Efficient way to determine number of digits in an integer - c++

What is a very efficient way of determining how many digits there are in an integer in C++?

Well, the most efficient way, presuming you know the size of the integer, would be a lookup. Should be faster than the much shorter logarithm based approach. If you don't care about counting the '-', remove the + 1.
#include <climits>
// generic solution
template <class T>
int numDigits(T number)
{
int digits = 0;
if (number < 0) digits = 1; // remove this line if '-' counts as a digit
while (number) {
number /= 10;
digits++;
}
return digits;
}
// partial specialization optimization for 64-bit numbers
template <>
int numDigits(int64_t x) {
if (x == INT64_MIN) return 19 + 1;
if (x < 0) return digits(-x) + 1;
if (x >= 10000000000) {
if (x >= 100000000000000) {
if (x >= 10000000000000000) {
if (x >= 100000000000000000) {
if (x >= 1000000000000000000)
return 19;
return 18;
}
return 17;
}
if (x >= 1000000000000000)
return 16;
return 15;
}
if (x >= 1000000000000) {
if (x >= 10000000000000)
return 14;
return 13;
}
if (x >= 100000000000)
return 12;
return 11;
}
if (x >= 100000) {
if (x >= 10000000) {
if (x >= 100000000) {
if (x >= 1000000000)
return 10;
return 9;
}
return 8;
}
if (x >= 1000000)
return 7;
return 6;
}
if (x >= 100) {
if (x >= 1000) {
if (x >= 10000)
return 5;
return 4;
}
return 3;
}
if (x >= 10)
return 2;
return 1;
}
// partial specialization optimization for 32-bit numbers
template<>
int numDigits(int32_t x)
{
if (x == INT32_MIN) return 10 + 1;
if (x < 0) return numDigits(-x) + 1;
if (x >= 10000) {
if (x >= 10000000) {
if (x >= 100000000) {
if (x >= 1000000000)
return 10;
return 9;
}
return 8;
}
if (x >= 100000) {
if (x >= 1000000)
return 7;
return 6;
}
return 5;
}
if (x >= 100) {
if (x >= 1000)
return 4;
return 3;
}
if (x >= 10)
return 2;
return 1;
}
// partial-specialization optimization for 8-bit numbers
template <>
int numDigits(char n)
{
// if you have the time, replace this with a static initialization to avoid
// the initial overhead & unnecessary branch
static char x[256] = {0};
if (x[0] == 0) {
for (char c = 1; c != 0; c++)
x[c] = numDigits((int32_t)c);
x[0] = 1;
}
return x[n];
}

The simplest way is to do:
unsigned GetNumberOfDigits (unsigned i)
{
return i > 0 ? (int) log10 ((double) i) + 1 : 1;
}
log10 is defined in <cmath> or <math.h>. You'd need to profile this to see if it's faster than any of the others posted here. I'm not sure how robust this is with regards to float point precision. Also, the argument is unsigned as negative values and log don't really mix.

Perhaps I misunderstood the question but doesn't this do it?
int NumDigits(int x)
{
x = abs(x);
return (x < 10 ? 1 :
(x < 100 ? 2 :
(x < 1000 ? 3 :
(x < 10000 ? 4 :
(x < 100000 ? 5 :
(x < 1000000 ? 6 :
(x < 10000000 ? 7 :
(x < 100000000 ? 8 :
(x < 1000000000 ? 9 :
10)))))))));
}

int digits = 0; while (number != 0) { number /= 10; digits++; }
Note: "0" will have 0 digits! If you need 0 to appear to have 1 digit, use:
int digits = 0; do { number /= 10; digits++; } while (number != 0);
(Thanks Kevin Fegan)
In the end, use a profiler to know which of all the answers here will be faster on your machine...

Practical joke:
This is the most efficient way (number of digits is calculated at compile-time):
template <unsigned long long N, size_t base=10>
struct numberlength
{
enum { value = 1 + numberlength<N/base, base>::value };
};
template <size_t base>
struct numberlength<0, base>
{
enum { value = 0 };
};
May be useful to determine the width required for number field in formatting, input elements etc.

convert to string and then use built-in functions
unsigned int i;
cout<< to_string(i).length()<<endl;

See Bit Twiddling Hacks for a much shorter version of the answer you accepted. It also has the benefit of finding the answer sooner if your input is normally distributed, by checking the big constants first. (v >= 1000000000) catches 76% of the values, so checking that first will on average be faster.

int x = 1000;
int numberOfDigits = x ? static_cast<int>(log10(abs(x))) + 1 : 1;

A previous poster suggested a loop that divides by 10.
Since multiplies on modern machines are a lot faster, I'd recommend the following code instead:
int digits = 1, pten=10; while ( pten <= number ) { digits++; pten*=10; }

The ppc architecture has a bit counting instruction. With that, you can determine the log base 2 of a positive integer in a single instruction. For example, 32 bit would be:
#define log_2_32_ppc(x) (31-__cntlzw(x))
If you can handle a small margin of error on large values you can convert that to log base 10 with another few instructions:
#define log_10_estimate_32_ppc(x) (9-(((__cntlzw(x)*1233)+1545)>>12))
This is platform specific and slightly inaccurate, but also involves no branches, division or conversion to floating point. All depends on what you need.
I only know the ppc instructions off hand, but other architectures should have similar instructions.

#include <iostream>
#include <math.h>
using namespace std;
int main()
{
double num;
int result;
cout<<"Enter a number to find the number of digits, not including decimal places: ";
cin>>num;
result = ((num<=1)? 1 : log10(num)+1);
cout<<"Number of digits "<<result<<endl;
return 0;
}
This is probably the simplest way of solving your problem, assuming you only care about digits before the decimal and assuming anything less than 10 is just 1 digit.

