I'm studying (well, trying to) C right now, but I'm limited to working in Windows XP. I've managed to set up and learn how to use Emacs and can compile simple C programs with gcc (from Emacs no less!), but I'm getting to the point where I'd like to install something like SDL to play around with it.
The thing is that the installation instructions for SDL indicate that, on a Win32 environment using MingW, I would need to use MSYS to run ./configure and make/make install to install SDL, like one would do on Linux. I noticed that when I unzipped the SDL-dev package (forgot the exact name, sorry) there were folders there that corresponded to a folder in the MinGW directory (SDL/include -> MinGW/include).
Am I right in saying that all the ./configure and make commands do is move these files from one directory to another? Couldn't I just move those files by hand and spare myself the trouble of installing and configuring MSYS (which, to be honest, confuses me greatly)?
The build process usually works like this: the configure script finds the appropriate settings for the compilation (like which features to enable, the paths to the required libraries, which compiler to use etc.) and creates a Makefile accordingly. make then compiles the source code to binaries. make install copies the created binaries, the headers, and the other files that belong to the library to the appropriate places.
You can't just copy the files from the source archive, because the source archive does not contain the binary files (or any other files that are created during the make step), so all you'd copy would be the headers, which aren't enough to use the library.
In most case, configure and make will discover the compiler/environment of your machine and build the suitable binary, respectively. Therefore, unfortunately, it will not be easy as moving/copying header files to new locations.
However, in some cases, the library can be the "header only" library. Which means you need only header files to use it.
I have no experience with MSYS and SDL. But the basics of configure and make is worth learning (especially if you are going to program any C/C++ in non-Windows environment.)
Related
I am making a modified C++ compiler and I have it built and tested locally. However, I would like to be able to package my build for Windows, Linux (Debian), and Mac OSX.
All of the instructions I can find online deal with building gcc but have no regard for making something distributable (or perhaps I am missing something?). I know for Windows I will need to bundle MinGW somehow, but that only further confuses me - and I have no idea how well Mac works with GCC these days..
Can anyone layout a set of discrete high-level steps I could try on each system so I can allow people to install my modified compiler easily?
First make sure your project installs well including executables, headers, runtime dependencies. If you're using something like cmake, this is a matter of installing things to CMAKE_INSTALL_PREFIX while possibly appending GnuInstallDirs. If you are using make, then you need to ensure that make install --prefix=... works well.
From here, you can target each platform independently. Treat the packaging independently from your project. Like Chipster mentioned, making rpm files isn't so tough. deb files for Debian-based OSs, tar.xz files for Arch-based OSs are similar. The rules for creating these packages can use your install rules to create the package. You mentioned mingw. If you're targeting an msys distribution of mingw for Windows deployment, then the Arch-based packaging of pacman will work on msys as well. You can slowly work on supporting one-platform at a time with almost no changes to your actual project.
Typically in the open-source world, people will release a tar.gz file supporting ./configure && make && make install or similar. Then someone associated with the platform (like a Debian-developer) will find your project, make some packaging rules for it, and release it into their distribution. That means your project can be totally agnostic to where it's being release. It also means you don't really need to worry about MacOS yet, you can wait until you have someone who wants it there, or some hardware to test it on.
If you really want to be in control of how things are packaged for each platform from inside of your project, and you are already using cmake, cpack is a great tool which helps out. After writing cpack rules for your project, you can simply type cpack to generate many types of deployable archives. You won't get the resulting *.deb file into Debian or Ubuntu official archives, but at least people can using those formats can install your package.
Also, consider releasing one package with the runtime libraries, and one with the development content (headers, compiler, static libraries). This way, if someone uses your compiler, they can re-distribute the runtime libraries which is probably going to be a much simpler install.
I want build latest harfbuzz-ng library on Windows 7. But in build system by default I must go through long quest to gain: ragel, pkg-config, gtkdocize and other stuff. Even in the end if I get all what need for build system I get errors (sorry cannot say which concrete errors), last time I tried to build this library 2 month ago). Maybe on Linux system it is easy to get and build all this stuff but on Windows always something doesn't want to be compiled. Or the problem is that I don't find instructions which guide me on Windows, only Linux.
What I want to get is simple instructions how build only harfbuzz-ng with freetype dependency (and maybe add ICU) by MinGW compiler on Windows.
Thanks you very much.
For anyone reading this, have a look at harfbuzz.cc in the project which makes you able to use harfbuzz without any build system, just include it in one of your sources, no build system is required, define HB_NO_MT or even HB_TINY (which brings a minimal harfbuzz) if you don't use harfbuzz in multithread mode.
I don't know i this is the answer you are looking for. I am trying to work with Harfbuzz as well and did this through several attempts which did not work out for various reasons.
One (old) example you could use as a starter is: HarfBuzz static lib. The .lib-file generated works with UCDN and just needs this file plus a source for the Freetype-functions to provide the necessary FT_Face-parameter (i did this by compiling another .lib via the freetype-sourcecode (freetype.org/download.html).
But I am unsure if this will work out for the MinGW-compiler (you don't use VC++ as IDE do you??).
