Becase I've seen (and used) situations like this:
In header.h:
class point
{
public:
point(xpos, ypos);
int x;
int y;
};
In def.cpp:
#include"header.h"
point::point(xpos, ypos)
{
x = xpos;
y = ypos;
}
In main.cpp:
#include"header.h"
int main()
{
point p1(5,6);
return 0;
}
I know the program executes from main, but how does the compiler know what order to compile .cpp files? (Particularily if there are more than one non-main .cpp files).
The compiler doesn't care - it compiles each .cpp file into .obj file, and the .obj files each contain a list of missing symbols. So in this case, main.obj says "I'm missing point::point".
It's then the linker's job to take all the .obj files, combine them together into an executable, and make sure that each .obj file's missing symbols are available from one of the other .obj files - hence the term "linker".
If you include them in two different cpp-files it's no problem.
If you include the same header twice, you get errors for duplicated definitions.
You should use include guards to circumvent that.
On top of your file, before any code:
#ifndef HEADER_H_ //every header gets it's own name
#define HEADER_H_
On the bottom:
#endif
The order of compilation does not matter. Everything is compiled by the compiler, which uses the .h files to make sure that the symbols you are using are at least declared. It's the job of the linker, which executes after the compiler finishes, to actually match your method calls to their implementations.
The compiler does not need to know what order to compile .cpp files in.
The linker sorts all of the separately compiled .o (build from .cpp) files out and resolves everything into one executable.
Usually you compile them separately yourself (or with a build tool like make). The header file allows you to compile them in any order. If you do compile them together, the order is probably the order that you pass to the compiler command, but it doesn't actually matter, they are all eventually linked into one executable.
This is an example of Graph Theory application. The compiled modules contain relative offsets for all code blocks and its up to the linker to spot the dependencies (graph) while it constructs the executable file.
This is why you see #ifndef HEADER_H and #define HEADER_H at the top of some header files. The notion of only one inclusion of each header file as described here for example.
Related
I've seen similar questions asked yet they still do not make sense to my ape brain.
Here is an example. If I declared a function in a header file named Bob.h: void PrintSomething(); and in the .cpp file I say: void MyClass::PrintSomething(){std::cout << "Hello";} . I've seen people in another .cpp file for example Frank.cpp, only include the Bob.h header which just has the declaration (No code inside it) and not the .cpp with the code but then what blows my mind is when they call the PrintSomething() function in Frank.cpp it uses the code from Bob.cpp and prints "Hello". How? How does it print "Hello" which was added in the .cpp file when I've only included the .h file which doesn't say anything about "Hello", its just a declaration? I've looked through the compile process and linking process too but it just doesn't stick.
On top of which if I were to now say in my Frank.cpp file: void MyClass::PrintSomething(){std::cout << "Bye";} and included the Bob.h file in my main.cpp and called the PrintSomething() function would it print "Hello" or "Bye"? Is the computer psychic or something? This concept is the one thing I am not grasping in my C++ learning journey.
Thanks in advance.
The moment you include Bob.h the compiler has everything it needs to know about PrintSomething(), it only need a declaration of the function. Frank.cpp does not need to know about Bob.cpp which defines PrintSomething().
All of your individual cpp files output object files generated by the compiler. These in themselves don't do much until they're all glued together, this is the linker's responsibility.
The linker takes all your object files and fills in the missing parts:
Linker talk:
Hey, I see that Frank.obj uses PrintSomething() and I can't see
its definition in that object file.
Let's check the other object files..
Upon inspecting Bob.obj I can see that this contains a usable
definition for PrintSomething(), let's use that.
This is of course simplified but that's what a linker does in short.
After this is done you get your usable executable.
on top of which if I were to now say in my Frank.cpp file: void MyClass::PrintSomething(){std::cout << "Bye";} and included the Bob.h
file in my main.cpp and called the PrintSomething() function would it
print "Hello" or "Bye"? Is the computer psychic or something?
The linker would find 2 definitions of PrintSomething() and would emit an error, it has no way to know what definition is the right one to pick.
The key notion here is separate compilation. You divide your project into a set of source files that implement more-or-less independent things, you compile those source files into object files, and you link the object files and any additional libraries (including the standard library) to create an executable file. For large projects, compiling all of the source files can take a long time (sometimes measured in hours). The first time you build your application you have to do that. But after that, if you only changed one source file you only need to recompile that source file and then link again, which the object files that you created the first time through. That's usually a big time saver. If you have one massive source file (i.e., a source file that #includes all the rest of your source files), you don't get that option -- you have to recompile the whole thing every time.