If faster is more efficient, this is a improvement on andrei alexandrescu's improvement. His version was already faster than the naive way (dividing by 10 at every digit). The version below is constant time and faster at least on x86-64 and ARM for all sizes, but occupies twice as much binary code, so it is not as cache-friendly.
Benchmarks for this version vs alexandrescu's version on my PR on facebook folly.
Works on unsigned, not signed.
inline uint32_t digits10(uint64_t v) {
return 1
+ (std::uint32_t)(v>=10)
+ (std::uint32_t)(v>=100)
+ (std::uint32_t)(v>=1000)
+ (std::uint32_t)(v>=10000)
+ (std::uint32_t)(v>=100000)
+ (std::uint32_t)(v>=1000000)
+ (std::uint32_t)(v>=10000000)
+ (std::uint32_t)(v>=100000000)
+ (std::uint32_t)(v>=1000000000)
+ (std::uint32_t)(v>=10000000000ull)
+ (std::uint32_t)(v>=100000000000ull)
+ (std::uint32_t)(v>=1000000000000ull)
+ (std::uint32_t)(v>=10000000000000ull)
+ (std::uint32_t)(v>=100000000000000ull)
+ (std::uint32_t)(v>=1000000000000000ull)
+ (std::uint32_t)(v>=10000000000000000ull)
+ (std::uint32_t)(v>=100000000000000000ull)
+ (std::uint32_t)(v>=1000000000000000000ull)
+ (std::uint32_t)(v>=10000000000000000000ull);
}

I like Ira Baxter's answer. Here is a template variant that handles the various sizes and deals with the maximum integer values (updated to hoist the upper bound check out of the loop):
#include <boost/integer_traits.hpp>
template<typename T> T max_decimal()
{
T t = 1;
for (unsigned i = boost::integer_traits<T>::digits10; i; --i)
t *= 10;
return t;
}
template<typename T>
unsigned digits(T v)
{
if (v < 0) v = -v;
if (max_decimal<T>() <= v)
return boost::integer_traits<T>::digits10 + 1;
unsigned digits = 1;
T boundary = 10;
while (boundary <= v) {
boundary *= 10;
++digits;
}
return digits;
}
To actually get the improved performance from hoisting the additional test out of the loop, you need to specialise max_decimal() to return constants for each type on your platform. A sufficiently magic compiler could optimise the call to max_decimal() to a constant, but specialisation is better with most compilers today. As it stands, this version is probably slower because max_decimal costs more than the tests removed from the loop.
I'll leave all that as an exercise for the reader.

#include <stdint.h> // uint32_t [available since C99]
/// Determine the number of digits for a 32 bit integer.
/// - Uses at most 4 comparisons.
/// - (cX) 2014 adolfo.dimare#gmail.com
/// - \see http://stackoverflow.com/questions/1489830/#27669966
/** #d == Number length vs Number of comparisons == #c
\code
#d | #c #d | #c
---+--- ---+---
10 | 4 5 | 4
9 | 4 4 | 4
8 | 3 3 | 3
7 | 3 2 | 3
6 | 3 1 | 3
\endcode
*/
unsigned NumDigits32bs(uint32_t x) {
return // Num-># Digits->[0-9] 32->bits bs->Binary Search
( x >= 100000u // [6-10] [1-5]
? // [6-10]
( x >= 10000000u // [8-10] [6-7]
? // [8-10]
( x >= 100000000u // [9-10] [8]
? // [9-10]
( x >= 1000000000u // [10] [9]
? 10
: 9
)
: 8
)
: // [6-7]
( x >= 1000000u // [7] [6]
? 7
: 6
)
)
: // [1-5]
( x >= 100u // [3-5] [1-2]
? // [3-5]
( x >= 1000u // [4-5] [3]
? // [4-5]
( x >= 10000u // [5] [4]
? 5
: 4
)
: 3
)
: // [1-2]
( x >= 10u // [2] [1]
? 2
: 1
)
)
);
}

sample console output
long long num = 123456789;
int digit = 1;
int result = 1;
while (result != 0)
{
result = num / 10;
if (result != 0)
{
++digit;
}
num = result;
}
cout << "Your number has " << digit << "digits" << endl;

Use the best and efficient way of log10(n) approach which gives you the desired result in just logarithmic time.
For negative number abs() converts it into positive number and for the number 0, the if condition stops you from proceeding further and prints the output as 0.
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n; std::cin >> n;
if(n)
std::cout << floor(log10(abs(n))+1) << std::endl;
else
std::cout << 0 << std::endl;
return 0;
}

You can use this to calculate the number of digits on compile time:
C++20 solution:
template<std::integral auto num>
constexpr int number_of_digits = num >= -9 && num <= 9 ? 1 : 1 + number_of_digits<num / 10>;
Works for negative numbers, zero and positive numbers.
Note: to make it work with C++14 change "std::integral auto" to "long long".
Note: if you want the minus sign in negative numbers to also be counted, then change -9 to 0;
Usage example:
int k = number_of_digits<101>; // k = 3
The way this works is that a number is going to be divided by 10 recursively until it becomes a single digit, in which case we finish by adding +1 to the total sum.

