I need to create a 2D int array of size 800x800. But doing so creates a stack overflow (ha ha).
I'm new to C++, so should I do something like a vector of vectors? And just encapsulate the 2d array into a class?
Specifically, this array is my zbuffer in a graphics program. I need to store a z value for every pixel on the screen (hence the large size of 800x800).
Thanks!
You need about 2.5 megs, so just using the heap should be fine. You don't need a vector unless you need to resize it. See C++ FAQ Lite for an example of using a "2D" heap array.
int *array = new int[800*800];
(Don't forget to delete[] it when you're done.)
Every post so far leaves the memory management for the programmer. This can and should be avoided. ReaperUnreal is darn close to what I'd do, except I'd use a vector rather than an array and also make the dimensions template parameters and change the access functions -- and oh just IMNSHO clean things up a bit:
template <class T, size_t W, size_t H>
class Array2D
{
public:
const int width = W;
const int height = H;
typedef typename T type;
Array2D()
: buffer(width*height)
{
}
inline type& at(unsigned int x, unsigned int y)
{
return buffer[y*width + x];
}
inline const type& at(unsigned int x, unsigned int y) const
{
return buffer[y*width + x];
}
private:
std::vector<T> buffer;
};
Now you can allocate this 2-D array on the stack just fine:
void foo()
{
Array2D<int, 800, 800> zbuffer;
// Do something with zbuffer...
}
I hope this helps!
EDIT: Removed array specification from Array2D::buffer. Thanks to Andreas for catching that!
Kevin's example is good, however:
std::vector<T> buffer[width * height];
Should be
std::vector<T> buffer;
Expanding it a bit you could of course add operator-overloads instead of the at()-functions:
const T &operator()(int x, int y) const
{
return buffer[y * width + x];
}
and
T &operator()(int x, int y)
{
return buffer[y * width + x];
}
Example:
int main()
{
Array2D<int, 800, 800> a;
a(10, 10) = 50;
std::cout << "A(10, 10)=" << a(10, 10) << std::endl;
return 0;
}
You could do a vector of vectors, but that would have some overhead. For a z-buffer the more typical method would be to create an array of size 800*800=640000.
const int width = 800;
const int height = 800;
unsigned int* z_buffer = new unsigned int[width*height];
Then access the pixels as follows:
unsigned int z = z_buffer[y*width+x];
I might create a single dimension array of 800*800. It is probably more efficient to use a single allocation like this, rather than allocating 800 separate vectors.
int *ary=new int[800*800];
Then, probably encapsulate that in a class that acted like a 2D array.
class _2DArray
{
public:
int *operator[](const size_t &idx)
{
return &ary[idx*800];
}
const int *operator[](const size_t &idx) const
{
return &ary[idx*800];
}
};
The abstraction shown here has a lot of holes, e.g, what happens if you access out past the end of a "row"? The book "Effective C++" has a pretty good discussion of writing good multi dimensional arrays in C++.
One thing you can do is change the stack size (if you really want the array on the stack) with VC the flag to do this is [/F](http://msdn.microsoft.com/en-us/library/tdkhxaks(VS.80).aspx).
But the solution you probably want is to put the memory in the heap rather than on the stack, for that you should use a vector of vectors.
The following line declares a vector of 800 elements, each element is a vector of 800 ints and saves you from managing the memory manually.
std::vector<std::vector<int> > arr(800, std::vector<int>(800));
Note the space between the two closing angle brackets (> >) which is required in order disambiguate it from the shift right operator (which will no longer be needed in C++0x).
Or you could try something like:
boost::shared_array<int> zbuffer(new int[width*height]);
You should still be able to do this too:
++zbuffer[0];
No more worries about managing the memory, no custom classes to take care of, and it's easy to throw around.
There's the C like way of doing:
const int xwidth = 800;
const int ywidth = 800;
int* array = (int*) new int[xwidth * ywidth];
// Check array is not NULL here and handle the allocation error if it is
// Then do stuff with the array, such as zero initialize it
for(int x = 0; x < xwidth; ++x)
{
for(int y = 0; y < ywidth; ++y)
{
array[y * xwidth + x] = 0;
}
}
// Just use array[y * xwidth + x] when you want to access your class.