I have "Hello World" code that uses function fhi from another hi.cpp file that has it's header.
Correct my if my understanding is wrong according following:
I can do include cpp file like #include "c:\c\hi.cpp" instead of using header without any problems except that fact that it looks more readable in header file.
If I include header like sample in my main program hi.h, must hi.h include hi.cpp, or it is done automatically according the same file name hi. I'm wondering how compiler knows where is function fhi body.
Is it possible to have different names for header and cpp files?
Programm:
#include "stdafx.h"
#include "c:\c\hi.h"
int _tmain(int argc, _TCHAR* argv[])
{
fhi(1);
return 0;
}
hi.h
#include <cstdlib>
#include <iostream>
int var;
int fhi(int f);
hi.cpp
#include <cstdlib>
#include <iostream>
int fhi(int f)
{
return 0;
}
must hi.h include hi.cpp
No. hi.h contains only declarations, that can be other by other .cpp files.
I'm wondering how compiler knows where is function fhi body.
It doesn't. You need to compile all *.cpp files into the object files. In your case, you will have two object files: program.o and hi.o. The linker can now take these two object files, and spit out the executable. References to other functions(in this case the actual definition of fhi(..)) is resolved in this stage.
Also why are you using absolute paths in #includes? It will break when you move the "c" directory around.
What normally happens is that the build system compiles the .cpp files into object files, that then are used to build the main executable. The means to tell this to the build system vary greatly.
One important point is that your hi.cpp must include hi.h. You should also put an include guard in hi.h, to make it safe to be included more than once in a translation unit.
I can do include cpp file like #include "c:\c\hi.cpp" instead of using
header without any problems except that fact that it looks more
readable in header file.
yes, you can do so but it is not recommended, one of the problems is encapsulation; you are not hiding implementation details. readability as you mention is also a concern, a header is easier to read since it clearly shows what methods are public.
If I include header like sample in my main program hi.h, must hi.h
include hi.cpp, or it is done automatically according the same file
name hi. I'm wondering how compiler knows where is function fhi body.
the header needs to be explicitly included in hi.cpp and any .cpp file that use the class defined in the header.
Is it possible to have different names for header and cpp files?
yes but it is not recommended, it makes it more difficult to find things.
as a general rule: think about that other programmers may want to look in your code so you need to structure it so that it is easy to read and understand as well as making it easier for you 2 years down the road to remember where things are.
In Visual Studio all CPP files included in the project will be compiled to produce OBJ files. These OBJ files will be linked together to form the EXE or DLL.
Including files are similar to pasting the contents of the file at that location. The only difference is that this pasting is done by the pre-compiler during compilation.
Finding out where a function body resides is done by the either the compiler if the function is inline or by the linker when the final binary is created.
First, if the header file is in the same directory as the source file including it, you can use just
#include "hi.h"
In other words, you don't have to use a full path. (See e.g. the inclusion of "stdafx.h".)
Second, in your header file you don't need to include other header files, unless you need types from those. In your header file you don't have anything that needed from the header files you include.
Third, you should protect header files header files from being included more than once in the same source file, this can be done with a so called include guard, on in some compiler via a special directive called #pragma once.
Fourth, in your header file you define a global variable var. This variable will then be defined in every source file you include the header file in, which will lead to errors. You need to declare the variable as extern:
extern int var;
Then in one source file you define the variable like you do now.
Fifth, you should never include source files in header file (with some special exceptions that you don't have to think about yet). Instead you add all source files to the project (I assume you are in MS VisualStudio) and it they will all be built and linked together automatically.
Sixth, since you seem to be using VisualC++, then you are probably using something called precompiled headers. This is something the compiler uses to speed up compilation. However, for this to work you have to include "stdafx.h" in all source files. That include actually has to be the first non-comment line in each source file.
I learned that if I compile main.cpp the compiler simply replaces all includes with the actual content of the file i.e. #include "LongClassName.h" with the text in that file. This is done recursively in LongClassName.h. In the end the compiler sees a huge "virtual" file with the complete code of all .cpp and .h files.
But it seems to be much more complicated in real projects. I had a look at the Makefile Eclipse created for my Qt project and it seems that there is an entry for every file named file.o and its dependencies are file.cpp and file.h. So that means that eclipse compiles each .cpp separately(?)
Does that mean that class.cpp will know nothing about global stuff in main.cpp or a class in higher include hirarchy?
