pros and cons of smart pointers - c++

I came to know that smart pointer is used for resource management and supports RAII.
But what are the corner cases in which smart pointer doesn't seem smart and things to be kept in mind while using it ?

Smart pointers don't help against loops in graph-like structures.
For example, object A holds a smart pointer to object B and object B - back to object A. If you release all pointers to both A and B before disconnection A from B (or B from A) both A and B will hold each other and form a happy memory leak.
Garbage collection could help against that - it could see that both object are unreachable and free them.

I would like to mention performance limitations. Smart pointers usually use atomic operations (such as InterlockedIncrement in Win32 API) for reference counting. These functions are significantly slower than plain integer arithmetic.
In most cases, this performance penalty is not a problem, just make sure you don't make too many unnecessary copies of the smart pointer object (prefer to pass the smart pointer by reference in function calls).

This is quite interesting: Smart Pointers.
It's a sample chapter from "Modern C++ Design" by Andrei Alexandrescu.

Watch out at the transitions - when assigning between raw and smart pointers. Bad smart pointers - like _com_ptr_t - make it worse by allowing implicit conversions. Most errors happen at the transition.
Watch out for cycles - as mentioned, you need weak pointers to break the cycles. However, in a complex graph that's not always easy to do.
Too much choice - most libraries offer different implementations with different advantages / drawbacks. Unfortunately, most of the time these different variants are not compatible, which becomes a probem when mixing libraries. (say, LibA uses LOKI, LibB uses boost). Having to plan ahead for enable_shared_from_this sucks, having to decide naming conventions between intrusive_ptr, shared_ptr and weak_ptr for a bunch of objects sucks.
For me, the single most e advantage of shared_ptr (or one of similar functionality) is that it is coupled to its destruction policy at creation. Both C++ and Win32 offers so many ways of getting rid of things it's not even funny. Coupling at construction time (without affecting the actual type of the pointer) means I have both policies in one place.

Beside technical limitations (already mentioned : circular dependencies), i'd say that the most important thing about smart pointers is to remember that it's still a workaround to get heap-allocated-objects deleted.
Stack allocation is the best option for most cases - along with the use of references - to manage the lifetime of objects.

The following article is a very interesting paper
Smart Pointers: Can't Live With 'Em, Can't Live Without 'Em

Here are a few things
There's no definite entity which destroys the object. Often it is desired to know exactly when and how an object is being destroyed
Circular dependencies - If they exist you'll have a memory leak. That's usually where weak_ptr come to the rescue.

There is a problem with reference counting in certain types of data structures that have cycles. There can also be problems with accessing smart pointers from multiple threads, concurrent access to reference counts can cause problems. There's a utility in boost called atomic.hpp that can mitigate this problem.

Many people run into problems when using smart pointers mixed with raw pointers (to the same objects). A typical example is when interacting with an API that uses raw pointers.
For example; in boost::shared_ptr there is a .get() function that returns the raw pointer. Good functionality if used with care, but many people seem to trip on it.
IMHO it's an example of a "leaky abstraction".

Raymond Chen is notoriously ambivalent about smart pointers. There are issues about when the destructor actually runs (please note, the destructor runs at a well-defined time in a well-defined order; it's just that once in a while you'll forget that it's after the last line in your function).
Also remember that "smart pointer" is a pretty big category. I include std::vector in that category (a std::vector is essentially a smart array).

Related

STL smart pointers vs Qt smart pointers? [duplicate]