// When you're done with it, free the memory you allocated with
delete[] array;
You could encapsulate the y * xwidth + x inside a class with an easy get and set method (possibly with overloading the [] operator if you want to start getting into more advanced C++). I'd recommend getting to this slowly though if you're just starting with C++ and not start creating re-usable fully class templates for n-dimension arrays which will just confuse you when you're starting off.
As soon as you get into graphics work you might find that the overhead of having extra class calls might slow down your code. However don't worry about this until your application isn't fast enough and you can profile it to show where the time is lost, rather than making it more difficult to use at the start with possible unnecessary complexity.
I found that the C++ lite FAQ was great for information such as this. In particular your question is answered by:
http://www.parashift.com/c++-faq-lite/freestore-mgmt.html#faq-16.16
You can allocate array on static storage (in file's scope, or add static qualifier in function scope), if you need only one instance.
int array[800][800];
void fn()
{
static int array[800][800];
}
This way it will not go to the stack, and you not have to deal with dynamic memory.
Well, building on what Niall Ryan started, if performance is an issue, you can take this one step further by optimizing the math and encapsulating this into a class.
So we'll start with a bit of math. Recall that 800 can be written in powers of 2 as:
800 = 512 + 256 + 32 = 2^5 + 2^8 + 2^9
So we can write our addressing function as:
int index = y << 9 + y << 8 + y << 5 + x;
So if we encapsulate everything into a nice class we get:
class ZBuffer
{
public:
const int width = 800;
const int height = 800;
ZBuffer()
{
for(unsigned int i = 0, *pBuff = zbuff; i < width * height; i++, pBuff++)
*pBuff = 0;
}
inline unsigned int getZAt(unsigned int x, unsigned int y)
{
return *(zbuff + y << 9 + y << 8 + y << 5 + x);
}
inline unsigned int setZAt(unsigned int x, unsigned int y, unsigned int z)
{
*(zbuff + y << 9 + y << 8 + y << 5 + x) = z;
}
private:
unsigned int zbuff[width * height];
};
Related
I'm working on an image renderer in C++ that I wrote from scratch (I don't want to use anything but standard libraries), but I'm having some trouble when trying to store the image. The class I use to store images looks like this:
class RawImage
{
private:
RGB pixels[][][3] = {};
public:
int width = 0;
int height = 0;
RawImage(int width, int height)
{
this->width = width;
this->height = height;
};
RGB GetPixel(int x, int y)
{
if (x < 0 || x > width - 1)
return RGB(0.f, 0.f, 0.f);
if (y < 0 || y > height - 1)
return RGB(0.f, 0.f, 0.f);
return pixels[x][y];
};
int SetPixel(int x, int y, RGB color)
{
if (x < 0 || x > width - 1)
return -1;
if (y < 0 || y > height - 1)
return -1;
this->pixels[x][y] = color;
return 0;
}
};
When I try to compile this code, the g++ compiler gives the following error:
declaration of ‘pixels’ as multidimensional array must have bounds for
all dimensions except the first.
How do I use a multidimensional array of which the 2 first dimensions vary in size, but the third dimension is of a fixed size?
Assuming (as you have confirmed in the comments) that your RGB type is a class or structure with three components, with a constructor of the form used in your GetPixel function, then you actually want a 2D array. However (as also mentioned in the comments), it is generally more efficient to store bitmaps as flattened, one-dimensional arrays of size width × height. The appropriate element in that array can then be indexed using the formula array[y * width + x] (assuming a row-major order and y-ordinates that increase down the bitmap).
You still have the issue of a dimension that is not known at compile time, so you can't use a normal array. But the std::vector container is ideal for this: just resize it in your RawImage constructor, and it can then be used in much the same way as a plain array. Also, the memory used will be automatically freed when an object of the RawImage class is destroyed.
