindrome
See How to reverse an std::string?

how to find the minimum number of primatics that sum to a given number

Given a number N (<=10000), find the minimum number of primatic numbers which sum up to N.
A primatic number refers to a number which is either a prime number or can be expressed as power of prime number to itself i.e. prime^prime e.g. 4, 27, etc.
I tried to find all the primatic numbers using seive and then stored them in a vector (code below) but now I am can't see how to find the minimum of primatic numbers that sum to a given number.
Here's my sieve:
#include<algorithm>
#include<vector>
#define MAX 10000
typedef long long int ll;
ll modpow(ll a, ll n, ll temp) {
ll res=1, y=a;
while (n>0) {
if (n&1)
res=(res*y)%temp;
y=(y*y)%temp;
n/=2;
}
return res%temp;
}
int isprimeat[MAX+20];
std::vector<int> primeat;
//Finding all prime numbers till 10000
void seive()
{
ll i,j;
isprimeat[0]=1;
isprimeat[1]=1;
for (i=2; i<=MAX; i++) {
if (isprimeat[i]==0) {
for (j=i*i; j<=MAX; j+=i) {
isprimeat[j]=1;
}
}
}
for (i=2; i<=MAX; i++) {
if (isprimeat[i]==0) {
primeat.push_back(i);
}
}
isprimeat[4]=isprimeat[27]=isprimeat[3125]=0;
primeat.push_back(4);
primeat.push_back(27);
primeat.push_back(3125);
}
int main()
{
seive();
std::sort(primeat.begin(), primeat.end());
return 0;
}
One method could be to store all primatics less than or equal to N in a sorted list - call this list L - and recursively search for the shortest sequence. The easiest approach is "greedy": pick the largest spans / numbers as early as possible.
for N = 14 you'd have L = {2,3,4,5,7,8,9,11,13}, so you'd want to make an algorithm / process that tries these sequences:
13 is too small
13 + 13 -> 13 + 2 will be too large
11 is too small
11 + 11 -> 11 + 4 will be too large
11 + 3 is a match.
You can continue the process by making the search function recurse each time it needs another primatic in the sum, which you would aim to have occur a minimum number of times. To do so you can pick the largest -> smallest primatic in each position (the 1st, 2nd etc primatic in the sum), and include another number in the sum only if the primatics in the sum so far are small enough that an additional primatic won't go over N.
I'd have to make a working example to find a small enough N that doesn't result in just 2 numbers in the sum. Note that because you can express any natural number as the sum of at most 4 squares of natural numbers, and you have a more dense set L than the set of squares, so I'd think it rare you'd have a result of 3 or more for any N you'd want to compute by hand.
Dynamic Programming approach
I have to clarify that 'greedy' is not the same as 'dynamic programming', it can give sub-optimal results. This does have a DP solution though. Again, i won't write the final process in code but explain it as a point of reference to make a working DP solution from.
To do this we need to build up solutions from the bottom up. What you need is a structure that can store known solutions for all numbers up to some N, this list can be incrementally added to for larger N in an optimal way.
Consider that for any N, if it's primatic then the number of terms for N is just 1. This applies for N=2-5,7-9,11,13,16,17,19. The number of terms for all other N must be at least two, which means either it's a sum of two primatics or a sum of a primatic and some other N.
The first few examples that aren't trivial:
6 - can be either 2+4 or 3+3, all the terms here are themselves primatic so the minimum number of terms for 6 is 2.
10 - can be either 2+8, 3+7, 4+6 or 5+5. However 6 is not primatic, and taking that solution out leaves a minimum of 2 terms.
12 - can be either 2+10, 3+9, 4+8, 5+7 or 6+6. Of these 6+6 and 2+10 contain non-primatics while the others do not, so again 2 terms is the minimum.
14 - ditto, there exist two-primatic solutions: 3+11, 5+9, 7+7.
The structure for storing all of these solutions needs to be able to iterate across solutions of equal rank / number of terms. You already have a list of primatics, this is also the list of solutions that need only one term.
