Using pthread condition waits in a structure - c++

I previously inquired about synchronizing two threads without using pthread_join and I was able to resolve it using pthread_cond_wait and pthread_cond_signal.
I've written a small struct to bundle this functionality into a single place:
struct ConditionWait
{
int i_ConditionPredicate;
pthread_mutex_t lock_Var;
pthread_cond_t cond_Var;
int i_ValidResult;
ConditionWait()
{
pthread_mutex_init(&lock_Var, NULL);
pthread_cond_init(&cond_Var, NULL);
i_ValidResult = 1;
i_ConditionPredicate = 0;
}
void Signal()
{
pthread_mutex_lock(&lock_Var);
i_ConditionPredicate = i_ValidResult;
pthread_cond_signal(&cond_Var);
pthread_mutex_unlock(&lock_Var);
}
void Wait()
{
pthread_mutex_lock(&lock_Var);
while(i_ConditionPredicate != i_ValidResult)
{
pthread_cond_wait(&cond_Var, &lock_Var);
}
pthread_mutex_unlock(&lock_Var);
}
};
Assuming that I call Wait() and Signal() from two different threads, would this be thread safe. Would taking the same lock in two functions of the same object cause deadlocks or race conditions?
Edit: I'm using this now in my program and it works fine. I'm not too sure whether it's just luck

This will only work once, after you wake up the thread waiting, the next attempts to wait will all succeed and never block since you never "reset" the condition predicate. If this is what you want (or it doesn't matter in your situation) then yes, this is safe and is how condition variables are typically used.
PS: You should also use pthread_mutex_destroy() and pthread_cond_destroy() in the destructor of this thing.

Related

And odd use of conditional variable with local mutex

Poring through legacy code of old and large project, I had found that there was used some odd method of creating thread-safe queue, something like this:
template < typename _Msg>
class WaitQue: public QWaitCondition
{
public:
typedef _Msg DataType;
void wakeOne(const DataType& msg)
{
QMutexLocker lock_(&mx);
que.push(msg);
QWaitCondition::wakeOne();
}
void wait(DataType& msg)
{
/// wait if empty.
{
QMutex wx; // WHAT?
QMutexLocker cvlock_(&wx);
if (que.empty())
QWaitCondition::wait(&wx);
}
{
QMutexLocker _wlock(&mx);
msg = que.front();
que.pop();
}
}
unsigned long size() {
QMutexLocker lock_(&mx);
return que.size();
}
private:
std::queue<DataType> que;
QMutex mx;
};
wakeOne is used from threads as kind of "posting" function" and wait is called from other threads and waits indefinitely until a message appears in queue. In some cases roles between threads reverse at different stages and using separate queues.
Is this even legal way to use a QMutex by creating local one? I kind of understand why someone could do that to dodge deadlock while reading size of que but how it even works? Is there a simpler and more idiomatic way to achieve this behavior?
Its legal to have a local condition variable. But it normally makes no sense.
As you've worked out in this case is wrong. You should be using the member:
void wait(DataType& msg)
{
QMutexLocker cvlock_(&mx);
while (que.empty())
QWaitCondition::wait(&mx);
msg = que.front();
que.pop();
}
Notice also that you must have while instead of if around the call to QWaitCondition::wait. This is for complex reasons about (possible) spurious wake up - the Qt docs aren't clear here. But more importantly the fact that the wake and the subsequent reacquire of the mutex is not an atomic operation means you must recheck the variable queue for emptiness. It could be this last case where you previously were getting deadlocks/UB.
Consider the scenario of an empty queue and a caller (thread 1) to wait into QWaitCondition::wait. This thread blocks. Then thread 2 comes along and adds an item to the queue and calls wakeOne. Thread 1 gets woken up and tries to reacquire the mutex. However, thread 3 comes along in your implementation of wait, takes the mutex before thread 1, sees the queue isn't empty, processes the single item and moves on, releasing the mutex. Then thread 1 which has been woken up finally acquires the mutex, returns from QWaitCondition::wait and tries to process... an empty queue. Yikes.