Here is a possible implementation of your class using such a std::vector:
#include <vector>
class RawImage {
private:
std::vector<RGB> pixels;
public:
int width = 0;
int height = 0;
RawImage(int width, int height)
{
this->width = width;
this->height = height;
pixels.resize(width * height);
};
RGB GetPixel(int x, int y)
{
if (x < 0 || x >= width )
return RGB(0.f, 0.f, 0.f);
if (y < 0 || y >= height)
return RGB(0.f, 0.f, 0.f);
return pixels[y * width + x];
};
int SetPixel(int x, int y, RGB color)
{
if (x < 0 || x >= width)
return -1;
if (y < 0 || y >= height)
return -1;
pixels[y * width + x] = color;
return 0;
}
};
Important Note: In order to use the std::vector<RGB> container like this, the RGB class/structure must have a default constructor. I don't know exactly how you have implemented that class, but something like the following would work:
struct RGB {
float r, g, b;
RGB(float fr, float fg, float fb) : r{ fr }, g{ fg }, b{ fb } { }
RGB() : r{ 0 }, g{ 0 }, b{ 0 } { } // Default c'tor required by std::vector
};
Or, for brevity, you could 'merge' your default constructor into the one that takes three float arguments by providing default vales for each of those arguments:
struct RGB {
float r, g, b;
RGB(float fr = 0, float fg = 0, float fb = 0) : r{ fr }, g{ fg }, b{ fb } { }
};
Set the bounds of an array after object initialisation in cpp
The size of an array never changes through its lifetime. It's set upon creation. Technically this isn't a problem for you because you can initialise the array in the constructor.
But, size of an array variable must be compile time constant, so you cannot accept the size as a constructor parameter.
You can use a dynamic array. Most convenient way is to use std::vector.
Arrays are not really first size citizens in C++ language, and multi-dimensional arrays are not at all. There is no way to declare a multi-dimensional array where more than first dimension is not a compile time constant, full stop. The rationale is that plain arrays are low level objects and are intended to only be used in higher level containers. Unfortunately, building true multi-level containers wrapping a multidimensional array whose dimension are only known at compile time is far from trivial because of the way iterators work. A simple way if you can accept it, is to use operator () as an accessor method: pixels(x, y) instead of pixels[x][y] in a container aware of the dynamic dimensions.
I am trying to create an array of X pointers referencing matrices of dimensions Y by 16. Is there any way to accomplish this in C++ without the use of triple pointers?
Edit: Adding some context for the problem.
There are a number of geometries on the screen, each with a transform that has been flattened to a 1x16 array. Each snapshot represents the transforms for each of number of components. So the matrix dimensions are 16 by num_components by num_snapshots , where the latter two dimensions are known at run-time. In the end, we have many geometries with motion applied.
I'm creating a function that takes a triple pointer argument, though I cannot use triple pointers in my situation. What other ways can I pass this data (possibly via multiple arguments)? Worst case, I thought about flattening this entire 3D matrix to an array, though it seems like a sloppy thing to do. Any better suggestions?
What I have now:
function(..., double ***snapshot_transforms, ...)
What I want to accomplish:
function (..., <1+ non-triple pointer parameters>, ...)
Below isn't the function I'm creating that takes the triple pointer, but shows what the data is all about.
static double ***snapshot_transforms_function (int num_snapshots, int num_geometries)
{
double component_transform[16];
double ***snapshot_transforms = new double**[num_snapshots];
for (int i = 0; i < num_snapshots; i++)
{
snapshot_transforms[i] = new double*[num_geometries];
for (int j = 0; j < num_geometries; j++)
{
snapshot_transforms[i][j] = new double[16];
// 4x4 transform put into a 1x16 array with dummy values for each component for each snapshot
for (int k = 0; k < 16; k++)
snapshot_transforms[i][j][k] = k;
}
}
return snapshot_transforms;
}
Edit2: I cannot create new classes, nor use C++ features like std, as the exposed function prototype in the header file is getting put into a wrapper (that doesn't know how to interpret triple pointers) for translation to other languages.
Edit3: After everyone's input in the comments, I think going with a flattened array is probably the best solution. I was hoping there would be some way to split this triple pointer and organize this complex data across multiple data pieces neatly using simple data types including single pointers. Though I don't think there is a pretty way of doing this given my caveats here. I appreciate everyone's help =)
It is easier, better, and less error prone to use an std::vector. You are using C++ and not C after all. I replaced all of the C-style array pointers with vectors. The typedef doublecube makes it so that you don't have to type vector<vector<vector<double>>> over and over again. Other than that the code basically stays the same as what you had.
If you don't actually need dummy values I would remove that innermost k loop completely. reserve will reserve the memory space that you need for the real data.