I stumbled upon this problem while trying to create an alias for a long class name. It is my main class and I wanted to call static functions with a shorter name: Ln::globalFunction() instead of LongClassName::globalFunction()
I have a class LongClassName whose header I include in main.cpp. This is the main class. All other classes are included in it.
LongClassName.h
#define PI 3.14159265
#include <QDebug>
Class LongClassName
{
...
public:
...
private:
...
};
typedef LongClassName Ln;
LongClassName.cpp
#include "Class1.h"
#include "Class2.h"
#include "Class3.h"
/*implementations of LongClassName's functions*/
So I assumed that when the code is included in one single "virtual" file by the compiler every class will be inserted after this source code and because of that every class should know that Ln is an alias for LongClassName
This didn't work
So what is the best way to propagate this alias to all classes?
I want to avoid including LongClassname.h in all classes because of reverse dependencies. LongClassName includes all other classes in its implementation. And almost all the other classes use some static functions of LongClassName.
(At the moment I have a seperate class Ln but try to merge it with LongClassName because it seems more logical.)
The compiler knows how to compile a .cpp file (if it's a cpp compiler) into a .o file called 'object file', which is your code translated (and probably manipulated, optimized, etc.) to a machine code. Actually the compiler creates an assembly code, which is translated to machine code by the assembler.
So each cpp file is compiled to a different object file, and knows nothing about variables declared in other cpp files, unless you include declarations you want the object file to know about, either in the cpp file or in an h file it includes.
Although the compilation is done separately for each cpp, the linker links all object files to a single executable (or a library), so a variable declared in the global namespace is indeed global, and every declaration not explicitly placed in a named
namespace is placed in the global namespace.
You will probably benefit from reading about all stages of "compiling", for example here: http://www.network-theory.co.uk/docs/gccintro/gccintro_83.html
In the end the compiler sees a huge "virtual" file with the complete code of all .cpp and .h files.
This is wrong. In .cpps you should include just the .hs (or .hpps if you like), almost never the .cpps; the .h in general just contain the declarations of the classes and of the methods, and not their actual body1 (i.e. their definition), so when you compile each .cpp the compiler still knows nothing about the definition of the functions defined in other .cpps, it just knows their declaration, and with it it can perform syntactical checks, generate code for function calls, ... but still it will generate an "incomplete" object file (.o), that will contain several "placeholders" ("here goes the address of this function defined somewhere else" "here goes the address of this extern variable" and so on)
After all the object files have been generated, it's the linker that have to take care of these placeholders, by plumbing all the object files together and linking their references to the actual code (which now can be found, since we have all the object files).
For some more info about the classical compile+link model, see here.
Does that mean that class.cpp will know nothing about global stuff in main.cpp or a class in higher include hirarchy?
Yes, it's exactly like that.
But why doesn't the Makefile created by eclipse simply compile main.cpp. Why isn't this enough? main.cpp contains all the dependencies. Why compile every .cpp separately?
main.cpp doesn't contain all the code, but just the declarations. You don't include all the code in the same .cpp (e.g. by including the other .cpps) mainly to decrease compilation time.
I want to avoid including LongClassname.h in all classes because of reverse dependencies. LongClassName includes all other classes in its implementation. And almost all the other classes use some static functions of LongClassName.
If you use header guards, you shouldn't have problems.
1. Ok, they also contain inline and template functions, but they are the exception, not the rule.
I have always seen people write
class.h
#ifndef CLASS_H
#define CLASS_H
//blah blah blah
#endif
The question is, why don't they also do that for the .cpp file that contain definitions for class functions?
Let's say I have main.cpp, and main.cpp includes class.h. The class.h file does not include anything, so how does main.cpp know what is in the class.cpp?
First, to address your first inquiry:
When you see this in .h file:
#ifndef FILE_H
#define FILE_H
/* ... Declarations etc here ... */
#endif
This is a preprocessor technique of preventing a header file from being included multiple times, which can be problematic for various reasons. During compilation of your project, each .cpp file (usually) is compiled. In simple terms, this means the compiler will take your .cpp file, open any files #included by it, concatenate them all into one massive text file, and then perform syntax analysis and finally it will convert it to some intermediate code, optimize/perform other tasks, and finally generate the assembly output for the target architecture. Because of this, if a file is #included multiple times under one .cpp file, the compiler will append its file contents twice, so if there are definitions within that file, you will get a compiler error telling you that you redefined a variable. When the file is processed by the preprocessor step in the compilation process, the first time its contents are reached the first two lines will check if FILE_H has been defined for the preprocessor. If not, it will define FILE_H and continue processing the code between it and the #endif directive. The next time that file's contents are seen by the preprocessor, the check against FILE_H will be false, so it will immediately scan down to the #endif and continue after it. This prevents redefinition errors.