Comparisons, Pros, Cons, and When to Use?
This is a spin-off from a garbage collection thread where what I thought was a simple answer generated a lot of comments about some specific smart pointer implementations so it seemed worth starting a new post.
Ultimately the question is what are the various implementations of smart pointers in C++ out there and how do they compare? Just simple pros and cons or exceptions and gotchas to something you might otherwise think should work.
I've posted some implementations that I've used or at least glossed over and considered using as an answer below and my understanding of their differences and similarities which may not be 100% accurate so feel free to fact check or correct me as needed.
The goal is to learn about some new objects and libraries or correct my usage and understanding of existing implementations already widely in use and end up with a decent reference for others.
C++03
std::auto_ptr - Perhaps one of the originals it suffered from first draft syndrome only providing limited garbage collection facilities. The first downside being that it calls delete upon destruction making them unacceptable for holding array allocated objects (new[]). It takes ownership of the pointer so two auto pointers shouldn't contain the same object. Assignment will transfer ownership and reset the rvalue auto pointer to a null pointer. Which leads to perhaps the worst drawback; they can't be used within STL containers due to the aforementioned inability to be copied. The final blow to any use case is they are slated to be deprecated in the next standard of C++.
std::auto_ptr_ref - This is not a smart pointer it's actually a design detail used in conjunction with std::auto_ptr to allow copying and assignment in certain situations. Specifically it can be used to convert a non-const std::auto_ptr to an lvalue using the Colvin-Gibbons trick also known as a move constructor to transfer ownership.
On the contrary perhaps std::auto_ptr wasn't really intended to be used as a general purpose smart pointer for automatic garbage collection. Most of my limited understanding and assumptions are based on Herb Sutter's Effective Use of auto_ptr and I do use it regularly although not always in the most optimized way.
C++11
std::unique_ptr - This is our friend who will be replacing std::auto_ptr it will be quite similar except with the key improvements to correct the weaknesses of std::auto_ptr like working with arrays, lvalue protection via private copy constructor, being usable with STL containers and algorithms, etc. Since it's performance overhead and memory footprint are limited this is an ideal candidate for replacing, or perhaps more aptly described as owning, raw pointers. As the "unique" implies there is only one owner of the pointer just like the previous std::auto_ptr.
std::shared_ptr - I believe this is based off TR1 and boost::shared_ptr but improved to include aliasing and pointer arithmetic as well. In short it wraps a reference counted smart pointer around a dynamically allocated object. As the "shared" implies the pointer can be owned by more than one shared pointer when the last reference of the last shared pointer goes out of scope then the object will be deleted appropriately. These are also thread safe and can handle incomplete types in most cases. std::make_shared can be used to efficiently construct a std::shared_ptr with one heap allocation using the default allocator.
std::weak_ptr - Likewise based off TR1 and boost::weak_ptr. This is a reference to an object owned by a std::shared_ptr and will therefore not prevent the deletion of the object if the std::shared_ptr reference count drops to zero. In order to get access to the raw pointer you'll first need to access the std::shared_ptr by calling lock which will return an empty std::shared_ptr if the owned pointer has expired and been destroyed already. This is primarily useful to avoid indefinite hanging reference counts when using multiple smart pointers.
Boost
boost::shared_ptr - Probably the easiest to use in the most varying scenarios (STL, PIMPL, RAII, etc) this is a shared referenced counted smart pointer. I've heard a few complaints about performance and overhead in some situations but I must have ignored them because I can't remember what the argument was. Apparently it was popular enough to become a pending standard C++ object and no drawbacks over the norm regarding smart pointers come to mind.
boost::weak_ptr - Much like previous description of std::weak_ptr, based on this implementation, this allows a non-owning reference to a boost::shared_ptr. You not surprisingly call lock() to access the "strong" shared pointer and must check to make sure it's valid as it could have already been destroyed. Just make sure not to store the shared pointer returned and let it go out of scope as soon as you're done with it otherwise you're right back to the cyclic reference problem where your reference counts will hang and objects will not be destroyed.
boost::scoped_ptr - This is a simple smart pointer class with little overhead probably designed for a better performing alternative to boost::shared_ptr when usable. It's comparable to std::auto_ptr especially in the fact that it can't be safely used as an element of a STL container or with multiple pointers to the same object.
boost::intrusive_ptr - I've never used this but from my understanding it's designed to be used when creating your own smart pointer compatible classes. You need to implement the reference counting yourself, you'll also need to implement a few methods if you want your class to be generic, furthermore you'd have to implement your own thread safety. On the plus side this probably gives you the most custom way of picking and choosing exactly how much or how little "smartness" you want. intrusive_ptr is typically more efficient than shared_ptr since it allows you to have a single heap allocation per object. (thanks Arvid)