#include <vector>
using std::vector; // so we can just call it "vector"
typedef vector<vector<vector<double>>> doublecube;
static doublecube snapshot_transforms_function (int num_snapshots, int num_geometries)
{
// I deleted component_transform. It was never used
doublecube snapshot_transforms;
snapshot_transforms.reserve(num_snapshots);
for (int i = 0; i < num_snapshots; i++)
{
snapshot_transforms.at(i).reserve(num_geometries);
for (int j = 0; j < num_geometries; j++)
{
snapshot_transforms.at(i).at(j).reserve(16);
// 4x4 transform put into a 1x16 array with dummy values for each component for each snapshot
for (int k = 0; k < 16; k++)
snapshot_transforms.at(i).at(j).at(k) = k;
}
}
return snapshot_transforms;
}
Adding a little bit of object-orientation usually makes the code easier to manage -- for example, here's some code that creates an array of 100 Matrix objects with varying numbers of rows per Matrix. (You could vary the number of columns in each Matrix too if you wanted to, but I left them at 16):
#include <vector>
#include <memory> // for shared_ptr (not strictly necessary, but used in main() to avoid unnecessarily copying of Matrix objects)
/** Represents a (numRows x numCols) 2D matrix of doubles */
class Matrix
{
public:
// constructor
Matrix(int numRows = 0, int numCols = 0)
: _numRows(numRows)
, _numCols(numCols)
{
_values.resize(_numRows*_numCols);
std::fill(_values.begin(), _values.end(), 0.0f);
}
// copy constructor
Matrix(const Matrix & rhs)
: _numRows(rhs._numRows)
, _numCols(rhs._numCols)
{
_values.resize(_numRows*_numCols);
std::fill(_values.begin(), _values.end(), 0.0f);
}
/** Returns the value at (row/col) */
double get(int row, int col) const {return _values[(row*_numCols)+col];}
/** Sets the value at (row/col) to the specified value */
double set(int row, int col, double val) {return _values[(row*_numCols)+col] = val;}
/** Assignment operator */
Matrix & operator = (const Matrix & rhs)
{
_numRows = rhs._numRows;
_numCols = rhs._numCols;
_values = rhs._values;
return *this;
}
private:
int _numRows;
int _numCols;
std::vector<double> _values;
};
int main(int, char **)
{
const int numCols = 16;
std::vector< std::shared_ptr<Matrix> > matrixList;
for (int i=0; i<100; i++) matrixList.push_back(std::make_shared<Matrix>(i, numCols));
return 0;
}
What is the correct way to implement an efficient 2d vector? I need to store a set of Item objects in a 2d collection, that is fast to iterate (most important) and also fast to find elements.
I have a 2d vector of pointers declared as follows:
std::vector<std::vector<Item*>> * items;
In the constructor, I instantiate it as follows:
items = new std::vector<std::vector<Item*>>();
items->resize(10, std::vector<Item*>(10, new Item()));
I how do I (correctly) implement methods for accessing items? Eg:
items[3][4] = new Item();
AddItem(Item *& item, int x, int y)
{
items[x][y] = item;
}
My reasoning for using pointers is for better performance, so that I can pass things around by reference.
If there is a better way to go about this, please explain, however I would still be interested in how to correctly use the vector.
Edit: For clarification, this is part of a class that is for inventory management in a simple game. The set 10x10 vector represents the inventory grid which is a set size. The Item class contains the item type, a pointer to an image in the resource manager, stack size etc.
My pointer usage was in an attempt to improve performance, since this class is iterated and used to render the whole inventory every frame, using the image pointer.
It seems that you know the size of the matrix beforehand, and that this matrix is squared. Though vector<> is fine, you can also use native vectors in that case.
Item **m = new Item*[ n * n ];
If you want to access position r,c, then you only have to multiply r by n, and then add c:
pos = ( r * n ) + c;
So, if you want to access position 1, 2, and n = 5, then:
pos = ( 1 * 5 ) + 2;
Item * it = m[ pos ];
Also, instead of using plain pointers, you can use smart pointers, such as auto_ptr (obsolete) and unique_ptr, which are more or less similar: once they are destroyed, they destroy the object they are pointing to.
auto_ptr<Item> m = new auto_ptr<Item>[ n * n ];
The only drawback is that now you need to call get() in order to obtain the pointer.