Writing a thread that stays alive

I would like to write a class that wraps around std::thread and behaves like a std::thread but without actually allocating a thread every time I need to process something async. The reason is that I need to use multi threading in a context where I'm not allow to dynamically allocate and I also don't want to have the overhead of creating a std::thread.
Instead, I want a thread to run in a loop and wait until it can start processing. The client calls invoke which wakes up the thread. The Thread locks a mutex, does it's processing and falls asleep again. A function join behaves like std::thread::join by locking until the thread frees the lock (i.e. falls asleep again).
I think I got the class to run but because of a general lack of experience in multi threading, I would like to ask if anybody can spot race conditions or if the approach I used is considered "good style". For example, I'm not sure if temporary locking the mutex is a decent way to "join" the thread.
EDIT
I found another race condition: when calling join directly after invoke, there is no reason the thread already locked the mutex and thus locks the caller of join until the thread goes to sleep. To prevent this, I had to add a check for the invoke counter.
Header
#pragma once
#include <thread>
#include <atomic>
#include <mutex>
class PersistentThread
{
public:
PersistentThread();
~PersistentThread();
// set function to invoke
// locks if thread is currently processing _func
void set(const std::function<void()> &f);
// wakes the thread up to process _func and fall asleep again
// locks if thread is currently processing _func
void invoke();
// mimics std::thread::join
// locks until the thread is finished with it's loop
void join();
private:
// intern thread loop
void loop(bool *initialized);
private:
bool _shutdownRequested{ false };
std::mutex _mutex;
std::unique_ptr<std::thread> _thread;
std::condition_variable _cond;
std::function<void()> _func{ nullptr };
};
Source File
#include "PersistentThread.h"
PersistentThread::PersistentThread()
{
auto lock = std::unique_lock<std::mutex>(_mutex);
bool initialized = false;
_thread = std::make_unique<std::thread>(&PersistentThread::loop, this, &initialized);
// wait until _thread notifies, check bool initialized to prevent spurious wakeups
_cond.wait(lock, [&] {return initialized; });
}
PersistentThread::~PersistentThread()
{
{
std::lock_guard<std::mutex> lock(_mutex);
_func = nullptr;
_shutdownRequested = true;
// wake up and let join
_cond.notify_one();
}
// join thread,
if (_thread->joinable())
{
_thread->join();
}
}
void PersistentThread::set(const std::function<void()>& f)
{
std::lock_guard<std::mutex> lock(_mutex);
this->_func = f;
}
void PersistentThread::invoke()
{
std::lock_guard<std::mutex> lock(_mutex);
_cond.notify_one();
}
void PersistentThread::join()
{
bool joined = false;
while (!joined)
{
std::lock_guard<std::mutex> lock(_mutex);
joined = (_invokeCounter == 0);
}
}
void PersistentThread::loop(bool *initialized)
{
std::unique_lock<std::mutex> lock(_mutex);
*initialized = true;
_cond.notify_one();
while (true)
{
// wait until we get the mutex again
_cond.wait(lock, [this] {return _shutdownRequested || (this->_invokeCounter > 0); });
// shut down if requested
if (_shutdownRequested) return;
// process
if (_func) _func();
_invokeCounter--;
}
}
You are asking about potential race conditions, and I see at least one race condition in the shown code.
After constructing a PersistentThread, there is no guarantee that the new thread will acquire its initial lock in its loop() before the main execution thread returns from the constructor and enters invoke(). It is possible that the main execution thread enters invoke() immediately after the constructor is complete, ends up notifying nobody, since the internal execution thread hasn't locked the mutex yet. As such, this invoke() will not result in any processing taking place.
You need to synchronize the completion of the constructor with the execution thread's initial lock acquisition.
EDIT: your revision looks right; but I also spotted another race condition.
As documented in the description of wait(), wait() may wake up "spuriously". Just because wait() returned, doesn't mean that some other thread has entered invoke().
You need a counter, in addition to everything else, with invoke() incrementing the counter, and the execution thread executing its assigned duties only when the counter is greater than zero, decrementing it. This will guard against spurious wake-ups.
I would also have the execution thread check the counter before entering wait(), and enter wait() only if it is 0. Otherwise, it decrements the counter, executes its function, and loops back.
This should plug up all the potential race conditions in this area.
P.S. The spurious wake-up also applies to the initial notification, in your correction, that the execution thread has entered the loop. You'll need to do something similar for that situation, too.
I don't understand what you're trying to ask exactly. It's a nice style you used.
It would be much safer using bools and check the single routines because void returns nothing so you could be maybe stuck caused by bugs. Check everything you can since the thread runs under the hood. Make sure the calls are running correctly, if the process had really success. Also you could read some stuff about "Thread Pooling".