boost::shared_array - This is a boost::shared_ptr for arrays. Basically new [], operator[], and of course delete [] are baked in. This can be used in STL containers and as far as I know does everything boost:shared_ptr does although you can't use boost::weak_ptr with these. You could however alternatively use a boost::shared_ptr<std::vector<>> for similar functionality and to regain the ability to use boost::weak_ptr for references.
boost::scoped_array - This is a boost::scoped_ptr for arrays. As with boost::shared_array all the necessary array goodness is baked in. This one is non-copyable and so can't be used in STL containers. I've found almost anywhere you find yourself wanting to use this you probably could just use std::vector. I've never determined which is actually faster or has less overhead but this scoped array seems far less involved than a STL vector. When you want to keep allocation on the stack consider boost::array instead.
Qt
QPointer - Introduced in Qt 4.0 this is a "weak" smart pointer which only works with QObject and derived classes, which in the Qt framework is almost everything so that's not really a limitation. However there are limitations namely that it doesn't supply a "strong" pointer and although you can check if the underlying object is valid with isNull() you could find your object being destroyed right after you pass that check especially in multi-threaded environments. Qt people consider this deprecated I believe.
QSharedDataPointer - This is a "strong" smart pointer potentially comparable to boost::intrusive_ptr although it has some built in thread safety but it does require you to include reference counting methods (ref and deref) which you can do by subclassing QSharedData. As with much of Qt the objects are best used through ample inheritance and subclassing everything seems to be the intended design.
QExplicitlySharedDataPointer - Very similar to QSharedDataPointer except it doesn't implicitly call detach(). I'd call this version 2.0 of QSharedDataPointer as that slight increase in control as to exactly when to detach after the reference count drops to zero isn't particularly worth a whole new object.
QSharedPointer - Atomic reference counting, thread safe, sharable pointer, custom deletes (array support), sounds like everything a smart pointer should be. This is what I primarily use as a smart pointer in Qt and I find it comparable with boost:shared_ptr although probably significantly more overhead like many objects in Qt.
QWeakPointer - Do you sense a reoccurring pattern? Just as std::weak_ptr and boost::weak_ptr this is used in conjunction with QSharedPointer when you need references between two smart pointers that would otherwise cause your objects to never be deleted.
QScopedPointer - This name should also look familiar and actually was in fact based on boost::scoped_ptr unlike the Qt versions of shared and weak pointers. It functions to provide a single owner smart pointer without the overhead of QSharedPointer which makes it more suitable for compatibility, exception safe code, and all the things you might use std::auto_ptr or boost::scoped_ptr for.
There is also Loki which implements policy-based smart pointers.
Other references on policy-based smart pointers, addressing the problem of the poor support of the empty base optimization along with multiple inheritance by many compilers:
Smart Pointers Reloaded
A Proposal to Add a Policy-Based Smart Pointer Framework to the Standard Library
In addition to the ones given, there are some safety oriented ones too:
SaferCPlusPlus
mse::TRefCountingPointer is a reference counting smart pointer like std::shared_ptr. The difference being that mse::TRefCountingPointer is safer, smaller and faster, but does not have any thread safety mechanism. And it comes in "not null" and "fixed" (non-retargetable) versions that can be safely assumed to always be pointing to a validly allocated object. So basically, if your target object is shared among asynchronous threads then use std::shared_ptr, otherwise mse::TRefCountingPointer is more optimal.
mse::TScopeOwnerPointer is similar to boost::scoped_ptr, but works in conjunction with mse::TScopeFixedPointer in a "strong-weak" pointer relationship kind of like std::shared_ptr and std::weak_ptr.
mse::TScopeFixedPointer points to objects that are allocated on the stack, or whose "owning" pointer is allocated on the stack. It is (intentionally) limited in it's functionality to enhance compile-time safety with no runtime cost. The point of "scope" pointers is essentially to identify a set of circumstances that are simple and deterministic enough that no (runtime) safety mechanisms are necessary.
mse::TRegisteredPointer behaves like a raw pointer, except that its value is automatically set to null_ptr when the target object is destroyed. It can be used as a general replacement for raw pointers in most situations. Like a raw pointer, it does not have any intrinsic thread safety. But in exchange it has no problem targeting objects allocated on the stack (and obtaining the corresponding performance benefit). When run-time checks are enabled, this pointer is safe from accessing invalid memory. Because mse::TRegisteredPointer has the same behavior as a raw pointer when pointing to valid objects, it can be "disabled" (automatically replaced with the corresponding raw pointer) with a compile-time directive, allowing it to be used to help catch bugs in debug/test/beta modes while incurring no overhead cost in release mode.
Here is an article describing why and how to use them. (Note, shameless plug.)

