Policy based design and best practices - C++ - c++

struct InkPen
{
void Write()
{
this->WriteImplementation();
}
void WriteImplementation()
{
std::cout << "Writing using a inkpen" << std::endl;
}
};
struct BoldPen
{
void Write()
{
std::cout << "Writing using a boldpen" << std::endl;
}
};
template<class PenType>
class Writer : public PenType
{
public:
void StartWriting()
{
PenType::Write();
}
};
int main()
{
Writer<InkPen> writer;
writer.StartWriting();
Writer<BoldPen> writer1;
writer1.StartWriting();
return 0;
}
I wrote the above code as part of learning policy based designs. I have few questions on the above code
1 - Does this implementation look correct? I mean: does it really look like a policy based design?
2 - I can now hook any kind of pens to writer. But what will I do when I got a pen with no default constructor (only parameterized constructors)? How will I handle this situation?
template<class PenType>
class Writer : public PenType
{
public:
void StartWriting()
{
PenType::Write();
}
};
3 - When the above code is used like
Writer<InkPen> writer;
I guess compiler will replace PenType with InkPen. If yes, why I am not able to call just Write() from StartWriting() instead of prefixing base class name (PenType::Write())?
4 - I think policy based design forces you to derive from classes which is semantically invalid. In the above code, a writer is derived from a pen only because writer uses a pen. But saying writer is a pen is semantically invalid. Is there any other better way to address this or I am missing something here?
Any thoughts?

Here's how I would implement the class:
template<class PenType>
class Writer
{
public:
Writer(const PenType& pen = PenType()) : pen(pen) {}
void StartWriting()
{
pen.Write();
}
private:
PenType pen;
};
This allows the user to pass a specific Pen object to the constructor, if it either doesn't have a default constructor, or you don't want it to be used, and second, it still allows you to omit the PenType object if you're happy to let it create one with the default constructor. The C++ standard library does the same in many classes (think of the allocators for container classes for example).
I removed the inheritance. It didn't really seem to add anything (and might cause problems. You probably don't want the user of the Writer class to call the PenType::Write function directly. You could use private inheritance instead, but often, composition is a simpler and more conventional design.
In general, policy-based design does not require inheritance. Adding it as a member works just as well. If you do go for inheritance, make it private so you don't get the problem you mentioned as #4.

This looks like a nice example of policy-based smart pointer implementation: link. Andrei Alexandrescu describes policy-based smart pointer implementation in one of his books. As to your questions now. I have some experience in this stuff but not enough to take my words for granted:
Ad 1 & 4. I guess policy-based design is more about templates than inheritance. You write a template class and template arguments are policy classes, like that:
template<class FooPolicy, class BarPolicy>
class Baz {
// implementation goes here
};
Then you use methods from policy classes in your class:
void Baz::someMethod(int someArg) {
FooPolicy::methodInit();
// some stuff
BarPolicy::methodDone();
}
I use static methods in this example because often policy doesn't require any state. If it does, you incorporate policy's state by composition, not by inheritance:
template<class FooPolicy, class BarPolicy>
class Baz {
private:
FooPolicy::State fooState; // might require 'typename' keyword, I didn't
// actually tried this in any compiler
// rest of the Baz class
};
Ad 2. You can write a template specialization - for a particular combination of main class and it's policies you can write a special version of any method or constructor, AFAIK:
template <>
Baz<SomeConcreteFooPolicy, SomeConcreteBazPolicy>::Baz(someArgument)
: fooState(someArgument)
{
// stuff here
}
Hope it helps you a bit,
Mike

I know this thread is old, but there is a major flaw in the initial post and this thread is one of the top results of Google...so:
Do not use public inheritance for policy-based design! This would say "is-a" instead of "has-a" / "uses-a". You should therefore use private inheritance!

1 - Is this implementation looks
correct? I mean is it really looks
like a policy based design?
Policy classes derive their usefulness from combining behaviors to produce a rich variety of combinations. When you have a single template parameter like this, it's not much of a policy class.
2 - I can now hook any kind of pens to
writer. But what will I do when I got
a pen with no default constructor
(only parameterized constructors)? How
will I handle this situation?
Again, this is an odd example of a policy class. However, to directly answer your question, you can provide a constructor which accepts PenType. You should probably also avoid inheriting from PenType and store it as a member instead (no need to tightly couple your policy class with its policies).
I guess compiler will replace PenType
with InkPen. If yes, why I am not able
to call just Write() from
StartWriting() instead of prefixing
base class name (PenType::Write())?
When you inherit from a class template, you have to specify this->member or BaseClass::member.
4 - I think policy based design forces
you to derive from classes which is
semantically invalid. In the above
code, a writer is derived from a pen
only because writer uses a pen. But
saying writer is a pen is semantically
invalid. Is there any other better way
to address this or I am missing
something here?
Store PenType as a member as suggested above. Always prefer composition to inheritance as it avoids the tight coupling relationship of inheritance.