Yet another code snippet, doing basically the same as Vitali's but employs binary search. Powers array is lazy initialized once per unsigned type instance. Signed type overload takes care of minus sign.
#include <limits>
#include <type_traits>
#include <array>
template <class T>
size_t NumberOfDecPositions ( T v, typename std::enable_if<std::is_unsigned<T>::value>::type* = 0 )
{
typedef std::array<T,std::numeric_limits<T>::digits10+1> array_type;
static array_type powers_of_10;
if ( powers_of_10.front() == 0 )
{
T n = 1;
for ( T& i: powers_of_10 )
{
i = n;
n *= 10;
}
}
size_t l = 0, r = powers_of_10.size(), p;
while ( l+1 < r )
{
p = (l+r)/2;
if ( powers_of_10[p] <= v )
l = p;
else
r = p;
}
return l + 1;
};
template <class T>
size_t NumberOfDecPositions ( T v, typename std::enable_if<std::is_signed<T>::value>::type* = 0 )
{
typedef typename std::make_unsigned<T>::type unsigned_type;
if ( v < 0 )
return NumberOfDecPositions ( static_cast<unsigned_type>(-v) ) + 1;
else
return NumberOfDecPositions ( static_cast<unsigned_type>(v) );
}
If anybody cares of further optimization, please note that the first element of powers array is never used, and the l appears with +1 2 times.

in case the number of digits AND the value of each digit position is needed use this:
int64_t = number, digitValue, digits = 0; // or "int" for 32bit
while (number != 0) {
digitValue = number % 10;
digits ++;
number /= 10;
}
digit gives you the value at the number postition which is currently processed in the loop. for example for the number 1776 the digit value is:
6 in the 1st loop
7 in the 2nd loop
7 in the 3rd loop
1 in the 4th loop

C++11 update of preferred solution:
#include <limits>
#include <type_traits>
template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer, unsigned int>::type
numberDigits(T value) {
unsigned int digits = 0;
if (value < 0) digits = 1;
while (value) {
value /= 10;
++digits;
}
return digits;
}
prevents template instantiation with double, et. al.

// Meta-program to calculate number of digits in (unsigned) 'N'.
template <unsigned long long N, unsigned base=10>
struct numberlength
{ // http://stackoverflow.com/questions/1489830/
enum { value = ( 1<=N && N<base ? 1 : 1+numberlength<N/base, base>::value ) };
};
template <unsigned base>
struct numberlength<0, base>
{
enum { value = 1 };
};
{
assert( (1 == numberlength<0,10>::value) );
}
assert( (1 == numberlength<1,10>::value) );
assert( (1 == numberlength<5,10>::value) );
assert( (1 == numberlength<9,10>::value) );
assert( (4 == numberlength<1000,10>::value) );
assert( (4 == numberlength<5000,10>::value) );
assert( (4 == numberlength<9999,10>::value) );

/// Determine the number of digits for a 64 bit integer.
/// - Uses at most 5 comparisons.
/// - (cX) 2014 adolfo.dimare#gmail.com
/// - \see http://stackoverflow.com/questions/1489830/#27670035
/** #d == Number length vs Number of comparisons == #c
\code
#d | #c #d | #c #d | #c #d | #c
---+--- ---+--- ---+--- ---+---
20 | 5 15 | 5 10 | 5 5 | 5
19 | 5 14 | 5 9 | 5 4 | 5
18 | 4 13 | 4 8 | 4 3 | 4
17 | 4 12 | 4 7 | 4 2 | 4
16 | 4 11 | 4 6 | 4 1 | 4
\endcode
*/
unsigned NumDigits64bs(uint64_t x) {
return // Num-># Digits->[0-9] 64->bits bs->Binary Search
( x >= 10000000000ul // [11-20] [1-10]
?
( x >= 1000000000000000ul // [16-20] [11-15]
? // [16-20]
( x >= 100000000000000000ul // [18-20] [16-17]
? // [18-20]
( x >= 1000000000000000000ul // [19-20] [18]
? // [19-20]
( x >= 10000000000000000000ul // [20] [19]
? 20
: 19
)
: 18
)
: // [16-17]
( x >= 10000000000000000ul // [17] [16]
? 17
: 16
)
)
: // [11-15]
( x >= 1000000000000ul // [13-15] [11-12]
? // [13-15]
( x >= 10000000000000ul // [14-15] [13]
? // [14-15]
( x >= 100000000000000ul // [15] [14]
? 15
: 14
)
: 13
)
: // [11-12]
( x >= 100000000000ul // [12] [11]
? 12
: 11
)
)
)
: // [1-10]
( x >= 100000ul // [6-10] [1-5]
? // [6-10]
( x >= 10000000ul // [8-10] [6-7]
? // [8-10]
( x >= 100000000ul // [9-10] [8]
? // [9-10]
( x >= 1000000000ul // [10] [9]
? 10
: 9
)
: 8
)
: // [6-7]
( x >= 1000000ul // [7] [6]
? 7
: 6
)
)
: // [1-5]
( x >= 100ul // [3-5] [1-2]
? // [3-5]
( x >= 1000ul // [4-5] [3]
? // [4-5]
( x >= 10000ul // [5] [4]
? 5
: 4
)
: 3
)
: // [1-2]
( x >= 10ul // [2] [1]
? 2
: 1
)
)
)
);
}

for integer 'X' you want to know the number of digits , alright without using any loop , this solution act in one formula in one line only so this is the most optimal solution i have ever seen to this problem .
int x = 1000 ;
cout<<numberOfDigits = 1+floor(log10(x))<<endl ;

int numberOfDigits(int n){
if(n<=9){
return 1;
}
return 1 + numberOfDigits(n/10);
}
This is what i would do, if you want it for base 10.Its pretty fast and you prolly wont get a stack overflock buy counting integers

int num,dig_quant = 0;
cout<<"\n\n\t\t--Count the digits in Number--\n\n";
cout<<"Enter Number: ";
cin>>num;
for(int i = 1; i<=num; i*=10){
if(num / i > 0){
dig_quant += 1;
}
}
cout<<"\n"<<number<<" include "<<dig_quant<<" digit"
cout<<"\n\nGoodbye...\n\n";