Thread synchronisation: Wait on two bool variables

I want to wait for two bool variables to be true in one thread. They are changed in different places. I can use boost in my project, but not C++11.
I did find Info on how to use mutexes and condition variables, but im not sure if its possible to wait for two mutexes.
This is some pseudocode of my program.
bool job1_dataready, job2_dataready;
//t1:
void job1()
{
//do stuff
job1_dataready = true;
}
//t2:
void job2()
{
//do stuff
job2_dataready= true;
}
main()
{
boost::thread t1(job1);
boost::thread t1(job2);
if(job1_dataready&& job2_dataready)
{
//do stuff with data from both jobs
}
}
from what I see, you don't need bool variables, use std::thread::join instead:
main() {
std::thread t1(job1);
std::thread t1(job2);
t1.join();
t2.join();
// do jobs after threads t1 and t2 finish working
}
you would block on the condition variable, check your boolean values when woken, and either go back to waiting or continue processing. Your threads will signal the condition variable after they have set the boolean flag. All with appropriate mutex locking of course. You can wait on an infinite number of conditions, just check when woken after blocking on the condition.
In simple situations like this, you wait on two mutexes simply by locking them in order. First you lock the mutex from thread 1, then the mutex from thread 2. If thread 2 would finish before thread 1, the main thread would simply not block when locking mutex 2.
However, note that this is an answer you your question, but not a solution to your problem. The reason is that you have a race condition with the mutex: the main thread might lock the mutex before the worker thread even starts. So, while Andrei R.s response (std::thread::join) isn't a direct answer, it is the correct solution.
If you plan to set your two bools just before the respective threads terminate, then Andrei R.'s solution of just joining the two threads is definitely the best way to go. However, if your threads actually continue working after the dataready points are reached, and are thus not terminating yet, you need a different approach. In that case, you could use two std::future/std::promise objects, which would look something like this:
std::promise<bool> job1_dataready, job2_dataready;
//t1:
void job1()
{
//do stuff
job1_dataready.set_value(true); // The value doesn't actually matter
//do more stuff
}
//t2:
void job2()
{
//do stuff
job2_dataready.set_value(true);
//do more stuff
}
main()
{
std::future<bool> job1_future = job1_dataready.get_future();
std::future<bool> job2_future = job2_dataready.get_future();
boost::thread t1(job1);
boost::thread t2(job2);
job1_future.wait();
job2_future.wait();
if (job1_future.get() && job2_future.get()) // True unless something was aborted
{
//do stuff with data from both jobs
}
}