Related

Good design for a reusable class with many derived classes

I have a class that will serve as the base class for (many) other classes. The derived classes each have a slight variation in their logic around a single function, which itself will be one of a set group of external functions. I aim to have something which is efficient, clear and will result in the minimal amount of additional code per new deriving class:
Here is what I have come up with:
// ctor omitted for brevity
class Base
{
public:
void process(batch_t &batch)
{
if (previous) previous->process(batch);
pre_process(batch);
proc.process(batch);
post_process(batch);
}
protected:
// no op unless overridden
virtual void pre_process(batch_t &batch) {}
virtual void post_process(batch_t &batch) {}
Processor proc;
Base* previous;
}
Expose the 'process' function which follows a set pattern
The core logic of the function is defined by a drop in class 'Processor'
Allow modification of this pattern via two virtual functions, which define additional work done before/after the call to Processor::proc
Sometimes, this object has a handle to another which must do something else before it, for this I have a pointer 'previous'
Does this design seem good or are there some glaring holes I haven't accounted for? Or are there other common patterns used in situations like this?
Does this design seem good or are there some glaring holes I haven't accounted for? Or are there other common patterns used in situations like this?
Without knowing more about your goals, all I can say is that it seems quite sensible. It's so sensible, in fact, there's a common name for this idiom: A "Non-virtual Interface". Also described as a "Template Method Design Pattern" by the gang of four, if you are in Java-sphere.
You are currently using the so called "Template Method" pattern (see, for instance, here). You have to note that it uses inheritance to essentially modify the behaviour of the process(batch) function by overriding the pre_process and post_process methods. This creates strong coupling. For instance, if you subclass your base class to use a particular pre_process implementation, then you can't use this implementation in any other subclass without duplicating code.
I personally would go with the "Strategy" pattern (see, for instance, here) which is more flexible and allows code re-use more easily, as follows:
struct PreProcessor {
virtual void process(batch&) = 0;
};
struct PostProcessor {
virtual void process(batch&) = 0;
};
class Base {
public:
//ctor taking pointers to subclasses of PreProcessor and PostProcessor
void process(batch_t &batch)
{
if (previous) previous->process(batch);
pre_proc->process(batch);
proc.process(batch);
post_proc->process(batch);
}
private:
PreProcessor* pre_proc;
Processor proc;
PostProcessor* post_proc;
Base* previous;
}
Now, you can create subclasses of PreProcessor and PostProcessor which you can mix and match and then pass to your Base class. You can of course apply the same approach for your Processor class.
Given your information, I don't see any benefit of using Inheritance (one Base and many Derived classes) here. Writing a new (whole) class just because you have a new couple of pre/post process logic is not a good idea. Not to mention, this will make difficult to reuse these logic.
I recommend a more composable design:
typedef void (*Handle)(batch_t&);
class Foo
{
public:
Foo(Handle pre, Handle post, Foo* previous) :
m_pre(pre),
m_post(post),
m_previous(previous) {}
void process(batch_t& batch)
{
if (m_previous) m_previous->process(batch);
(*m_pre)(batch);
m_proc.process(batch);
(*m_post)(batch);
}
private:
Processor m_proc;
Handle m_pre;
Handle m_post;
Foo* m_previous;
}
This way, you can create any customized Foo object with any logic of pre/post process you want. If the creation is repetitive, you can always extract it into a createXXX method of a FooFactory class.
P/S: if you don't like function pointers, you can use whatever representing a function, such as interface with one method, or lambda expression ...

virtual overloading vs `std::function` member?