I was working on a program that required me to check if the user correctly answered how many digits were in a number, so i had to develop a way to check the amount of digits in an integer. It ended up being a relatively easy thing to solve.
double check=0, exponent=1000;
while(check<=1)
{
check=number/pow(10, exponent);
exponent--;
}
exponent=exponent+2;
cout<<exponent<<endl;
This ended up being my answer which currently works with numbers with less than 10^1000 digits (can be changed by changing the value of exponent).
P.S.
I know this answer is ten years late but I got here on 2020 so other people might use it.

You can use this recursive function, which calls itself while its argument is greater or equal to 10.
int numDigits(int n) {
return n >= 10 ? numDigits(n / 10) + 1 : 1;
}
Example usage:
#include <iostream>
int numDigits(int n) {
return n >= 10 ? numDigits(n / 10) + 1 : 1;
}
int main() {
int values[] = {0, 4, 10, 43, 789, 1500};
for (int n : values) {
std::cout << n << ": " << numDigits(n) << '\n';
}
return 0;
}
Output:
0: 1
4: 1
10: 2
43: 2
789: 3
1500: 4

Here is neat trick that uses fact that intLog2 is easy and fast and that: log10(x) = log2(x)/log2(10). Rounding issue have to be taken into account.
demo
constexpr int intPow(int base, int n) {
int result = 1;
while (n) {
if (n & 1 == 1)
result *= base;
base *= base;
n >>= 1;
}
return result;
}
constexpr int intLog2(int x) {
int result = -1;
while (x) {
x >>= 1;
++result;
}
return result;
}
constexpr int intLog10(int x) {
constexpr int powersOf10[]{1, 10, 100, 1000,
10000, 100000, 1000000, 10000000,
100000000, 1000000000};
auto aprox = (intLog2(x) + 1) * 1233 >> 12;
return aprox - (x < powersOf10[aprox]);
}
All is done on integers. No divisions, so should be quite fast, but lookup table is probably faster (maybe will provide benchmark for that).

template <typename type>
class number_of_decimal_digits {
const powers_and_max<type> mPowersAndMax;
public:
number_of_decimal_digits(){
}
inline size_t ndigits( type i) const {
if(i<0){
i += (i == std::numeric_limits<type>::min());
i=-i;
}
const type* begin = &*mPowersAndMax.begin();
const type* end = begin+mPowersAndMax.size();
return 1 + std::lower_bound(begin,end,i) - begin;
}
inline size_t string_ndigits(const type& i) const {
return (i<0) + ndigits(i);
}
inline size_t operator[](const type& i) const {
return string_ndigits(i);
}
};
where in powers_and_max we have (10^n)-1 for all n such that
(10^n) < std::numeric_limits<type>::max()
and std::numeric_limits<type>::max() in an array:
template <typename type>
struct powers_and_max : protected std::vector<type>{
typedef std::vector<type> super;
using super::const_iterator;
using super::size;
type& operator[](size_t i)const{return super::operator[](i)};
const_iterator begin()const {return super::begin();}
const_iterator end()const {return super::end();}
powers_and_max() {
const int size = (int)(log10(double(std::numeric_limits<type>::max())));
int j = 0;
type i = 10;
for( ; j<size ;++j){
push_back(i-1);//9,99,999,9999 etc;
i*=10;
}
ASSERT(back()<std::numeric_limits<type>::max());
push_back(std::numeric_limits<type>::max());
}
};
here's a simple test:
number_of_decimal_digits<int> ndd;
ASSERT(ndd[0]==1);
ASSERT(ndd[9]==1);
ASSERT(ndd[10]==2);
ASSERT(ndd[-10]==3);
ASSERT(ndd[-1]==2);
ASSERT(ndd[-9]==2);
ASSERT(ndd[1000000000]==10);
ASSERT(ndd[0x7fffffff]==10);
ASSERT(ndd[-1000000000]==11);
ASSERT(ndd[0x80000000]==11);
Of course any other implementation of an ordered set might be used for powers_and_max and if there was knowledge that there would be clustering but no knowledge of where the cluster might be perhaps a self adjusting tree implementation might be best

effective way
int num;
int count = 0;
while(num)
{
num /= 10;
++count;
}
#include <iostream>
int main()
{
int num;
std::cin >> num;
std::cout << "number of digits for " << num << ": ";
int count = 0;
while(num)
{
num /= 10;
++count;
}
std::cout << count << '\n';
return 0;
}