You may find of interest the MSYS2 build system. It is essentially a linux-style packaging system built on top of Windows(TM). You can download and install binary packages with simple commands (including automatic dependency solving). If you want to download a source package you can do that as well. http://msys2.github.io
I'm trying to use the Quadprog++ library (http://quadprog.sourceforge.net/). I don't understand the instructions though.
To build the library simply go through the ./configure; make; make
install cycle.
In order to use it, you will be required to include in your code file
the "Array.hh" header, which contains a handy C++ implementation of
Vector and Matrices.
There are some "configure", and "MakeFile" files, but they have no extension and I have no idea what to do with them. There are also some ".am", ".in" and ".ac" extensions in the folder.
Does this look familiar to anyone? What do I do with this?
(Edit: On Windows.)
This package is built using the autotools. These files you talk to (*.am, *.in...) are because of the tools automake, and autoconf.
Autotools is a de-facto standard in the GNU/Linux world. Not everybody uses it, but if they do you ease the work of package and distribution managers. Actually they should be portable to any POSIX system.
That said, I'm guessing that you are using a non-unix machine, such as Windows, so the configure script is not directly runable in your system. If you insist in keep using Windows, wich you probably will, your options are:
Use MinGW and MSYS to get a minimal build enviroment compatible with autotools.
Use Cygwin and create a POSIX like environment in your Windows.
Create a VS project, add all the source of the library in there, compile and debug the errors they may arise, as if the code had been written by you.
Search for someone that already did the work and distributes a binary DLL, or similar.
(My favourite!) Get a Linux machine, install a cross-compiler environment to build Windows binaries, and do configure --host i686-mingw32 ; make.
This instruction say how can be build an program delivered like a tarball in Linux. To understand take a look on Why always ./configure; make; make install; as 3 separate steps?.
This can be confusing at first, but here you go. Type these in as shown below:
cd <the_directory_with_the_configure_file>
./configure
At this point, a bunch of stuff will roll past on the screen. This is Autoconf running (for more details, see http://www.edwardrosten.com/code/autoconf/index.html)
When it's done, type:
make
This initiates the build process. (To learn more about GNU make, check out Comprehensive gnu make / gcc tutorial). This will cause several build messages to be printed out.
When this is done, type:
sudo make install
You will be asked for the root password. If this is not your own machine (or you do not have superuser access), then contact the person who administers this computer.
If this is your computer, type in the root password and the library should install in /usr/local/lib/ or something similar (watch the screen closely to see where it puts the .so file).
The rest of it (include the .hh file) seems self-explanatory.
Hope that helps!
I've downloaded the midiIO library and in the readme it says:
edit the file Makefile.library and set the OSTYPE and OSSUBTYPE to match your hardware/os setup.
type "make library" to compile the library. It will be created as lib/libmidiio.a in unix.
edit the file Makefile.examples and set the OSTYPE and OSSUBTYPE to match your hardware/os setup.
Also, if you are using ALSA, then uncomment out the POSTFLAG to use the alsa library (-lasound).
type "make examples" to compile the example programs in the examples directory. The example programs will be place in the bin directory.
1 + 3 are fine but 2 + 4 are over my head. I've worked in a unix environment before and have used gcc with flags but I need to get this done in Windows. I typically use Visual Studio but don't know how to achieve this with that.. I've downloaded Dev-C++ if that's any use but I don't know what to do with the makefiles?
Ignore the makefiles and set up a fresh project in Visual C++. Make your target a static library (which will be a .lib file in Win32, not a .a file as in unix as you probably know). It is unlikely that the project will build out of the box, so you might have to deal with some compilation errors relating to unix-specific symbols. I took a quick look at the source code, and it looks fairly well-written, so I don't think you should have many problems building it directly in Windows.
Alternately, you could build the source using the real make tool in cygwin, but this means that you would need to distribute the cygwin library with your final product. This may or may not be more trouble than it's worth, especially if you are already using VC++ for the rest of your project's code.
I'm in the middle of setting up an build environment for a c++ game project. Our main requirement is the ability to build not just our game code, but also its dependencies (Ogre3D, Cegui, boost, etc.). Furthermore we would like to be able build on Linux as well as on Windows as our development team consists of members using different operating systems.
Ogre3D uses CMake as its build tool. This is why we based our project on CMake too so far. We can compile perfectly fine once all dependencies are set up manually on each team members system as CMake is able to find the libraries.
The Question is if there is an feasible way to get the dependencies set up automatically. As a Java developer I know of Maven, but what tools do exist in the world of c++?
Update: Thanks for the nice answers and links. Over the next few days I will be trying out some of the tools to see what meets our requirements, starting with CMake. I've indeed had my share with autotools so far and as much as I like the documentation (the autobook is a very good read), I fear autotools are not meant to be used on Windows natively.
Some of you suggested to let some IDE handle the dependency management. We consist of individuals using all possible technologies to code from pure Vim to fully blown Eclipse CDT or Visual Studio. This is where CMake allows use some flexibility with its ability to generate native project files.