Any reason to use raw pointers to do RAII? C++11/14

Are there any reasons to still use raw pointers (for managed resources) in C++11/14?
Should resource member variables in a class be held in their own smart pointers for automatic RAII without need for cleanup in destructor?
Is the implementation of smart pointers inlined that there is no overhead in doing so?
Are there any reasons to still use raw pointers (for managed
resources) in C++11/14?
I assume that by "managed resources" you mean "owned resources".
Yes there are reasons:
As you are inferring in your question, sometime you want to refer to an object or none, and it can change through time. You have to use a raw pointer in this case, because there is no alternative right now in this specific case. There might be later as there is a proposal about adding a "dumb" non-owning pointer which just clarify the role of the pointer (observe/refer, not own). Meanwhile the recommendation is to avoid new/delete if you can and use raw pointer only as "refers to without owning" kind of re-assignable reference.
You still need raw pointers for implementation of non-raw pointers and any low level RAII construct. Not everybody needs to work on fundamental libraries, but of course if you do, then you need basic constructs to work with. For example in my domain I often have to build up custom "object pool" systems in different ways. At some point in the implementation you have to manipulate raw memory which are not objects yet, so you need to use raw pointers to work with that.
When communicating with C interfaces, you have no other choices than to pass raw pointers to functions taking them. A lot of C++ developers have to do this, so it's just in some very specific regions of your code that you will have to use them.
Most companies using C++ don't have a "modern C++" experience of C++ and work with code that use a lot of pointers where it is not actually necessary. So most of the time when you add code to their codebase, you might be forced by the code-environment, politics, peer-pressure and conventions of the company to use pointers where in a more "modern c++" usage kind of company it would not pass peer-review. So consider the political/historic/social/knowledge-base-of-coworkers context too when choosing your techniques. Or make sure companies/projects you work in match your way of doing things (this might be harder).
Should resource member variables in a class be held in their own smart
pointers for automatic RAII without need for cleanup in destructor?
Resource member variables, in the best case, should just be members without being obvious pointers, not even smart pointers. Smart pointers are a "bridge" between code manipulating raw pointers and pure RAII style. If you have total control over some code and it's new code, you can totally avoid making any use of smart pointer in your interfaces. Maybe you will need them in your implementations though. Keep in mind that there is no actual rules, only recommendations of what you could result in if you
Is the implementation of smart pointers inlined that there is no
overhead in doing so?
Implementation of standard smart pointers is as efficient as they can be so yes most of their code is inlined. However, they are not always free, it depends on what they actually do. For example, in almost all cases, unique_ptr is exactly one raw pointer, with just additional checks around it's places of use. So it's "free". shared_ptr on the other hand have to maintain a counter of how many other shared_ptr refer to the same object. That counter can be changed on several threads doing copies of the shared_ptr, so it have to be atomic. Changing the value of atomic counters is not always free, and you should always assume that there is a higher cost than copying a raw pointer.
So "it depends".
Just:
use RAII as much as you can, without exposing any kind of pointer in your interfaces (smart or not);
use standard smart pointers in implementations if you must use owning pointers;
use raw pointers only if you need to refer to object, null, or other objects changing through time, without owning them;
avoid raw pointers in interfaces except in case of allowing passing optional objects (when nullptr is a correct argument);
You will end-up with code that, from the user's perspective, don't seem to manipulate pointers. If you have several layers of code following these rules, the code will be easier to follow and highly maintainable.
On a related note from: When to use references vs. pointers
Avoid pointers until you can't.
Also note that Sean Parents in his recent talks also consider smart pointers to be raw pointers. They can indeed be encapsulated as implementation details of value-semantic types corresponding to the actual concept being manipulated. Additionally using type-erasure techniques in implementations but never exposing them to the user helps extensibility of some library constructs.
It depends. If the object is fully owned, constructed and destructed by another object, there is a good case for using an std::unique_ptr in that other object. If you have an object which owns several such objects, all of which are dynamically allocated in the constructor, then you have to do something; if the semantics of the usual smart pointers isn't appropriate (which is often the case), then you'll have to invent something: in the case of a graph, for example, you might put the root pointer in a base class (initializing it to null), and have the destructor of the base class clean-up the graph, starting at the root.
Of course, unless your class has some sort of dynamic structure like a graph, you might ask yourself why it is using dynamic allocation to begin with. There are special cases (where, for example, the owned object is polymorphic, and its actual type depends on arguments to the constructor), but in my experience, they aren't that common. In practice, there just aren't that many cases where a smart pointer can be used in an object, much less should be used.
RAII is more than just wrapping up new and delete - a smart pointer is a form of RAII but RAII is a lot more than that. A good candidate for RAII is when you have any sort of mirroring functions: new/delete, initialise/teardown, stop/start. So your resource should still have its own RAII class - one that performs its cleanup function in its own destructor.