Sol[term_length] = list(numbers). You will also need a function / cache to look up some N's shortest-term-length, eg S(N) = term_length iif N in Sol[term_length]
Sol[1] = {2,3,4,5 ...} and Sol[2] = {6,10,12,14 ...} and so on for Sol[3] and onwards.
Any solution can be found using one term from Sol[1] that is primatic. Any solution requiring two primatics will be found in Sol[2]. Any solution requiring 3 will be in Sol[3] etc.
What you need to recognize here is that a number S(N) = 3 can be expressed Sol[1][a] + Sol[1][b] + Sol[1][c] for some a,b,c primatics, but it can also be expressed as Sol[1][a] + Sol[2][d], since all Sol[2] must be expressible as Sol[1][x] + Sol[1][y].
This algorithm will in effect search Sol[1] for a given N, then look in Sol[1] + Sol[K] with increasing K, but to do this you will need S and Sol structures roughly in the form shown here (or able to be accessed / queried in a similar manner).
Working Example
Using the above as a guideline I've put this together quickly, it even shows which multi-term sum it uses.
https://ideone.com/7mYXde
I can explain the code in-depth if you want but the real DP section is around lines 40-64. The recursion depth (also number of additional terms in the sum) is k, a simple dual-iterator while loop checks if a sum is possible using the kth known solutions and primatics, if it is then we're done and if not then check k+1 solutions, if any. Sol and S work as described.
The only confusing part might be the use of reverse iterators, it's just to make != end() checking consistent for the while condition (end is not a valid iterator position but begin is, so != begin would be written differently).
Edit - FYI, the first number that takes at least 3 terms is 959 - had to run my algorithm to 1000 numbers to find it. It's summed from 6 + 953 (primatic), no matter how you split 6 it's still 3 terms.

How to calculate the sum of the bitwise xor values of all the distinct combination of the given numbers efficiently?

Given n(n<=1000000) positive integer numbers (each number is smaller than 1000000). The task is to calculate the sum of the bitwise xor ( ^ in c/c++) value of all the distinct combination of the given numbers.
Time limit is 1 second.
For example, if 3 integers are given as 7, 3 and 5, answer should be 7^3 + 7^5 + 3^5 = 12.
My approach is:
#include <bits/stdc++.h>
using namespace std;
int num[1000001];
int main()
{
int n, i, sum, j;
scanf("%d", &n);
sum=0;
for(i=0;i<n;i++)
scanf("%d", &num[i]);
for(i=0;i<n-1;i++)
{
for(j=i+1;j<n;j++)
{
sum+=(num[i]^num[j]);
}
}
printf("%d\n", sum);
return 0;
}
But my code failed to run in 1 second. How can I write my code in a faster way, which can run in 1 second ?
Edit: Actually this is an Online Judge problem and I am getting Cpu Limit Exceeded with my above code.
You need to compute around 1e12 xors in order to brute force this. Modern processors can do around 1e10 such operations per second. So brute force cannot work; therefore they are looking for you to figure out a better algorithm.
So you need to find a way to determine the answer without computing all those xors.
Hint: can you think of a way to do it if all the input numbers were either zero or one (one bit)? And then extend it to numbers of two bits, three bits, and so on?
When optimising your code you can go 3 different routes:
Optimising the algorithm.
Optimising the calls to language and library functions.
Optimising for the particular architecture.
There may very well be a quicker mathematical way of xoring every pair combination and then summing them up, but I know it not. In any case, on the contemporary processors you'll be shaving off microseconds at best; that is because you are doing basic operations (xor and sum).
Optimising for the architecture also makes little sense. It normally becomes important in repetitive branching, you have nothing like that here.
The biggest problem in your algorithm is reading from the standard input. Despite the fact that "scanf" takes only 5 characters in your computer code, in machine language this is the bulk of your program. Unfortunately, if the data will actually change each time your run your code, there is no way around the requirement of reading from stdin, and there will be no difference whether you use scanf, std::cin >>, or even will attempt to implement your own method to read characters from input and convert them into ints.