Related

Convert a 74-bit integer to base 31

To generate a UFI number, I use a bitset of size 74. To perform step 2 of UFI generation, I need to convert this number:
9 444 732 987 799 592 368 290
(10000000000000000000000000000101000001000001010000011101011111100010100010)
into:
DFSTTM62QN6DTV1
by converting the first representation to base 31 and getting the equivalent chars from a table.
#define PAYLOAD_SIZE 74
// payload = binary of 9444732987799592368290
std::bitset<PAYLOAD_SIZE> bs_payload(payload);
/*
perform modulo 31 to obtain:
12(D), 14(F), 24(S), 25(T), 25, 19, 6, 2, 22, 20, 6, 12, 25, 27, 1
*/
Is there a way to perform the conversion on my bitset without using an external BigInteger library?
Edit: I finally done a BigInteger class even if the Cheers and hth. - Alf's solution works like a charm
To get modulo 31 of a number you just need to sum up the digits in base 32, just like how you calculate modulo 3 and 9 of a decimal number
unsigned mod31(std::bitset<74> b) {
unsigned mod = 0;
while (!b.none()) {
mod += (b & std::bitset<74>(0x1F)).to_ulong();
b >>= 5;
}
while (mod > 31)
mod = (mod >> 5) + (mod & 0x1F);
return mod;
}
You can speedup the modulo calculation by running the additions in parallel like how its done here. The similar technique can be used to calculate modulo 3, 5, 7, 15... and 231 - 1
C - Algorithm for Bitwise operation on Modulus for number of not a power of 2
Is there any easy way to do modulus of 2^32 - 1 operation?
Logic to check the number is divisible by 3 or not?
However since the question is actually about base conversion and not about modulo as the title said, you need to do a real division for this purpose. Notice 1/b is 0.(1) in base b + 1, we have
1/31 = 0.000010000100001000010000100001...32 = 0.(00001)32
and then N/31 can be calculated like this
N/31 = N×2-5 + N×2-10 + N×2-15 + ...
uint128_t result = 0;
while (x)
{
x >>= 5;
result += x;
}
Since both modulo and division use shift-by-5, you can also do both them together in a single loop.
However the tricky part here is how to round the quotient properly. The above method will work for most values except some between a multiple of 31 and the next power of 2. I've found the way to correct the result for values up to a few thousands but yet to find a generic way for all values
You can see the same shift-and-add method being used to divide by 10 and by 3. There are more examples in the famous Hacker's Delight with proper rounding. I didn't have enough time to read through the book to understand how they implement the result correction part so maybe I'll get back to this later. If anyone has any idea to do that it'll be grateful.
One suggestion is to do the division in fixed-point. Just shift the value left so that we have enough fractional part to round later
uint128_t result = 0;
const unsigned num_fraction = 125 - 75 // 125 and 75 are the nearest multiple of 5
// or maybe 128 - 74 will also work
uint128_t x = UFI_Number << num_fraction;
while (x)
{
x >>= 5;
result += x;
}
// shift the result back and add the fractional bit to round
result = (result >> num_fraction) + ((result >> (num_fraction - 1)) & 1)
Note that your result above is incorrect. I've confirmed the result is CEOPPJ62MK6CPR1 from both Yaniv Shaked's answer and Wolfram alpha unless you use different symbols for the digits
This code seems to work. To guarantee the result I think you need to do additional testing. E.g. first with small numbers where you can compute the result directly.
Edit: Oh, now I noticed you posted the required result digits, and they match. Means it's generally good, but still not tested for corner cases.
#include <assert.h>
#include <algorithm> // std::reverse
#include <bitset>
#include <vector>
#include <iostream>
using namespace std;
template< class Type > using ref_ = Type&;
namespace base31
{
void mul2( ref_<vector<int>> digits )
{
int carry = 0;
for( ref_<int> d : digits )
{
const int local_sum = 2*d + carry;
d = local_sum % 31;
carry = local_sum / 31;
}
if( carry != 0 )
{
digits.push_back( carry );
}
}
void add1( ref_<vector<int>> digits )
{
int carry = 1;
for( ref_<int> d : digits )
{
const int local_sum = d + carry;
d = local_sum % 31;
carry = local_sum / 31;
}
if( carry != 0 )
{
digits.push_back( carry );
}
}
void divmod2( ref_<vector<int>> digits, ref_<int> mod )
{
int carry = 0;
for( int i = int( digits.size() ) - 1; i >= 0; --i )
{
ref_<int> d = digits[i];
const int divisor = d + 31*carry;
carry = divisor % 2;
d = divisor/2;
}
mod = carry;
if( digits.size() > 0 and digits.back() == 0 )
{
digits.resize( digits.size() - 1 );
}
}
}
int main() {
bitset<74> bits(
"10000000000000000000000000000101000001000001010000011101011111100010100010"
);
vector<int> reversed_binary;
for( const char ch : bits.to_string() ) { reversed_binary.push_back( ch - '0' ); }
vector<int> base31;
for( const int bit : reversed_binary )
{
base31::mul2( base31 );
if( bit != 0 )
{
base31::add1( base31 );
}
}
{ // Check the conversion to base31 by converting back to base 2, roundtrip:
vector<int> temp31 = base31;
int mod;
vector<int> base2;
while( temp31.size() > 0 )
{
base31::divmod2( temp31, mod );
base2.push_back( mod );
}
reverse( base2.begin(), base2.end() );
cout << "Original : " << bits.to_string() << endl;
cout << "Reconstituted: ";
string s;
for( const int bit : base2 ) { s += bit + '0'; cout << bit; }; cout << endl;
assert( s == bits.to_string() );
}
cout << "Base 31 digits (msd to lsd order): ";
for( int i = int( base31.size() ) - 1; i >= 0; --i )
{
cout << base31[i] << ' ';
}
cout << endl;
cout << "Mod 31 = " << base31[0] << endl;
}
Results with MinGW g++:
Original : 10000000000000000000000000000101000001000001010000011101011111100010100010
Reconstituted: 10000000000000000000000000000101000001000001010000011101011111100010100010
Base 31 digits (msd to lsd order): 12 14 24 25 25 19 6 2 22 20 6 12 25 27 1
Mod 31 = 1
I did not compile the psuedo code, but you can get the generate understanding of how to convert the number:
// Array for conversion of value to base-31 characters:
char base31Characters[] =
{
'0',
'1',
'2',
...
'X',
'Y'
};
void printUFINumber(__int128_t number)
{
string result = "";
while (number != 0)
{
var mod = number % 31;
result = base31Characters[mod] + result;
number = number / 31;
}
cout << number;
}