I'm in a situation where I have a class, let's call it Generic. This class has members and attributes, and I plan to use it in a std::vector<Generic> or similar, processing several instances of this class.
Also, I want to specialize this class, the only difference between the generic and specialized objects would be a private method, which does not access any member of the class (but is called by other methods). My first idea was to simply declare it virtual and overload it in specialized classes like this:
class Generic
{
// all other members and attributes
private:
virtual float specialFunc(float x) const =0;
};
class Specialized_one : public Generic
{
private:
virtual float specialFunc(float x) const{ return x;}
};
class Specialized_two : public Generic
{
private:
virtual float specialFunc(float x) const{ return 2*x; }
}
And thus I guess I would have to use a std::vector<Generic*>, and create and destroy the objects dynamically.
A friend suggested me using a std::function<> attribute for my Generic class, and give the specialFunc as an argument to the constructor but I am not sure how to do it properly.
What would be the advantages and drawbacks of these two approaches, and are there other (better ?) ways to do the same thing ? I'm quite curious about it.
For the details, the specialization of each object I instantiate would be determined at runtime, depending on user input. And I might end up with a lot of these objects (not yet sure how many), so I would like to avoid any unnecessary overhead.
virtual functions and overloading model an is-a relationship while std::function models a has-a relationship.
Which one to use depends on your specific use case.
Using std::function is perhaps more flexible as you can easily modify the functionality without introducing new types.
Performance should not be the main decision point here unless this code is provably (i.e. you measured it) the tight loop bottleneck in your program.
First of all, let's throw performance out the window.
If you use virtual functions, as you stated, you may end up with a lot of classes with the same interface:
class generic {
virtual f(float x);
};
class spec1 : public generic {
virtual f(float x);
};
class spec2 : public generic {
virtual f(float x);
};
Using std::function<void(float)> as a member would allow you to avoid all the specializations:
class meaningful_class_name {
std::function<void(float)> f;
public:
meaningful_class_name(std::function<void(float)> const& p_f) : f(p_f) {}
};
In fact, if this is the ONLY thing you're using the class for, you might as well just remove it, and use a std::function<void(float)> at the level of the caller.
Advantages of std::function:
1) Less code (1 class for N functions, whereas the virtual method requires N classes for N functions. I'm making the assumption that this function is the only thing that's going to differ between classes).
2) Much more flexibility (You can pass in capturing lambdas that hold state if you want to).
3) If you write the class as a template, you could use it for all kinds of function signatures if needed.
Using std::function solves whatever problem you're attempting to tackle with virtual functions, and it seems to do it better. However, I'm not going to assert that std::function will always be better than a bunch of virtual functions in several classes. Sometimes, these functions have to be private and virtual because their implementation has nothing to do with any outside callers, so flexibility is NOT an advantage.
Disadvantages of std::function:
1) I was about to write that you can't access the private members of the generic class, but then I realized that you can modify the std::function in the class itself with a capturing lambda that holds this. Given the way you outlined the class however, this shouldn't be a problem since it seems to be oblivious to any sort of internal state.
What would be the advantages and drawbacks of these two approaches, and are there other (better ?) ways to do the same thing ?
The issue I can see is "how do you want your class defined?" (as in, what is the public interface?)
Consider creating an API like this:
class Generic
{
// all other members and attributes
explicit Generic(std::function<float(float)> specialFunc);
};
Now, you can create any instance of Generic, without care. If you have no idea what you will place in specialFunc, this is the best alternative ("you have no idea" means that clients of your code may decide in one month to place a function from another library there, an identical function ("receive x, return x"), accessing some database for the value, passing a stateful functor into your function, or whatever else).
Also, if the specialFunc can change for an existing instance (i.e. create instance with specialFunc, use it, change specialFunc, use it again, etc) you should use this variant.
This variant may be imposed on your code base by other constraints. (for example, if want to avoid making Generic virtual, or if you need it to be final for other reasons).
If (on the other hand) your specialFunc can only be a choice from a limited number of implementations, and client code cannot decide later they want something else - i.e. you only have identical function and doubling the value - like in your example - then you should rely on specializations, like in the code in your question.
TLDR: Decide based on the usage scenarios of your class.
Edit: regarding beter (or at least alternative) ways to do this ... You could inject the specialFunc in your class on an "per needed" basis:
That is, instead of this:
class Generic
{
public:
Generic(std::function<float(float> f) : specialFunc{f} {}
void fancy_computation2() { 2 * specialFunc(2.); }
void fancy_computation4() { 4 * specialFunc(4.); }
private:
std::function<float(float> specialFunc;
};
You could write this:
class Generic
{
public:
Generic() {}
void fancy_computation2(std::function<float(float> f) { 2 * f(2.); }
void fancy_computation4(std::function<float(float> f) { 4 * f(4.); }
private:
};
This offers you more flexibility (you can use different special functions with single instance), at the cost of more complicated client code. This may also be a level of flexibility that you do not want (too much).