using non-smart pointers in modern C++

Short Version:
Is there any acceptable reason for using non-smart pointers in modern C++?
Long Version:
we have a huge product that contains lot's of old C++ code and now we are trying to refactor it to the modern C++ era. Along with all the old fashioned code, there is huge amount of pointers passing around (mostly with SAL annotations to provide some sense of security) and I was wondering if we should change all of them to smart pointers or maybe leave some of them as is?
Trying to convert some of these codes, I ended up with a code that is simply arguable for over using smart pointers.
So the question is: is there such a thing as over using smart pointers?
Or in other words: is there any acceptable scenario for non-smart pointers these days?
Smart pointers (unique_ptr and shared_ptr) should be OWNING pointers (i.e., responsible for destruction of the object). The bottom line of using them is that any object created by new should be shoved into a unique_ptr ASAP, to prevent memory leaks. After that, the unique_ptr should end up being moved:
either into a shared_ptr if ownership should be shared,
or into a unique_ptr if ownership is determined by a scope (of a block, or the lifetime of an object).
releases should be rare. If your code passes non-owning pointers around, these should be:
raw pointers if they may be null, (obtained by get)
references if they may not be null, (obtained by get)
unique_ptrs by value if the aim of the call is transferring ownership. (in which case you'll need to move them)
Factory methods should return unique_ptrs by value. (because then, if you don't assign the return value of the factory method, the object is immediately de-allocated)
And check out Ali's answer regarding links to some philosophical points of handling legacy code. (Which I totally agree on)
Short Version:
Is there any acceptable reason for using non-smart
pointers in modern C++?
Short answer:
Definitely, if they only serve for observation, that is, they don't own the pointee. However, try to use references instead of pointers even in this case; use pointers only if you really need to make them optional (initialize with null_ptr then reassign later, for example).
Long Version:
we have a huge product that contains lot's of old C++ code and now we are trying to refactor it to the modern C++ era. [...]
Long answer:
As I am reading these lines this answer comes to mind:
Advice on working with legacy code
I wish I could upvote this answer more than once. I would quote: "[...] for each re-factor we have made we can justify 'this specific change will make the actual task we are doing now easier'. Rather than 'this is now cleaner for future work'."
Long story short, don't do big refactoring unless you really need to.
So the question is: is there such a thing as over using smart pointers?
In my opinion, std::shared_ptr is overused. It is very comfortable to use, and it gives you the illusion that you don't have to think about ownership issues. But that is not the whole picture. I fully agree with Sean Parent: "a shared pointer is as good as a global variable." Shared pointers can also introduce very difficult ownership issues, etc.
On the other hand, if you need to allocate something on the heap, use a unique_ptr. You can't overuse it, if you really need heap allocation. In my experience, using unique_ptr also leads to cleaner and easier to understand code, as the ownership issues become self-explanatory.
Interesting talks from Sean Parent on how to avoid / reduce the usage of pointers are:
Inheritance Is The Base Class of Evil
Value Semantics and Concepts-based Polymorphism
Hope this helps.
Yes, raw pointers still have a uses as an "optional reference". I.e. a T* is similar to a T&. Neither implies ownership, but a T* can be a nullptr.
Check out the talks here: http://channel9.msdn.com/Events/GoingNative/2013 (especially Stroustrup's talk).
The short answer is no, assuming "modern C++" is >= c++11
The long answer is that wasn't always the case and trying to restructure a large project is almost always hard. The way we think about problems is constrained by the tools we have to solve them. There are many cases when doing such refactoring when it simply makes more sense to use pointers than try to re-express basic logic to be class and smart pointer friendly. I think it's less of a case where smart pointers are over-used and more of a case when classes are under used. YMMV ;-)
Of course there are use cases for raw pointers in modern C++:
interfaces that must be compile-able as pure C (although the implementation itself may make use of those C++ features, that are not also C features, like classes, or smart-pointers)
code that is extremely low level, so low level, that even the simplest smart-pointer proves as being to heavy-weight
Of course those are rather rare cases and for by far the most use cases of pointers smart pointers should be just fine for new code, BUT:
If the existing code works fine with raw pointers, why invest time to rewrite it and risk to add bugs when converting it to a smart-pointer using version?
Don't refactor code, that is working fine, just because the new code better follows modern programming-standards. These programming standards are not existing for their own sake, but to make working with some code easier, so don't do refactoring, which will cost you more time than they can save you in the future.
That means: If it will cost you more time to check, which of those pointers can be safely converted into smart-pointers and which can't and to hunt the bugs, that your refactoring may have introduced, than you will be able to save on future maintenance work due to the refactoring, then simply don't refactor and let it stay as it is.
If the refactoring will save more time than it costs for only some parts of the code base, then consider to only refactor those parts of the code base.