pos = ( 1 * 5 ) + 2;
Item * it = m[ pos ].get();
Here you have a class that summarizes all of this:
class ItemsSquaredMatrix {
public:
ItemsSquaredMatrix(unsigned int i): size( i )
{ m = new std::auto_ptr<Item>[ size * size ]; }
~ItemsSquaredMatrix()
{ delete[] m; }
Item * get(unsigned int row, unsigned int col)
{ return m[ translate( row, col ) ].get(); }
const Item * get(unsigned int row, unsigned int col) const
{ return m[ translate( row, col ) ].get(); }
void set(unsigned int row, unsigned int col, Item * it)
{ m[ translate( row, col ) ].reset( it ); }
unsigned int translate(unsigned int row, unsigned int col) const
{ return ( ( row * size ) + col ); }
private:
unsigned int size;
std::auto_ptr<Item> * m;
};
Now you only have to create the class Item. But if you created a specific class, then you'd have to duplicate ItemsSquaredMatrix for each new piece of data. In C++ there is a specific solution for this, involving the transformation of the class above in a template (hint: vector<> is a template). Since you are a beginner, it will be simpler to have Item as an abstract class:
class Item {
public:
// more things...
virtual std::string toString() const = 0;
};
And derive all the data classes you will create from them. Remember to do a cast, though...
As you can see, there are a lot of open questions, and more questions will raise as you keep unveliling things. Enjoy!
Hope this helps.
For numerical work, you want to store your data as locally as possible in memory. For example, if you were making an n by m matrix, you might be tempted to define it as
vector<vector<double>> mat(n, vector<double>(m));
There are severe disadvantages to this approach. Firstly, it will not work with any proper matrix libraries, such as BLAS and LAPACK, which expect the data to be contiguous in memory. Secondly, even if it did, it would lead to lots of random access and pointer indirection in memory, which would kill the performance of your matrix operations. Instead, you need a contiguous block of memory n*m items in size.
vector<double> mat(n*m);
But you wouldn't really want to use a vector for this, as you would then need to translate from 1d to 2d indices manually. There are some libraries that do this for you in C++. One of them is Blitz++, but that seems to not be much developed now. Other alternatives are Armadillo and Eigen. See this previous answer for more details.
Using Eigen, for example, the matrix declaration would look like this:
MatrixXd mat(n,m);
and you would be able to access elements as mat[i][j], and multiply matrices as mat1*mat2, and so on.
The first question is why the pointers. There's almost never any reason
to have a pointer to an std::vector, and it's not that often that
you'd have a vector of pointers. You're definition should probably be:
std::vector<std::vector<Item> > items;
, or at the very least (supposing that e.g. Item is the base of a
polymorphic hierarchy):
std::vector<std::vector<Item*> > items;
As for your problem, the best solution is to wrap your data in some sort
of a Vector2D class, which contains an std::vector<Item> as member,
and does the index calculations to access the desired element:
class Vector2D
{
int my_rows;
int my_columns;
std::vector<Item> my_data;
public:
Vector2D( int rows, int columns )
: my_rows( rows )
, my_columns( columns )
{
}
Item& get( int row, int column )
{
assert( row >= 0 && row < my_rows
&& column >= 0 && column < my_columns );
return my_data[row * my_columns + column];
}
class RowProxy
{
Vector2D* my_owner;
int my_row;
public;
RowProxy(Vector2D& owner, int row)
: my_owner( &owner )
, my_row( row )
{
}
Item& operator[]( int column ) const
{
return my_owner->get( my_row, column );
}
};
RowProxy operator[]( int row )
{
return RowProxy( this, row );
}
// OR...
Item& operator()( int row, int column )
{
return get( row, column );
}
};
If you forgo bounds checking (but I wouldn't recommend it), the
RowProxy can be a simple Item*.
And of course, you should duplicate the above for const.
Can someone please point out what I am doing wrong in the following code?
int* a = NULL;
int* b = NULL;
a = new int[map->mapSize.width];
b = new int[map->mapSize.height];
layer->tileGids = new int[a][b];
Here's what the code uses:
typedef struct _size {
int width, height;
} size;
class Map {
size mapSize;
}
class Layer {
int * tileGids;
}
EDIT: Compiler-Errors (in line 6 of the first bit of code):
error: expression in new-declarator must have integral or enumeration type|
error: 'b' cannot appear in a constant-expression|
Solution:
I have decided to accept lightalchemist's answer. In essence, what works for me is use a vector instead of the array. Vector manages the memory for you and hence is a lot easier to deal with.
You can't pass a pointer for initializing the size of an array. Others have now mentioned this.
This post (it's not mine) seems like it might help you: http://eli.thegreenplace.net/2003/07/23/allocating-multi-dimensional-arrays-in-c/
You should also consider doing the allocation in the class Layer's constructor and then deleting the memory in it's destructor (i.e. RAII - resource acquisition is initialization). This is considered good style.