All this assumes that you don't expect a human being to enter thousands of numbers in less than one second. I guess you can be running your code via: myprogram < data.
This function grows quadratically (thanks #rici). At around 25,000 positive integers with each being 999,999 (worst case) the for loop calculation alone can finish in approximately a second. Trying to make this work with input as you have specified and for 1 million positive integers just doesn't seem possible.
With the hint in Alan Stokes's answer, you may have a linear complexity instead of quadratic with the following:
std::size_t xor_sum(const std::vector<std::uint32_t>& v)
{
std::size_t res = 0;
for (std::size_t b = 0; b != 32; ++b) {
const std::size_t count_0 =
std::count_if(v.begin(), v.end(),
[b](std::uint32_t n) { return (n >> b) & 0x01; });
const std::size_t count_1 = v.size() - count_0;
res += count_0 * count_1 << b;
}
return res;
}
Live Demo.
Explanation:
x^y = Sum_b((x&b)^(y&b)) where b is a single bit mask (from 1<<0 to 1<<32).
For a given bit, with count_0 and count_1 the respective number of count of number with bit set to 0 or 1, we have count_0 * (count_0 - 1) 0^0, count_0 * count_1 0^1 and count_1 * (count_1 - 1) 1^1 (and 0^0 and 1^1 are 0).

Finding a number in an array

I have an array of 20 numbers (64 bit int) something like 10, 25, 36,43...., 118, 121 (sorted numbers).
Now, I have to give millions of numbers as input (say 17, 30).
What I have to give as output is:
for Input 17:
17 is < 25 and > 10. So, output will be index 0.
for Input 30:
30 is < 36 and > 25. So, output will be index 1.
Now, I can do it using linear search, binary serach. Is there any method to do it faster way ? Input numbers are random (gaussian).
If you know the distribution, you can direct your search in a smarter way.
Here is the rough idea of this variant of binary search:
Assuming that your data is expected to be distributed uniformly on 0 to 100.
If you observe the value 0, you start at the beginning. If your value is 37, you start at 37% of the array you have. This is the key difference to binary search: you don't always start at 50%, but you try to start in the expected "optimal" position.
This also works for Gaussian distributed data, if you know the parameters (If you don't know them, you can still estimate them easily from the observed data). You would compute the Gaussian CDF, and this yields the place to start your search.
Now for the next step, you need to refine your search. At the position you looked at, there was a different value. You can use this to re-estimate the position to continue searching.
Now even if you don't know the distribution this can work very well. So you start with a binary search, and looked at objects at 50% and 25% already. Instead of going to 37.5% next, you can do a better guess, if your query values was e.g. very close to the 50% entry. Unless your data set is very "clumpy" (and your queries are not correlated to the data) then this should still outperform "naive" binary search that always splits in the middle.
http://en.wikipedia.org/wiki/Interpolation_search
The expected average runtime apparently is O(log(log(n)), from Wikipedia.
Update: since someone complained that with just 20 numbers things are different. Yes, they are. With 20 numbers linear search may be best. Because of CPU caching. Linear scanning through a small amount of memory - that fits into the CPU cache - can be really fast. In particular with an unrolled loop. But that case is quite pathetic and uninteresting IMHO.
I believe best option for you is to use upper_bound - it will find the first value in the array bigger than the one you are searching for.
Still depending on the problem you try to solve maybe lower_bound or binary_search may be the thing you need.
All of these algorithms are with logarithmic complexity.
There is nothing will be better than binary search since your array is sorted.
Linear search is O(n) while binary search is O(log n)
Edit:
Interpolation search makes an extra assumption (the elements have to be uniformly distributed) and do more comparisons per iteration.
You can try both and empirically measure which is better for your case
In fact, this problem is quite interesting because it is a re-cast of an information theoretic framework.
Given 20 numbers, you will end up with 21 bins (including < first one and > last one).