Copying Methods from Member

I have a simple, low-level container class that is used by a more high-level file class. Basically, the file class uses the container to store modifications locally before saving a final version to an actual file. Some of the methods, therefore, carry directly over from the container class to the file class. (For example, Resize().)
I've just been defining the methods in the file class to call their container class variants. For example:
void FileClass::Foo()
{
ContainerMember.Foo();
}
This is, however, growing to be a nuisance. Is there a better way to do this?
Here's a simplified example:
class MyContainer
{
// ...
public:
void Foo()
{
// This function directly handles the object's
// member variables.
}
}
class MyClass
{
MyContainer Member;
public:
void Foo()
{
Member.Foo();
// This seems to be pointless re-implementation, and it's
// inconvenient to keep MyContainer's methods and MyClass's
// wrappers for those methods synchronized.
}
}
Well, why not just inherit privatly from MyContainer and expose those functions that you want to just forward with a using declaration? That is called "Implementing MyClass in terms of MyContainer.
class MyContainer
{
public:
void Foo()
{
// This function directly handles the object's
// member variables.
}
void Bar(){
// ...
}
}
class MyClass : private MyContainer
{
public:
using MyContainer::Foo;
// would hide MyContainer::Bar
void Bar(){
// ...
MyContainer::Bar();
// ...
}
}
Now the "outside" will be able to directly call Foo, while Bar is only accessible inside of MyClass. If you now make a function with the same name, it hides the base function and you can wrap base functions like that. Of course, you now need to fully qualify the call to the base function, or you'll go into an endless recursion.
Additionally, if you want to allow (non-polymorphical) subclassing of MyClass, than this is one of the rare places, were protected inheritence is actually useful:
class MyClass : protected MyContainer{
// all stays the same, subclasses are also allowed to call the MyContainer functions
};
Non-polymorphical if your MyClass has no virtual destructor.
Yes, maintaining a proxy class like this is very annoying. Your IDE might have some tools to make it a little easier. Or you might be able to download an IDE add-on.
But it isn't usually very difficult unless you need to support dozens of functions and overrides and templates.
I usually write them like:
void Foo() { return Member.Foo(); }
int Bar(int x) { return Member.Bar(x); }
It's nice and symmetrical. C++ lets you return void values in void functions because that makes templates work better. But you can use the same thing to make other code prettier.
That's delegation inheritance and I don't know that C++ offers any mechanism to help with that.
Consider what makes sense in your case - composition (has a) or inheritance (is a) relationship between MyClass and MyContainer.
If you don't want to have code like this anymore, you are pretty much restricted to implementation inheritance (MyContainer as a base/abstract base class). However you have to make sure this actually makes sense in your application, and you are not inheriting purely for the implementation (inheritance for implementation is bad).
If in doubt, what you have is probably fine.
EDIT: I'm more used to thinking in Java/C# and overlooked the fact that C++ has the greater inheritance flexibility Xeo utilizes in his answer. That just feels like nice solution in this case.
This feature that you need to write large amounts of code is actually necessary feature. C++ is verbose language, and if you try to avoid writing code with c++, your design will never be very good.
But the real problem with this question is that the class has no behaviour. It's just a wrapper which does nothing. Every class needs to do something other than just pass data around.
The key thing is that every class has correct interface. This requirement makes it necessary to write forwarding functions. The main purpose of each member function is to distribute the work required to all data members. If you only have one data member, and you've not decided yet what the class is supposed to do, then all you have is forwarding functions. Once you add more member objects and decide what the class is supposed to do, then your forwarding functions will change to something more reasonable.
One thing which will help with this is to keep your classes small. If the interface is small, each proxy class will only have small interface and the interface will not change very often.