Usage of Smart Pointers as a Programming Standard?

More and more I hear, that I should use smart pointers instead of naked pointers, despite I have effective memory leak system implemented.
What is the correct programming approach on using smart pointers please? Should they really be used, even if I check memory leaks on allocated memory blocks? Is it still up to me? If I do not use them, can this be considered as programming weakness?
If the smart pointers(ex: std::auto_ptr) are strongly recommended, should I use them instead of every naked pointer?
You should use RAII to handle all resource allocations.
Smart pointers are just one common special case of that rule.
And smart pointers are more than just shared_ptr. There are different smart pointers with different ownership semantics. Use the one that suits your needs. (The main ones are scoped_ptr, shared_ptr, weak_ptr and auto_ptr/unique_ptr (prefer the latter where available). Depending on your compiler, they may be available in the standard library, as part of TR1, or not at all, in which case you can get them through the Boost libraries.
And yes, you should absolutely use these. It costs you nothing (if done correctly, you lose zero performance), and it gains you a lot (memory and other resources are automatically freed, and you don't have to remember to handle it manually, and your code using the resource gets shorter and more concise)
Note that not every pointer usage represents some kind of resource ownership, and so not all raw pointer usage is wrong. If you simply need to point to an object owned by someone else, a raw pointer is perfectly suitable. But if you own the object, then you should take proper ownership of it, either by giving the class itself RAII semantics, or by wrapping it in a smart pointer.
You can't just blindly substitute std::auto_ptr for every raw pointer. In particular, auto_ptr transfers ownership on assignment, which is great for some purposes but definitely not for others.
There is a real reason there are several varieties of smart pointers (e.g., shared_ptr, weak_ptr, auto_ptr/unique_ptr, etc.) Each fulfills a different purpose. One major weakness of a "raw" pointer is that it has so many different uses (and has that versatility largely because it does little or nothing to assist in any one purpose). Smart pointers tend to be more specialized, which means they can be more intelligent about doing one thing well, but also means you have to pick the right one for the job or it'll end up dong the wrong things entirely.
Smart pointers allows to define automatically the life-time of objects it refers to. That's the main thing to understand.
So, no, you shouldn't use smart pointers everywhere, only when you want to automate life-time of your objects instead of having, for example, an object managing those objects inside from birth to death. It's like any tool : it solves specific kind of problems, not all problems.
For each object, you should think about the life cycle it will go through, then choose one of the simplest correct and efficient solution. Sometimes it will be shared_ptr because you want the object to be used by several components and to be automatically destroyed once not used anymore. Sometimes you need the object only in the current scope/parent-object, so scoped_ptr might be more appropriate. Sometimes you need only one owner of the instance, so unique_ptr is appropriate. Maybe you'll find cases where you know an algorithm that might define/automate the lifetime of an object, so you'll write your own smart pointer for it.
For example of opposite case, using pools forbids you to use smart_ptr. Naked pointers might be a more welcome simple and efficient solution in this particular (but common in embedded software) case.
See this answer (from me) for more explainations : https://softwareengineering.stackexchange.com/questions/57581/in-c-is-it-a-reflection-of-poor-software-design-if-objects-are-deleted-manuall/57611#57611
Should they really be used, even if I check memory leaks on allocated memory blocks?
YES
The whole purpose of smart pointers is, it help you implement RAII(SBRM), which basically lets the resource itself take the responsibility of its deallocation and the resource doesn't have to rely on you explicitly remembering to deallocate it.
If I do not use them, can this be considered as programming weakness?
NO,
It is not a weakness but a inconvenience or unnecessary hassle to explicitly manage the resources by yourself if you are not using Smart pointers(RAII). The purpose of smart pointers to implement RAII is to provide efficient and hassle free way of handling resources and you would just not be making use of it if you are not using it. It is highly recommended to use it purely for the numerous advantages it provides.
If the smart pointers(ex: std::auto_ptr)are strongly recommended, should I use them instead of every naked pointer?
YES
You should use smart pointers wherever possible because simply there is no drawback of using them and just numerous advantages to use them.
Don't use auto_ptr though because it is already deprecated!! There are various other smart pointers available that you can use depending on the requirement. You can refer the link above to know more about them.
It's a tricky question, and the fact that there is currently a mode to
use smart pointers everywhere doesn't make things any easier. Smart
pointers can help in certain situations, but you certainly can't just