Using std::condition_variable with atomic<bool>

There are several questions on SO dealing with atomic, and other that deal with std::condition_variable. But my question if my use below is correct?
Three threads, one ctrl thread that does preparation work before unpausing the two other threads. The ctrl thread also is able to pause the worker threads (sender/receiver) while they are in their tight send/receive loops.
The idea with using the atomic is to make the tight loops faster in case the boolean for pausing is not set.
class SomeClass
{
public:
//...
// Disregard that data is public...
std::condition_variable cv; // UDP threads will wait on this cv until allowed
// to run by ctrl thread.
std::mutex cv_m;
std::atomic<bool> pause_test_threads;
};
void do_pause_test_threads(SomeClass *someclass)
{
if (!someclass->pause_test_threads)
{
// Even though we use an atomic, mutex must be held during
// modification. See documentation of condition variable
// notify_all/wait. Mutex does not need to be held for the actual
// notify call.
std::lock_guard<std::mutex> lk(someclass->cv_m);
someclass->pause_test_threads = true;
}
}
void unpause_test_threads(SomeClass *someclass)
{
if (someclass->pause_test_threads)
{
{
// Even though we use an atomic, mutex must be held during
// modification. See documentation of condition variable
// notify_all/wait. Mutex does not need to be held for the actual
// notify call.
std::lock_guard<std::mutex> lk(someclass->cv_m);
someclass->pause_test_threads = false;
}
someclass->cv.notify_all(); // Allow send/receive threads to run.
}
}
void wait_to_start(SomeClass *someclass)
{
std::unique_lock<std::mutex> lk(someclass->cv_m); // RAII, no need for unlock.
auto not_paused = [someclass](){return someclass->pause_test_threads == false;};
someclass->cv.wait(lk, not_paused);
}
void ctrl_thread(SomeClass *someclass)
{
// Do startup work
// ...
unpause_test_threads(someclass);
for (;;)
{
// ... check for end-program etc, if so, break;
if (lost ctrl connection to other endpoint)
{
pause_test_threads();
}
else
{
unpause_test_threads();
}
sleep(SLEEP_INTERVAL);
}
unpause_test_threads(someclass);
}
void sender_thread(SomeClass *someclass)
{
wait_to_start(someclass);
...
for (;;)
{
// ... check for end-program etc, if so, break;
if (someclass->pause_test_threads) wait_to_start(someclass);
...
}
}
void receiver_thread(SomeClass *someclass)
{
wait_to_start(someclass);
...
for (;;)
{
// ... check for end-program etc, if so, break;
if (someclass->pause_test_threads) wait_to_start(someclass);
...
}
I looked through your code manipulating conditional variable and atomic, and it seems that it is correct and won't cause problems.
Why you should protect writes to shared variable even if it is atomic:
There could be problems if write to shared variable happens between checking it in predicate and waiting on condition. Consider following:
Waiting thread wakes spuriously, aquires mutex, checks predicate and evaluates it to false, so it must wait on cv again.
Controlling thread sets shared variable to true.
Controlling thread sends notification, which is not received by anybody, because there is no threads waiting on conditional variable.
Waiting thread waits on conditional variable. Since notification was already sent, it would wait until next spurious wakeup, or next time when controlling thread sends notification. Potentially waiting indefinetly.
Reads from shared atomic variables without locking is generally safe, unless it introduces TOCTOU problems.
In your case you are reading shared variable to avoid unnecessary locking and then checking it again after lock (in conditional wait call). It is a valid optimisation, called double-checked locking and I do not see any potential problems here.
You might want to check if atomic<bool> is lock-free. Otherwise you will have even more locks you would have without it.
In general, you want to treat the fact that variable is atomic independently of how it works with a condition variable.
If all code that interacts with the condition variable follows the usual pattern of locking the mutex before query/modification, and the code interacting with the condition variable does not rely on code that does not interact with the condition variable, it will continue to be correct even if it wraps an atomic mutex.
From a quick read of your pseudo-code, this appears to be correct. However, pseudo-code is often a poor substitute for real code for multi-threaded code.
The "optimization" of only waiting on the condition variable (and locking the mutex) when an atomic read says you might want to may or may not be an optimization. You need to profile throughput.
atomic data doesn't need another synchronization, it's basis of lock-free algorithms and data structures.
void do_pause_test_threads(SomeClass *someclass)
{
if (!someclass->pause_test_threads)
{
/// your pause_test_threads might be changed here by other thread
/// so you have to acquire mutex before checking and changing
/// or use atomic methods - compare_exchange_weak/strong,
/// but not all together
std::lock_guard<std::mutex> lk(someclass->cv_m);
someclass->pause_test_threads = true;
}
}