Allowing a class function to easily be replaced

I often have a class where I want to allow a functionality to be selected. For example I have a class that has a GetNextNode() function which is used like MyClass::DoIteration(){GetNextNode(); } . I want to allow the user to select from one of many possible implementations of GetNextNode to determine how the next node to process should be determined. I also want to allow a user of my code to easily provide their own implementation.
So far, the answer is to make GetNextNode() virtual and re-implement it subclasses of MyClass...
My problem arises when I have two such interchangeable functions. If I have Function1() and Function2() which both have N possible implementations, then I would have to provide 2N subclasses to allow the user to pick which pair of these functions to use. Generally, it is much worse (if there are more than 2 such functions).
Note that these functions need access to data inside MyClass.
Is there a "pattern" that I am missing that allows "plugins" like this to be selected?
Actually I think what he's looking for is Policy based design, see http://en.wikipedia.org/wiki/Policy-based_design.
EDIT:
Example, (obviously doesn't compile, but hopefully you get the idea. You provide a template parameter for IterationPolicy, and it's expected to be a class that provides a getNextNode function. You can provide a default policy and a variety of alternate policies with your class. Also the user can write their own, provided they implement the appropriate interface. Avoids the problems associated with inheritance.
template <typename IterationPolicy = DefaultIterationPolicy>
class class X {
IterationPolicy iterationPolicy;
void DoIteration() { iterationPolicy.getNextNode(); }
};
This looks like the Strategy Pattern Edit: And if you only need compile time variations, the Policy-based design you disovered yourself can be more appropriate.
class NextNodeStrategy {
public:
virtual int GetNextNode() = 0;
};
class MyClass {
private:
NextNodeStrategy &nextNode;
public:
void SetNextNodeStrategy(NextNodeStrategy &strategy)
{
nextNode = strategy;
}
void DoIteration()
{
nextNode.GetNextNode();
}
};
The strategy might need access to other stuff, so you might need to pass in something to GetNextNode, now that the implementation lives in a separte class, and you might want to provide a default implementation of it (e.g. just have MyClass inherit from NextNodeStrategy , and set nextNode = this; in the MyClass constructor.
If you have other things that also can be changed, you make a strategy out of that too, and the 2 can vary independently.
Have you looked at the visitor pattern?
You can offer the different implementations as protected functions.
...
protected:
Node GetNextNode_Method1();
Node GetNextNode_Method2();
public:
Node GetNextNode();
...
The final class can override GetNextNode() to apply one of the offered alternatives.

What is the purpose of this code?

I am struggling to understand why the initialization of pprocessor, below, is written like this:
class X
{
...
private:
boost::scoped_ptr<f_process> pprocessor_;
};
X:X()
: pprocessor_( f_process_factory<t_process>().make() ) //why the factory with template
{...}
instead of just writing
X:X()
: pprocessor_( new t_process() )
{...}
Other relevant code is:
class f_process {
...
};
class t_process : public f_process {
...
};
//
class f_process_factory_base {
public:
f_process_factory_base() { }
virtual ~f_process_factory_base() = 0 { }
virtual f_process* make() = 0;
};
template < typename processClass >
class f_process_factory : public f_process_factory_base {
public:
f_process_factory() { }
virtual ~f_process_factory() { }
virtual processClass* make() { return new processClass(); }
};
The guy who wrote the code is very clever so perhaps there is a good reason for it.
(I can't contact him to ask)
As it is, it seems kinda pointless, but I can think of a few possible uses that aren't shown here, but may be useful in the future:
Memory management: It's possible that at some point in the future the original author anticipated needing a different allocation scheme for t_process. For example, he may want to reuse old objects or allocate new ones from an arena.
Tracking creation: There may be stats collected by the f_process_factory objects when they're created. Maybe the factory can keep some static state.
Binding constructor parameters: Perhaps a specialization of the f_process_factory for t_process at some point in the future needs to pass constructor parameters to the t_process creator, but X doesn't want to know about them.
Preparing for dependency injection: It might be possible to specialize these factories to return mocks, instead of real t_process. That could be achieved in a few ways, but not exactly as written.
Specialized object creation: (This is really just the general case for the previous two), there may be specializations of t_process that get created in different circumstances - for example, it might create different t_process types based on environmental variables or operating system. This would require specializations of the factory.
If it were me, and none of these sound plausible, I'd probably rip it out, as it seems like gratuitous design pattern usage.
This look like he is using the factory design pattern to create new instances of t_process. This will allow you to delegate the responsibility of creating different types of t_process away from class X
Well, in this case it doesn't make much sense, unless the author expects the default factory's definition will be updated sometime in the future. It would make sense, though, if the factory object were passed in as a parameter; a factory gives you more flexibility in constructing an object, but if you instantiate the factory at the same place that you use it, then it really doesn't provide an advantage. So, you're right.