Finding Hamming Numbers - not code or distance

I'm currently learning C++.
I am looking for Hamming numbers (numbers whose prime divisors are less or equal to 5).
When I input a number n, the program should output the n-th Hamming number.
Following numbers are input, and output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 ...
Finding Hamming numbers looks easy, but increasing the input number increases run time cost exponentially.
If I input over 1000, it almost costs over 1 second,
and over 1200, it almost costs over 5 seconds.
This is the code I wrote:
while (th > 1)
{
h++;
x = h;
while (x % 2 == 0)
x /= 2;
while (x % 3 == 0)
x /= 3;
while (x % 5 == 0)
x /= 5;
if (x == 1)
th--;
}
So I would like to know how I can find the answer faster.
This algorithm doesn't seem to be very good.
Thanks in advance.
Your code is good if you want to check whether one particular number is a hamming number. When you want to build a list of hamming numbers, it is inefficient.
You can use a bottom-up approach: Start with 1 and then recursively multiply that with 2, 3, and 5 to get all hamming numbers up to a certain limit. You have to take care of duplicates, because you can get to 6 by way of 2·3 and 3·2. A set can take care of that.
The code below will generate all hamming numbers that fit into a 32-bit unsigned int. It fills a set by "spreading" to all hamming numbers. Then it constructs a sorted vector from the set, which you can use to find a hamming number at a certain index:
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
typedef unsigned int uint;
const uint umax = 0xffffffff;
void spread(std::set<uint> &hamming, uint n)
{
if (hamming.find(n) == hamming.end()) {
hamming.insert(n);
if (n < umax / 2) spread(hamming, n * 2);
if (n < umax / 3) spread(hamming, n * 3);
if (n < umax / 5) spread(hamming, n * 5);
}
}
int main()
{
std::set<uint> hamming;
spread(hamming, 1);
std::vector<uint> ordered(hamming.begin(), hamming.end());
for (size_t i = 0; i < ordered.size(); i++) {
std::cout << i << ' ' << ordered[i] << '\n';
}
return 0;
}
This code is faster than your linear method even if you end up creating more hamming numbers than you need.
You don't even need a set if you make sure that you don't construct a number twice. Every hamming number can be written as h = 2^n2 + 3^n3 + 5^n5, so if you find a means to iterate through these uniquely, you're done:
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
typedef unsigned int uint;
int main()
{
const uint umax = 0xffffffff;
std::vector<uint> hamming;
for (uint k = 1;; k *= 2) {
for (uint l = k;; l *= 3) {
for (uint m = l;; m *= 5) {
hamming.push_back(m);
if (m > umax / 5) break;
}
if (l > umax / 3) break;
}
if (k > umax / 2) break;
}
std::sort(hamming.begin(), hamming.end());
for (size_t i = 0; i < hamming.size(); i++) {
std::cout << i << ' ' << hamming[i] << '\n';
}
return 0;
}
The strange break syntax for the loops is required, because we have to check the size before the overflow. If umax*5 were guananteed not to overflow, these conditions could be written in the condition part of the loop.
The code examples in the Rosetta Code link Koshinae posted use similar strategies, but I'm surprised how lengthy some of them are.
In this link you can find two different solutions for finding the nth hamming number. The second method is the optimized one which can get the result in a few seconds.
/* Function to get the nth ugly number*/
unsigned getNthUglyNo(unsigned n)
{
unsigned ugly[n]; // To store ugly numbers
unsigned i2 = 0, i3 = 0, i5 = 0;
unsigned next_multiple_of_2 = 2;
unsigned next_multiple_of_3 = 3;
unsigned next_multiple_of_5 = 5;
unsigned next_ugly_no = 1;
ugly[0] = 1;
for (int i=1; i<n; i++)
{
next_ugly_no = min(next_multiple_of_2,
min(next_multiple_of_3,
next_multiple_of_5));
ugly[i] = next_ugly_no;
if (next_ugly_no == next_multiple_of_2)
{
i2 = i2+1;
next_multiple_of_2 = ugly[i2]*2;
}
if (next_ugly_no == next_multiple_of_3)
{
i3 = i3+1;
next_multiple_of_3 = ugly[i3]*3;
}
if (next_ugly_no == next_multiple_of_5)
{
i5 = i5+1;
next_multiple_of_5 = ugly[i5]*5;
}
} /*End of for loop (i=1; i<n; i++) */
return next_ugly_no;
}

Stuck in an infinite loop? (Maybe)