(C++ Threads): Creating worker threads that will be listening to jobs and executing them concurrently when wanted

Suppose we have two workers. Each worker has an id of 0 and 1. Also suppose that we have jobs arriving all the time, each job has also an identifier 0 or 1 which specifies which worker will have to do this job.
I would like to create 2 threads that are initially locked, and then when two jobs arrive, unlock them, each of them does their job and then lock them again until other jobs arrive.
I have the following code:
#include <iostream>
#include <thread>
#include <mutex>
using namespace std;
struct job{
thread jobThread;
mutex jobMutex;
};
job jobs[2];
void executeJob(int worker){
while(true){
jobs[worker].jobMutex.lock();
//do some job
}
}
void initialize(){
int i;
for(i=0;i<2;i++){
jobs[i].jobThread = thread(executeJob, i);
}
}
int main(void){
//initialization
initialize();
int buffer[2];
int bufferSize = 0;
while(true){
//jobs arrive here constantly,
//once the buffer becomes full,
//we unlock the threads(workers) and they start working
bufferSize = 2;
if(bufferSize == 2){
for(int i = 0; i<2; i++){
jobs[i].jobMutex.unlock();
}
}
break;
}
}
I started using std::thread a few days ago and I'm not sure why but Visual Studio gives me an error saying abort() has been called. I believe there's something missing however due to my ignorance I can't figure out what.
I would expect this piece of code to actually
Initialize the two threads and then lock them
Inside the main function unlock the two threads, the two threads will do their job(in this case nothing) and then they will become locked again.
But it gives me an error instead. What am I doing wrong?
Thank you in advance!
For this purpose you can use boost's threadpool class.
It's efficient and well tested. opensource library instead of you writing newly and stabilizing it.
http://threadpool.sourceforge.net/
main()
{
pool tp(2); //number of worker threads-currently its 2.
// Add some tasks to the pool.
tp.schedule(&first_task);
tp.schedule(&second_task);
}
void first_task()
{
...
}
void second_task()
{
...
}
Note:
Suggestion for your example:
You don't need to have individual mutex object for each thread. Single mutex object lock itself will does the synchronization between all the threads. You are locking mutex of one thread in executejob function and without unlocking another thread is calling lock with different mutex object leading to deadlock or undefined behaviour.
Also since you are calling mutex.lock() inside whileloop without unlocking , same thread is trying to lock itself with same mutex object infinately leading to undefined behaviour.
If you donot need to execute threads parallel you can have one global mutex object can be used inside executejob function to lock and unlock.
mutex m;
void executeJob(int worker)
{
m.lock();
//do some job
m.unlock();
}
If you want to execute job parallel use boost threadpool as I suggested earlier.
In general you can write an algorithm similar to the following. It works with pthreads. I'm sure it would work with c++ threads as well.
create threads and make them wait on a condition variable, e.g. work_exists.
When work arrives you notify all threads that are waiting on that condition variable. Then in the main thread you start waiting on another condition variable work_done
Upon receiving work_exists notification, worker threads wake up, and grab their assigned work from jobs[worker], they execute it, they send a notification on work_done variable, and then go back to waiting on the work_exists condition variable
When main thread receives work_done notification it checks if all threads are done. If not, it keeps waiting till the notification from last-finishing thread arrives.
From cppreference's page on std::mutex::unlock:
The mutex must be unlocked by all threads that have successfully locked it before being destroyed. Otherwise, the behavior is undefined.
Your approach of having one thread unlock a mutex on behalf of another thread is incorrect.
The behavior you're attempting would normally be done using std::condition_variable. There are examples if you look at the links to the member functions.