And to address your second concern:
In C++ programming as a general practice we separate development into two file types. One is with an extension of .h and we call this a "header file." They usually provide a declaration of functions, classes, structs, global variables, typedefs, preprocessing macros and definitions, etc. Basically, they just provide you with information about your code. Then we have the .cpp extension which we call a "code file." This will provide definitions for those functions, class members, any struct members that need definitions, global variables, etc. So the .h file declares code, and the .cpp file implements that declaration. For this reason, we generally during compilation compile each .cpp file into an object and then link those objects (because you almost never see one .cpp file include another .cpp file).
How these externals are resolved is a job for the linker. When your compiler processes main.cpp, it gets declarations for the code in class.cpp by including class.h. It only needs to know what these functions or variables look like (which is what a declaration gives you). So it compiles your main.cpp file into some object file (call it main.obj). Similarly, class.cpp is compiled into a class.obj file. To produce the final executable, a linker is invoked to link those two object files together. For any unresolved external variables or functions, the compiler will place a stub where the access happens. The linker will then take this stub and look for the code or variable in another listed object file, and if it's found, it combines the code from the two object files into an output file and replaces the stub with the final location of the function or variable. This way, your code in main.cpp can call functions and use variables in class.cpp IF AND ONLY IF THEY ARE DECLARED IN class.h.
I hope this was helpful.
The CLASS_H is an include guard; it's used to avoid the same header file being included multiple times (via different routes) within the same CPP file (or, more accurately, the same translation unit), which would lead to multiple-definition errors.
Include guards aren't needed on CPP files because, by definition, the contents of the CPP file are only read once.
You seem to have interpreted the include guards as having the same function as import statements in other languages (such as Java); that's not the case, however. The #include itself is roughly equivalent to the import in other languages.
It doesn't - at least during the compilation phase.
The translation of a c++ program from source code to machine code is performed in three phases:
Preprocessing - The Preprocessor parses all source code for lines beginning with # and executes the directives. In your case, the contents of your file class.h is inserted in place of the line #include "class.h. Since you might be includein your header file in several places, the #ifndef clauses avoid duplicate declaration-errors, since the preprocessor directive is undefined only the first time the header file is included.
Compilation - The Compiler does now translate all preprocessed source code files to binary object files.
Linking - The Linker links (hence the name) together the object files. A reference to your class or one of its methods (which should be declared in class.h and defined in class.cpp) is resolved to the respective offset in one of the object files. I write 'one of your object files' since your class does not need to be defined in a file named class.cpp, it might be in a library which is linked to your project.
In summary, the declarations can be shared through a header file, while the mapping of declarations to definitions is done by the linker.
That's the distinction between declaration and definition. Header files typically include just the declaration, and the source file contains the definition.
In order to use something you only need to know it's declaration not it's definition. Only the linker needs to know the definition.
So this is why you will include a header file inside one or more source files but you won't include a source file inside another.
Also you mean #include and not import.
That's done for header files so that the contents only appear once in each preprocessed source file, even if it's included more than once (usually because it's included from other header files). The first time it's included, the symbol CLASS_H (known as an include guard) hasn't been defined yet, so all the contents of the file are included. Doing this defines the symbol, so if it's included again, the contents of the file (inside the #ifndef/#endif block) are skipped.
There's no need to do this for the source file itself since (normally) that's not included by any other files.
For your last question, class.h should contain the definition of the class, and declarations of all its members, associated functions, and whatever else, so that any file that includes it has enough information to use the class. The implementations of the functions can go in a separate source file; you only need the declarations to call them.
main.cpp doesn't have to know what is in class.cpp. It just has to know the declarations of the functions/classes that it goes to use, and these declarations are in class.h.
The linker links between the places where the functions/classes declared in class.h are used and their implementations in class.cpp
.cpp files are not included (using #include) into other files. Therefore they don't need include guarding. Main.cpp will know the names and signatures of the class that you have implemented in class.cpp only because you have specified all that in class.h - this is the purpose of a header file. (It is up to you to make sure that class.h accurately describes the code you implement in class.cpp.) The executable code in class.cpp will be made available to the executable code in main.cpp thanks to the efforts of the linker.
It is generally expected that modules of code such as .cpp files are compiled once and linked to in multiple projects, to avoid unnecessary repetitive compilation of logic. For example, g++ -o class.cpp would produce class.o which you could then link from multiple projects to using g++ main.cpp class.o.