use them everywhere, without thinking. There are many different types
of smart pointers, and you have to think about which one is appropriate
in every case; and even then, most of your pointers (at least in typical
applications in the domains I've worked in) should be raw pointers.
Regardless of the approach, several points are worth mentionning:
Don't use dynamic allocation unless you have to. In many
applications, the only things that need to be allocated dynamically
are objects with specific lifetimes, determined by the application
logic. Don't use dynamic allocation for objects with value semantics.
With regards to entity object, those which model something in the
application domain: these should be created and destructed according
to the program logic. Irregardless of whether there are pointers to
them or not. If their destruction causes a problem, then you have an
error in your program logic somewhere (not handling an event correctly,
etc.), and using smart pointers won't change anything.
A typical example of an entity object might be client connection in a
server, is created when the client connects, and destructed when the
client disconnects. In many such cases, the most appropriate management
will be a delete this, since it is the connection which will receive
the disconnection event. (Objects which hold pointers to such an object
will have to register with it, in order to be informed of its
destruction. But such pointers are purely for navigation, and shouldn't
be smart pointers.)
What you'll usually find when people try to use smart pointers
everywhere is that memory leaks; typical reference counters don't
handle cycles, and of course, typical applications are full of cycles: a
Connection will point to the Client which is connected to it, and
the Client will contain a list of Connection where it is connected.
And if the smart pointer is boost::shared_ptr, there's also a definite
risk of dangling pointers: it's far to easy to create two
boost::shared_ptr to the same address (which results in two counters
for the references).
If the smart pointers(ex: std::auto_ptr) are strongly recommended, should I use them instead of every naked pointer?
In my opinion, yes, you should it for every pointer that you own.
Here are my ideas on resource management in C++ (feel free to disagree):
Good resource management requires thinking in terms of ownership.
Resources should be managed managed by objects (RAII).
Usually single ownership is preferred over shared ownership.
Ideally the creator is also the owner of the object. (However, there are situations where ownership transfer is in order.)
This leads to the following practices:
Make boost::scoped_ptr the default choice for local and member variables. Do keep in mind that using scoped_ptr for member variables will make your class non-copyable. If you don't want this see next point.
Use boost::shared_ptr for containers or to enable shared ownership:
// Container of MyClass* pointers:
typedef boost::shared_ptr<MyClass> MyClassPtr;
std::vector<MyClassPtr> vec;
The std::auto_ptr (C++03) can be used for ownership transfer. For example as the return value of factory or clone methods:
// Factory method returns auto_ptr
std::auto_ptr<Button> button = Button::Create(...);
// Clone method returns auto_ptr
std::auto_ptr<MyClass> copy = obj->clone();
// Use release() to transfer the ownership to a scoped_ptr or shared_ptr
boost::scoped_ptr<MyClass> copy(obj->clone().release());
If you need to store a pointer that you don't own then you can use a raw pointer:
this->parent = inParentObject;
In certain situations a boost::weak_pointer is required. See the documentation for more information.
In general you should prefer smart pointers, but there are a couple of exceptions.
If you need to recast a pointer, for example to provide a const version, that becomes nearly impossible with smart pointers.
Smart pointers are used to control object lifetime. Often when you are passing a pointer to a function, the function will not affect the lifetime; the function does not try to delete the object, and it does not store a copy of the pointer. The calling code cannot delete the object until the function returns. In that case a dumb pointer is perfectly acceptable.
Yes. Assuming you have C++0x available to you, use unique_ptr or shared_ptr (as appropriate) to wrap all the raw pointers you new up. With the help of make_shared, shared_ptr is highly performant. If you don't need reference counting then unique_ptr will get you better perf. Both of them behave properly in collections and other circumstances where auto_ptr was a dumb pointer.
Using smart pointers (shared_ptr or otherwise) EVERYWHERE is a bad idea. It's good to use shared_ptr to manage the lifetime of objects/resources but it's not a good idea to pass them as parameters to functions etc. That increases the likelihood of circular references and other extremely hard to track bugs (Personal experience: Try figuring out who should not be holding onto a resource in 2 millions lines of code if every function invocation changes the reference count - you will end up thinking the guys who do this kind of thing are m***ns). Better to pass a raw pointer or a reference.
The situation is even worse when combined with lazy instantiation.
I would suggest that developers should know the lifecycle of the objects they write and use shared_ptr to control that (RAII) but not extend shared_ptr use beyond that.