I am trying to complete Project Euler Problem 14 in c++ and I am honestly stuck. Right now when I run the problem it gets stuck at So Far: the number with the highest count: 113370 with the count of 155
So Far: the number with the highest count but when I try changing the i value to over 113371 it works. What is going on??
The question is:
The following iterative sequence is defined for the set of positive
integers: n → n/2 (n is even) n → 3n + 1 (n is odd)
Using the rule above and starting with 13, we generate the following
sequence:
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 It can be seen that this
sequence (starting at 13 and finishing at 1) contains 10 terms.
Although it has not been proved yet (Collatz Problem), it is
thought that all starting numbers finish at 1. Which starting number,
under one million, produces the longest chain?
#include<stdio.h>
int main() {
int limit = 1000000;
int highNum, number, i;
int highCount = 0;
int count = 0;
for( number = 13; number <= 1000000; number++ )
{
i = number;
while( i != 1 ) {
if (( i % 2 ) != 0 ) {
i = ( i * 3 ) + 1;
count++;
}
else {
count++;
i /= 2;
}
}
count++;
printf( "So Far: the number with the highest count: %d with the count of %d\n",
number, count );
if( highCount < count ) {
highCount = count;
highNum = number;
}
count = 0;
//break;
}
printf( "The number with the highest count: %d with the count of %d\n",
highNum, highCount );
}
You are getting integer overflow. Update your code like this and see it yourself:
if (( i % 2 ) != 0 ) {
int prevI = i;
i = ( i * 3 ) + 1;
if (i < prevI) {
printf("oops, i < prevI: %d\n", i);
return 0;
}
count++;
}
You should change the type of i to long long or unsigned long long to prevent the overflow.
(And yes, cache the intermediate results)
Remember all intermediate results (up to some suitably high number).
Also, use a big-enough type:
#include <stdio.h>
static int collatz[4000000];
unsigned long long collatzmax;
int comp(unsigned long long i) {
if(i>=sizeof collatz/sizeof*collatz) {
if(i>collatzmax)
collatzmax = i;
return 1 + comp(i&1 ? 3*i+1 : i/2);
}
if(!collatz[i])
collatz[i] = 1 + comp(i&1 ? 3*i+1 : i/2);
return collatz[i];
}
int main() {
collatz[1] = 1;
int highNumber= 1, highCount = 1, c;
for(int i = 2; i < 1000000; i++)
if((c = comp(i)) > highCount) {
highCount = c;
highNumber = i;
}
printf( "The number with the highest count: %d with the count of %d\n",
highNumber, highCount );
printf( "Highest intermediary number: %llu\n", collatzmax);
}
On coliru: http://coliru.stacked-crooked.com/a/773bd8c5f4e7d5a9
Variant with smaller runtime: http://coliru.stacked-crooked.com/a/2132cb74e4605d5f
The number with the highest count: 837799 with the count of 525
Highest intermediary number: 56991483520
BTW: The highest intermediary encountered needs 36 bit to represent as an unsigned number.
With your algorithm, you compute several time identical series.
you may cache result for previous numbers and reuse them.
Something like:
void compute(std::map<std::uint64_t, int>& counts, std::uint64_t i)
{
std::vector<std::uint64_t> series;
while (counts[i] == 0) {
series.push_back(i);
if ((i % 2) != 0) {
i = (i * 3) + 1;
} else {
i /= 2;
}
}
int count = counts[i];
for (auto it = series.rbegin(); it != series.rend(); ++it)
{
counts[*it] = ++count;
}
}
int main()
{
const std::uint64_t limit = 1000000;
std::map<std::uint64_t, int> counts;
counts[1] = 1;
for (std::size_t i = 2; i != limit; ++i) {
compute(counts, i);
}
auto it = std::max_element(counts.begin(), counts.end(),
[](const std::pair<std::uint64_t, int>& lhs, const std::pair<std::uint64_t, int>& rhs)
{
return lhs.second < rhs.second;
});
std::cout << it->first << ":" << it->second << std::endl;
std::cout << limit-1 << ":" << counts[limit-1] << std::endl;
}
Demo (10 seconds)
Don't recompute the same intermediate results over and over!
Given
typedef std::uint64_t num; // largest reliable built-in unsigned integer type
num collatz(num x)
{
return (x & 1) ? (3*x + 1) : (x/2);
}
Then the value of collatz(x) only depends on x, not on when you call it. (In other words, collatz is a pure function.) As a consequence, you can memoize the values of collatz(x) for different values of x. For this purpose, you could use a std::map<num, num> or a std::unordered_map<num, num>.
For reference, here is the complete solution.
And here it is on Coliru, with timing (2.6 secs).

Recursive function to check digits

Write a recursive function to check how many digits in the number can be divided by the digit which is after them. Example: 84963 should return 2, because 8 can be divided by 4 and 6 can be divided by 3. My function doesnt seem to output anything at all.
#include <iostream>
using namespace std;
int fun (int n);
int main()
{
int n;
cin >> n;
cout << fun(n) << endl;
return 0;
}
int fun(int n){
int count = 0;
if (fun(n % 100) % fun(n % 10) == 0)
count++;
return count;
}
Your recursion does not make much sense at the moment. A more logical approach to this would be to see if the last number (so 1 in 321), can currently divide the second last number (so 2 in 321). You could do this by defining a function that checks if that is possible, and recursively passes on the number divided by 10. That function would look something like this:
int fun(int n)
{
if (n < 10)
return 0;
int last = n % 10;
n = n / 10;
int secondlast = n % 10;
if (secondlast != 0 && last != 0 && secondlast % last == 0)
return 1 + fun(n);
else
return fun(n);
}
Update note: After looking into Vlad from moscow's comment, I moved the last != 0 part of the condition forward, to solve a bug (divide by 0).
The problem Vlad from moscow was talking about is the following: If you want, for example, the part 04 to count as 0, you should use the code as it is above. Otherwise you should remove the secondlast != 0 part.
int countIfDiv(int num) {
int pair = num % 100;
int first = pair / 10;
if (first == 0) return 0;
int second = pair % 10;
int next = num / 10;
return first % second == 0 ? 1 + countIfDiv(next) : 0 + countIfDiv(next);
}
Just pull a pair, try the division, then chop the last number and repeat.
You're not actually updating n value so you get into an infinite loop, on the other hand, your function is, initially, only designed for 3 digits number. I think that it should be something similar to:
int fun(int n, int ant, int count){
if( n == 0 )
return count;
if (ant != 0 &&
(n%10) % ant == 0)
count++;
return fun(n/10, n%10, count);
}
I should work with different number of digits.
The valid code will be
size_t fun( int n )
{
const int base = 10;
int digit = n % base;
n /= base;
return ( n == 0 ?
0 :
( digit && n % base && !( n % base % digit ) ) + fun( n ) );
}

How to on efficient and quick way add prefix to number and remove?