For each incoming number, you are to map to one of these 21 bins. This mapping is done by comparison. Each comparison gives you 1 bit of information (< or >= -- two states).
So suppose the incoming number requires 5 comparisons in order to figure out which bin it belongs to, then it is equivalent to using 5 bits to represent that number.
Our goal is to minimize the number of comparisons! We have 1 million numbers each belonging to 21 ordered code words. How do we do that?
This is exactly an entropy compression problem.
Let a[1],.. a[20], be your 20 numbers.
Let p(n) = pr { incoming number is < n }.
Build the decision tree as follows.
Step 1.
let i = argmin |p(a[i]) - 0.5|
define p0(n) = p(n) / (sum(p(j), j=0...a[i-1])), and p0(n)=0 for n >= a[i].
define p1(n) = p(n) / (sum(p(j), j=a[i]...a[20])), and p1(n)=0 for n < a[i].
Step 2.
let i0 = argmin |p0(a[i0]) - 0.5|
let i1 = argmin |p1(a[i1]) - 0.5|
and so on...
and by the time we're done, we end up with:
i, i0, i1, i00, i01, i10, i11, etc.
each one of these i gives us the comparison position.
so now our algorithm is as follows:
let u = input number.
if (u < a[i]) {
if (u < a[i0]) {
if (u < a[i00]) {
} else {
}
} else {
if (u < a[i01]) {
} else {
}
}
} else {
similarly...
}
so the i's define a tree, and the if statements are walking the tree. we can just as well put it into a loop, but it's easier to illustrate with a bunch of if.
so for example, if you knew that your data were uniformly distributed between 0 and 2^63, and your 20 number were
0,1,2,3,...19
then
i = 20 (notice that there is no i1)
i0 = 10
i00 = 5
i01 = 15
i000 = 3
i001 = 7
i010 = 13
i011 = 17
i0000 = 2
i0001 = 4
i0010 = 6
i0011 = 9
i00110 = 8
i0100 = 12
i01000 = 11
i0110 = 16
i0111 = 19
i01110 = 18
ok so basically, the comparison would be as follows:
if (u < a[20]) {
if (u < a[10]) {
if (u < a[5]) {
} else {
...
}
} else {
...
}
} else {
return 21
}
so note here, that I am not doing binary search! I am first checking the end point. why?
there is 100*((2^63)-20)/(2^63) percent chance that it will be greater than a[20]. this is basically like 99.999999999999999783159565502899% chance!
so this algorithm as it is has an expected number of comparison of 1 for a dataset with the properties specified above! (this is better than log log :p)
notice what I have done here is I am basically using fewer compares to find numbers that are more probable and more compares to find numbers that are less probable. for example, the number 18 requires 6 comparisons (1 more than needed with binary search); however, the numbers 20 to 2^63 require only 1 comparison. this same principle is used for lossless (entropy) data compression -- use fewer bits to encode code words that appear often.
building the tree is a one time process and you can use the tree 1 million times later.
the question is... when does this decision tree become binary search? homework exercise! :p the answer is simple. it's similar to when you can't compress a file any more.
ok, so I didn't pull this out of my behind... the basis is here:
http://en.wikipedia.org/wiki/Arithmetic_coding
You could perform binary search using std::lower_bound and std::upper_bound. These give you back iterators, so you can use std::distance to get an index.

I have n spaces, in each space, I can place a number 0 through m. Writing a program to output all possible results. Need help :)

The idea is, given an n number of spaces, empty fields, or what have you, I can place in either a number from 0 to m. So if I have two spaces and just 01 , the outcome would be:
(0 1)
(1 0)
(0 0)
(1 1)
if i had two spaces and three numbers (0 1 2) the outcome would be
(0 1)
(1 1)
(0 2)
(2 0)
(2 2)
(2 1)
and so on until I got all 9 (3^2) possible outcomes.
So i'm trying to write a program that will give me all possible outcomes if I have n spaces and can place in any number from 0 to m in any one of those spaces.