In the latest CMake 2.8 version there is the new ExternalProject module.
This allows to download/checkout code, configure and build it as part of your main build tree.
It should also allow to set dependencies.
At my work (medical image processing group) we use CMake to build all our own libraries and applications. We have an in-house tool to track all the dependencies between projects (defined in a XML database). Most of the third party libraries (like Boost, Qt, VTK, ITK etc..) are build once for each system we support (MSWin32, MSWin64, Linux32 etc..) and are commited as zip-files in the version control system. CMake will then extract and configure the correct zip file depending on which system the developer is working on.
I have been using GNU Autotools (Autoconf, Automake, Libtool) for the past couple of months in several projects that I have been involved in and I think it works beautifully. Truth be told it does take a little bit to get used to the syntax, but I have used it successfully on a project that requires the distribution of python scripts, C libraries, and a C++ application. I'll give you some links that helped me out when I first asked a similar question on here.
The GNU Autotools Page provides the best documentation on the system as a whole but it is quite verbose.
Wikipedia has a page which explains how everything works. Autoconf configures the project based upon the platform that you are about to compile on, Automake builds the Makefiles for your project, and Libtool handles libraries.
A Makefile.am example and a configure.ac example should help you get started.
Some more links:
http://www.lrde.epita.fr/~adl/autotools.html
http://www.developingprogrammers.com/index.php/2006/01/05/autotools-tutorial/
http://sources.redhat.com/autobook/
One thing that I am not certain on is any type of Windows wrapper for GNU Autotools. I know you are able to use it inside of Cygwin, but as for actually distributing files and dependencies on Windows platforms you are probably better off using a Windows MSI installer (or something that can package your project inside of Visual Studio).
If you want to distribute dependencies you can set them up under a different subdirectory, for example, libzip, with a specific Makefile.am entry which will build that library. When you perform a make install the library will be installed to the lib folder that the configure script determined it should use.
Good luck!
There are several interesting make replacements that automatically track implicit dependencies (from header files), are cross-platform and can cope with generated files (e.g. shader definitions). Two examples I used to work with are SCons and Jam/BJam.
I don't know of a cross-platform way of getting *make to automatically track dependencies.
The best you can do is use some script that scans source files (or has C++ compiler do that) and finds #includes (conditional compilation makes this tricky) and generates part of makefile.
But you'd need to call this script whenever something might have changed.
The Question is if there is an feasible way to get the dependencies set up automatically.
What do you mean set up?
As you said, CMake will compile everything once the dependencies are on the machines. Are you just looking for a way to package up the dependency source? Once all the source is there, CMake and a build tool (gcc, nmake, MSVS, etc.) is all you need.
Edit: Side note, CMake has the file command which can be used to download files if they are needed: file(DOWNLOAD url file [TIMEOUT timeout] [STATUS status] [LOG log])
Edit 2: CPack is another tool by the CMake guys that can be used to package up files and such for distribution on various platforms. It can create NSIS for Windows and .deb or .tgz files for *nix.
At my place of work (we build embedded systems for power protection) we used CMake to solve the problem. Our setup allows cmake to be run from various locations.
/
CMakeLists.txt "install precompiled dependencies and build project"
project/
CMakeLists.txt "build the project managing dependencies of subsystems"
subsystem1/
CMakeLists.txt "build subsystem 1 assume dependecies are already met"
subsystem2/
CMakeLists.txt "build subsystem 2 assume dependecies are already met"
The trick is to make sure that each CMakeLists.txt file can be called in isolation but that the top level file can still build everything correctly. Technically we don't need the sub CMakeLists.txt files but it makes the developers happy. It would be an absolute pain if we all had to edit one monolithic build file at the root of the project.
I did not set up the system (I helped but it is not my baby). The author said that the boost cmake build system had some really good stuff in it, that help him get the whole thing building smoothly.
On many *nix systems, some kind of package manager or build system is used for this. The most common one for source stuff is GNU Autotools, which I've heard is a source of extreme grief. However, with a few scripts and an online depository for your deps you can set up something similar like so:
In your project Makefile, create a target (optionally with subtargets) that covers your dependencies.
Within the target for each dependency, first check to see if the dep source is in the project (on *nix you can use touch for this, but you could be more thorough)
If the dep is not there, you can use curl, etc to download the dep
In all cases, have the dep targets make a recursive make call (make; make install; make clean; etc) to the Makefile (or other configure script/build file) of the dependency. If the dep is already built and installed, make will return fairly promptly.
There are going to be lots of corner cases that will cause this to break though, depending on the installers for each dep (perhaps the installer is interactive?), but this approach should cover the general idea.
Right now I'm working on a tool able to automatically install all dependencies of a C/C++ app with exact version requirement :
compiler
libs
tools (cmake, autotools)
Right now it works, for my app. (Installing UnitTest++, Boost, Wt, sqlite, cmake all in correct order)
The tool, named «C++ Version Manager» (inspired by the excellent ruby version manager), is coded in bash and hosted on github : https://github.com/Offirmo/cvm
Any advices and suggestions are welcomed.