Finally, you might consider using continuous memory and a custom indexing scheme, which you could easily use Layer to encapsulate. This of course depends upon how big things will get. The bigger they get the better the case for continuous memory becomes.
This should give you a flavor.
#include <iostream>
#include <cstdlib>
int main()
{
const size_t ROWS = 5;
const size_t COLS = 2;
const size_t size = ROWS*COLS;
int* arr = new int[size];
int i = 0;
for ( size_t r = 0 ; r < ROWS; ++r )
{
for (size_t c = 0; c < COLS; ++c )
{
arr[r*COLS+c] = i++;
}
}
for ( int j = 0; j < i; ++j)
{
std::cout << arr[j] << std::endl;
}
delete [] arr;
}
Firstly, your variables "a" and "b" are pointers. Your code:
layer->tileGids = new int[a][b]
is the root cause of the problem.
I'm trying to guess your intention here and I think what you are trying to do is make layer.tileGids a 2 dimension array to reference a "grid" of size (mapSize.Width, mapSize.height) so that you can refer to each "cell" in the grid using layer.tileGids[x][y].
If you are indeed trying to create a 2 dimension array, there are 2 methods to do it.
Method 1:
class Layer {
int ** tileGids; // NOTE the "**" to indicate tileGids is a pointer to pointer i.e. 2D array.
}
To initialize it:
int width = map->mapSize.width;
int height = map->mapSize.height;
layer.tileGids = new int*[width]; // NOTE the "int*" to indicate tileGids is a new array of pointers to int.
for (int i = 0; i < width; i++) // Initialize each element in layer.tileGids[] to be a pointer to int.
{
layer.tileGids[i] = new int[height];
}
Now you can access the items in layer.tileGids using:
int value = layer.tileGids[x][y] // where 0 <= x < width and 0 <= y < height
To deallocate this data structure, similar to how you allocate it, you need to deallocate each dynamically allocated array in each "row":
for (int i = 0; i < width; i++)
{
delete [] layer.tileGids[i]; // Deallocate each row.
}
delete [] layer.tileGids; // Deallocate "array" to the pointers itself.
Method 2:
Now another easier, less messy method (avoid pointers) is to use the C++ vector class. You need to make the following changes:
#include <vector>
class Layer {
vector<vector<int> > tileGids; // Note the space at "<int> >".
}
To initialize:
int width = map->mapSize.width;
int height = map->mapSize.height;
layer.tileGids = vector<vector<int> >(width, vector<int>(height, 0)); // Initialize all entries to 0.
To access the elements:
int value = layer.tileGids[x][y]; // Where 0 <= x < width and 0 <= y < height
Note that for the second method using vectors, you do not have to do any memory cleanup as is required in the first method because the vector will automatically take care of it. However, because a vector can grow dynamically i.e. you can add items to it, you lose the safety of having a fixed size array i.e. someone could accidentally increase the size of your grid if you use the vector method but if he tries to do that when you intialized it using the first method above an error will occur and you will immediately know that something is wrong.
Can someone please point out what I am doing wrong in the following code?
A lot. You're allocating two single arrays (a "row array" and a "column array", not what you need), and then you try to do something strange.
Generally you can't (strictly speaking) dynamically allocate a 2D array in C++ (because the type system would still need the type, along with the dimensions, to be known at compile time). You can emulate it with an array of arrays or so, but the best way is to allocate an 1D array:
int width=5;
std::vector<int> tab(width*height);
and then access the element by calculating the coordinates manually:
// access the element (1,2)
tab[1 + 2*width] = 10;
This way you're essentially interpreting a 1D array as a 2D array (with performance equal to static 2D arrays).
Then it's best to wrap the indexing with a class for convenience; boost::multi_array also has this done for you already.
a and b are int* here:
layer->tileGids = new int[a][b];
Perhaps you meant to say this?
layer->tileGids = new int[*a][*b];
Bit of background for those who don't know DirectX. A vertex is not just an XYZ position, it can have other data in it as well. DirectX uses a system known as Flexible Vertex Format, FVF, to let you define what format you want your vertexs to be in. You define these by passing a number to DirectX that use bitwise or to build it up, eg (D3DFVF_XYZ | D3DFVF_DIFFUSE)means you are going to start using (from when you tell DirectX) vertexs that have an XYZ (three floats) and a RGB components (DWORD / unsigned long).