Originally I thought to use for loops but that was quickly shotdown when I realzed I'd have to make one for every number up through n, and that it wouldn't work for cases where n is bigger.
I had the idea to use a random number generator and generate a number from 0 to m but that won't guarantee I'll actually get all the possible outcomes.
I am stuck :(
Ideas?
Any help is much appreciated :)
Basically what you will need is a starting point, ending point, and a way to convert from each state to the next state. For example, a recursive function that is able to add one number to the smallest pace value that you need, and when it is larger than the maximum, to increment the next larger number and set the current one back to zero.
Take this for example:
#include <iostream>
#include <vector>
using namespace std;
// This is just a function to print out a vector.
template<typename T>
inline ostream &operator<< (ostream &os, const vector<T> &v) {
bool first = true;
os << "(";
for (int i = 0; i < v.size (); i++) {
if (first) first = false;
else os << " ";
os << v[i];
}
return os << ")";
}
bool addOne (vector<int> &nums, int pos, int maxNum) {
// If our position has moved off of bounds, so we're done
if (pos < 0)
return false;
// If we have reached the maximum number in one column, we will
// set it back to the base number and increment the next smallest number.
if (nums[pos] == maxNum) {
nums[pos] = 0;
return addOne (nums, pos-1, maxNum);
}
// Otherwise we simply increment this numbers.
else {
nums[pos]++;
return true;
}
}
int main () {
vector<int> nums;
int spaces = 3;
int numbers = 3;
// populate all spaces with 0
nums.resize (spaces, 0);
// Continue looping until the recursive addOne() function returns false (which means we
// have reached the end up all of the numbers)
do {
cout << nums << endl;
} while (addOne (nums, nums.size()-1, numbers));
return 0;
}
Whenever a task requires finding "all of" something, you should first try to do it in these three steps: Can I put them in some kind of order? Can I find the next one given one? Can I find the first?
So if I asked you to give me all the numbers from 1 to 10 inclusive, how would you do it? Well, it's easy because: You know a simple way to put them in order. You can give me the next one given any one of them. You know which is first. So you start with the first, then keep going to the next until you're done.
This same method applies to this problem. You need three algorithms:
An algorithm that orders the outputs such that each output is either greater than or less than every other possible output. (You don't need to code this, just understand it.)
An algorithm to convert any output into the next output and fail if given the last output. (You do need to code this.)
An algorithm to generate the first output, one less (according to the first algorithm) than every other possible output. (You do need to code this.)
Then it's simple:
Generate the first output (using algorithm 3). Output it.
Use the increment algorithm (algorithm 2) to generate the next output. If there is no next output, stop. Otherwise, output it.
Repeat step 2.
Update: Here are some possible algorithms:
Algorithm 1:
Compare the first digits of the two outputs. If one is greater than the other, that output is greater. If they are equal, continue
Repeat step on moving to successive digits until we find a mismatch.
Algorithm 2:
Start with the rightmost digit.
If this digit is not the maximum it can be, increment it and stop.
Are we at the leftmost digit? If so, stop with error.
Move the digit pointer left one digit.
Algorithm 3:
Set all digits to zero.
“i'm trying to write a program that will give me all possible outcomes if I have n spaces and can place in any number from 0 to m in any one of those spaces.”
Assuming an inclusive “to”, let R = m + 1.
Then this is isomorphic to outputting every number in the range 0 through Rn-1 presented in the base R numeral system.
Which means one outer loop to count (for this you can use the C++ ++ increment operator), and an inner loop to extract and present the digits. For the inner loop you can use C++’ / division operator, and depending on what you find most clear, also the % remainder operator. Unless you restrict yourself to the three choices of R directly supported by the C++ standard library, in which case use the standard formatters.
Note that Rn can get large fast.
So don't redirect the output to your printer, and be prepared to wait for a while for the program to complete.
I think you need to look up recursion. http://www.danzig.us/cpp/recursion.html
Basically it is a function that calls itself. This allows you to perform an N number of nested for loops.