Once you've adopted boost's smart pointers, is there any case where you use raw pointers?

I'm curious as I begin to adopt more of the boost idioms and what appears to be best practices I wonder at what point does my c++ even remotely look like the c++ of yesteryear, often found in typical examples and in the minds of those who've not been introduced to "Modern C++"?
I don't use shared_ptr almost at all, because I avoid shared ownership in general. Therefore, I use something like boost::scoped_ptr to "own" an object, but all other references to it will be raw pointers. Example:
boost::scoped_ptr<SomeType> my_object(new SomeType);
some_function(my_object.get());
But some_function will deal with a raw pointer:
void some_function(SomeType* some_obj)
{
assert (some_obj);
some_obj->whatever();
}
Just a few off the top of my head:
Navigating around in memory-mapped files.
Windows API calls where you have to over-allocate (like a LPBITMAPINFOHEADER).
Any code where you're munging around in arbitrary memory (VirtualQuery() and the like).
Just about any time you're using reinterpret_cast<> on a pointer.
Any time you use placement-new.
The common thread here is "any situation in which you need to treat a piece of memory as something other than a resource over which you have allocation control".
These days I've pretty much abandoned all use of raw pointers. I've even started looking through our code base for places where raw pointers were used and switched them to a smart pointer variant. It's amazing how much code I've been able to delete by doing this simple act. There is so much code wasted on lifetime management of raw C++ pointers.
The only places where I don't use pointers is for a couple of interop scenarios with other code bases I don't have control over.
I find the primary difference between 'modern' C++ and the old* stuff is careful use of class invariants and encapsulation. Well organised code tends naturally to have fewer pointers flying around. I'm almost as nervous swimming in shared_ptrs as I would be in news and deletes.
I'm looking forward to unique_ptr in C++0x. I think that will tidy away the few (smart) pointers that do still roam the wild.
*still unfortunately very common
Certainly any time you're dealing with a legacy library or API you'll need to pass a raw pointer, although you'll probably just extract it from your smart pointer temporarily.
In fact it is always safe to pass a raw pointer to a function, as long as the function does not try to keep a copy of the pointer in a global or member variable, or try to delete it. With these restrictions in place, the function cannot affect the lifetime of the object, and the only reason for a smart pointer is to manage the object lifetime.
I still use regular pointers in resource-sensitive code or other code that needs tiny footprint, such as certain exceptions, where I cannot assume that any data is valid and must also assume that I am running out of memory too.
Managed memory is almost always superior to raw otherwise, because it means that you don't have to deal with deleting it at the right place, but still have great control over the construction and destruction points of your pointers.
Oh, and there's one other place to use raw pointers:
boost::shared_ptr<int> ptr(new int);
I still use raw pointers on devices that have memory mapped IO, such as embedded systems, where having a smart pointer doesn't really make sense because you will never need or be able to delete it.
If you have circular data structures, e.g., A points to B and B points back to A, you can't use naively use smart pointers for both A and B, since then the objects will only be freed extra work. To free the memory, you have to manually clear the smart pointers, which is about as bad as the delete the smart pointers get rid of.
You might thing this doesn't happen very often, but suppose you have Parent object that has smart pointers to a bunch of Child objects. Somewhere along the way someone needs to look up a the Parent for a Child, so they add a smart pointer member to Child that points back to the parent. Silently, memory is no longer freed.
Some care is required. Smart pointers are not equivalent to garbage collection.
I'm writing C++ that has to co-exist with Objective C (using Objective C++ to bridge).
Because C++ objects declared as part of Objective C++ classes don't have constructors or destructors called you can't really hold them there in smart pointers.
So I tend to use raw pointers, although often with boost::intrustive_ptr and an internal ref count.
Not that I would do it, but you need raw pointers to implement, say, a linked list or a graph. But it would be much smarter to use std::list<> or boost::graph<>.