We could use #include as our linker, as you seem to be implying, but that would just be silly when we know how to link properly using our compiler with less keystrokes and less wasteful repetition of compilation, rather than our code with more keystrokes and more wasteful repetition of compilation...
The header files are still required to be included into each of the multiple projects, however, because this provides the interface for each module. Without these headers the compiler wouldn't know about any of the symbols introduced by the .o files.
It is important to realise that the header files are what introduce the definitions of symbols for those modules; once that is realised then it makes sense that multiple inclusions could cause redefinitions of symbols (which causes errors), so we use include guards to prevent such redefinitions.
its because of Headerfiles define what the class contains (Members, data-structures) and cpp files implement it.
And of course, the main reason for this is that you could include one .h File multiple times in other .h files, but this would result in multiple definitions of a class, which is invalid.
In Python whenever I had a bunch of functions that I wanted to use across multiple programs I'd make another .py file and then just import that wherever I needed it. How would I do that in C/C++? Do I dump both prototype and implementation into an .h file? or do I need to place the function prototypes in the .h file and the implementations in a separate .cpp file with the same name as the .h file and #include the .h wherever I need it?
You need to do a couple of things:
Add the prototype to a header file.
Write a new source file with the function definitions.
In a source file that just wants to use the shared function, you need to add #include "header.h" (replacing header.h with the name of the file from step 1) someplace before you try to call the shared function (normally you put all includes at the top of the source file).
Make sure your build compiles the new source file and includes that in the link.
A couple of other comments. It's normal to have foo.h as the header for the foo.c but that is only a style guideline.
When using headers, you want to add include guards to protect against the multiple include issue.
In C/C++ we usually put declarations in .h files and implementation in .c/cpp files.
(Note: there're many other ways, for example the include, templates, inline, extern, ... so you may find some code only in header files or only in c/cpp files - for example some of the STL and templates.)
Then you need to "link" the file with your program, which works like the "import" in Python interpreter but actually works in static linking object files together into a single executable file.
However the "link" command and syntax depends on your compiler and OS linker. So you need to check your compiler for more information, for example "ld" on UNIX and "link.exe" on DOS/Windows. Moreover, usually the C compiler will invoke the linker automatically.
For example, say you have 2 files: a.c and b.c (with a.h and b.h), on gcc:
gcc -o a.out a.c b.c
On MSVC:
cl a.c b.c
There are two ways to approach this that differ only slightly. As others have said, the first steps are:
-Create a header file which contains your function prototypes. You'll want to mark this with
# ifndef myheader_h
# define myheader_h
// prototypes go here...
# endif
to prevent problems with multiple inclusions.
-Create a .c file which contains the actual definitions.
Here's where the solutions branch.
If you want to include the source directly in your project, make the .c file part of your compilation stage as well as your link stage.
However, if you really plan on using this across multiple projects, you'll probably want to compile this source file independently, and reference the object file from your other projects. This is loosely what a "library" is, though libraries may consist of multiple object modules - each of which has been compiled but not yet linked.
update
Someone pointed out that this really only keeps the header from being included in a single cpp file. News flash: that's all you need to do.
Compilers treat each cpp file individually. The header files included by each cpp source file tell the compiler, "hey! This thing is defined in another source file! Assume references that match this prototype are A-OK and keep moving on."
The LINKER, on other other hand, is responsible for fixing up these references, and IT will throw a fit if the same symbol is defined in multiple object files. For that to happen, a function would have to be defined in two separate source files - a real definition with a body, not just an extern prototype - OR the object file that contains its body/definition would have to be included in the link command more than once.
Re:"inline"
Use of "inline" is meant as an optmization feature. Functions declared as inline have their bodies expanded inline at each place where they are called. Using this to get around multiple definition errors is very, very bad. This is similar to macro expansion.
See Francis's answer. The sentence that you wrote, "or do I need to place the function prototypes in the .h file and the implementations in a separate .cpp file with the same name as the .h file and #include the .h wherever I need it?", is pretty-much correct. You don't have to do things exactly this way, but it works.
It's up to you how you do this, The compiler doesn't care. But if you put your functions in a .h file, you should declare them __inline otherwise if you include the header file in more than one .cpp file, you will have multiply defined symbols.
On the other hand, if you make them __inline, you will tend to get a copy created in each place that you use the function. This will bloat the size of your program. So unless the functions are quite small, it's probably best to put the functions in a .cpp and create a parallel .h with function prototypes and public structures. This is the way most programmers work.
On the other hand, in the STL (Standard Template Library), virtually all of the code is in header files. (without the .h extension)