How to on efficient and quick way add prefix to number and remove ? (number can have arbitrary number of digits, number doesn't have limit)
I have number for example 122121 and I want to add digit 9 at the begining to be 9122121, after that I need to remove first digit in number. I have split into vector, push front digit(in this case 9) and the create number from digits ( iteration with multiplying 10).
Is there more efficient way ?
If you want efficiency, don't use anything else than numbers, no vectors, strings, etc. In your case:
#include <iostream>
unsigned long long add_prefix( unsigned long long number, unsigned prefix )
{
// if you want the example marked (X) below to print "9", add this line:
if( number == 0 ) return prefix;
// without the above, the result of (X) would be "90"
unsigned long long tmp = ( number >= 100000 ) ? 1000000 : 10;
while( number >= tmp ) tmp *= 10;
return number + prefix * tmp;
}
int main()
{
std::cout << add_prefix( 122121, 9 ) << std::endl; // prints 9122121
std::cout << add_prefix( 122121, 987 ) << std::endl; // prints 987122121
std::cout << add_prefix( 1, 9 ) << std::endl; // prints 91
std::cout << add_prefix( 0, 9 ) << std::endl; // (X) prints 9 or 90
}
but watch out for overflows. Without overflows, the above even works for multi-digit prefixes. I hope you can figure out the reverse algorithm to remove the prefix.
Edited: As Andy Prowl pointed out, one could interpret 0 as "no digits", so the prefix should not be followed by the digit 0. But I guess it depends on the OPs use-case, so I edited the code accordingly.
You can calculate number of digits using floor(log10(number)) + 1. So the code would look like:
int number = 122121;
int noDigits = floor(log10(number)) + 1;
//Add 9 in front
number += 9*pow(10,noDigits);
//Now strip the 9
number %= pow(10,noDigits);
I hope I got everything right ;)
I shall provide an answer that makes use of binary search and a small benchmark of the answers provided so far.
Binary Search
The following function uses binary search to find the number of digits of the desired number and appends the desired digit in front of it.
int addPrefix(int N, int digit) {
int multiplier = 0;
// [1, 5]
if(N <= 100000) {
// [1, 3]
if(N <= 1000) {
//[1, 2]
if(N <= 100) {
//[1, 1]
if(N <= 10) {
multiplier = 10;
//[2, 2]
} else {
multiplier = 100;
}
//[3, 3]
} else {
multiplier = 1000;
}
//[4, 4]
} else if(N <= 10000) {
multiplier = 10000;
//[5, 5]
} else {
multiplier = 100000;
}
//[6, 7]
} else if(N <= 10000000) {
//[6, 6]
if(N <= 1000000) {
multiplier = 1000000;
//[7, 7]
} else {
multiplier = 10000000;
}
//[8, 9]
} else {
//[8, 8]
if(N <= 100000000) {
multiplier = 100000000;
//[9, 9]
} else {
multiplier = 1000000000;
}
}
return N + digit * multiplier;
}
It is rather verbose. But, it finds the number of digits for a number in the range of int in a maximum of 4 comparisons.
Benchmark
I created a small benchmark running each provided algorithm against 450 million iterations, 50 million iterations per number of determined number of digits.
int main(void) {
int i, j, N = 2, k;
for(i = 1; i < 9; ++i, N *= 10) {
for(j = 1; j < 50000000; ++j) {
k = addPrefix(N, 9);
}
}
return 0;
}
The results:
+-----+-----------+-------------+----------+---------+
| run | Alexander | Daniel Frey | kkuryllo | W.B. |
+-----+-----------+-------------+----------+---------+
| 1st | 2.204s | 3.983s | 5.145s | 23.216s |
+-----+-----------+-------------+----------+---------+
| 2nd | 2.189s | 4.044s | 5.081s | 23.484s |
+-----+-----------+-------------+----------+---------+
| 3rd | 2.197s | 4.232s | 5.043s | 23.378s |
+-----+-----------+-------------+----------+---------+
| AVG | 2.197s | 4.086s | 5.090s | 23.359s |
+-----+-----------+-------------+----------+---------+
You can find the sources used in this Gist here.
How about using lexical cast from boost? That way you're not doing the iteration and all the yourself.
http://www.boost.org/doc/libs/1_53_0/doc/html/boost_lexical_cast.html
you could put the digits in an std::string and use insert and delete but it might be an overkill
%First find the highest power of 10 greater than your number. Then multiple the addition by that and add to your number
For example:
int x;
int addition;
int y = 1;
while (y <= x)
{
y *= 10;
}
x += addition * y;
I didn't test this code so just take as an example...
I also don't really understand your other instructions, you'll need to clarify.
edit okay I think I understand that you also want to remove the first digit sometime as well. You can use a simular approach to do this.
int x;
int y = 1;
while (y <= x*10)
{
y *= 10;
}
x %= y;