In order to pass your vertexs to the graphics card, you basicaly lock the memory in the graphics card where your buffer is, and use memcpy to transfer your array over.
Your array is an array of a struct you deffine your self, so in this case you would have made a struct like...
struct CUSTOMVERTEX {
FLOAT X, Y, Z;
DWORD COLOR;
};
You then make an array of type CUSTOMVERTEX and fill in the data fields.
I think my best appraoch is let my class build up an array of each component type, so an array of struct pos{ flaot x,y,z;}; an array of struct colour{ DWROD colour;}; etc.
But I will then need to merge these together so that I have an array structs like CUSTOMVERTEX.
Now, I think I have made a function that will merge to arrays together, but I am not sure if it is going to work as intended, here it is (currently missing the abilaty to actually return this 'interlaced' array)
void Utils::MergeArrays(char *ArrayA, char *ArrayB, int elementSizeA, int elementSizeB, int numElements)
{
char *packedElements = (char*)malloc(numElements* (elementSizeA, elementSizeB));
char *nextElement = packedElements;
for(int i = 0; i < numElements; ++i)
{
memcpy(nextElement, (void*)ArrayA[i], elementSizeA);
nextElement += elementSizeA;
memcpy(nextElement, (void*)ArrayB[i], elementSizeB);
nextElement += elementSizeB;
}
}
when calling this function, you will pass in the two arrays you want merged, and size of the elements in each array and the number of elements in your array.
I was asking about this in chat for a while whilst SO was down. A few things to say.
I am dealing with fairly small data sets, like 100 tops, and this (in theory) is more of an initialisation task, so should only get done once, so a bit of time is ok by me.
My final array that I want to be able to use memcpy on to transfer into the graphics card needs to have no padding, it has to be contiguous data.
EDIT The combined array of vertex data will be transfered to the GPU, this is first done by requesting the GPU to set a void* to the start of the memory I have access to and requesting space the size of my customVertex * NumOfVertex. So if my mergeArray function does loose what the types are within it, that is ok, just a long as I get my single combined array to transfer in one block /EDIT
Finally, their is a dam good chance I am barking up the wrong tree with this, so their may well be a much simpler way to just not have this problem in the first place, but part of me has dug my heals in and wants to get this system working, so I would appreciate knowing how to get such a system to work (the interlacing arrays thing)
Thank you so much... I need to sooth my head now, so I look forward to hearing any ideas on the problem.
No, no, no. The FVF system has been deprecated for years and isn't even available in D3D10 or later. D3D9 uses the VertexElement system. Sample code:
D3DVERTEXELEMENT9 VertexColElements[] =
{
{0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0},
{0, 12, D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR, 0},
D3DDECL_END(),
};
The FVF system has a number of fundamental flaws - for example, which order the bytes go in.
On top of that, if you want to make a runtime-variant vertex data format, then you will need to write a shader for every possible variant that you may want to have, and compile them all, and spend your life swapping them around. And, the effects on the final product would be insane - for example, how could you possibly write a competitive rendering engine if you decide to take out the lighting data you need to Phong shade?
The reality is that a runtime-variant vertex format is more than a tad insane.
However, I guess I'd better lend a hand. What you really need is a polymorphic function object and some plain memory- D3D takes void*s or somesuch so that's not a big deal. When you call the function object, it adds to the FVF declaration and copies data into the memory.
class FunctionBase {
public:
virtual ~FunctionBase() {}
virtual void Call(std::vector<std::vector<char>>& vertices, std::vector<D3DVERTEXELEMENT9>& vertexdecl, int& offset) = 0;
};
// Example implementation
class Position : public FunctionBase {
virtual void Call(std::vector<std::vector<char>>& vertices, std::vector<D3DVERTEXELEMENT9>& vertexdecl, int& offset) {
std::for_each(vertices.begin(), vertices.end(), [&](std::vector<char>& data) {
float x[3] = {0};
char* ptr = (char*)x;
for(int i = 0; i < sizeof(x); i++) {
data.push_back(ptr[i]);
}
}
vertexdecl.push_back({0, offset, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0});
offset += sizeof(x);
}
};
std::vector<std::vector<char>> vertices;
std::vector<D3DVERTEXELEMENT9> vertexdecl;
vertices.resize(vertex_count);
std::vector<std::shared_ptr<FunctionBase>> functions;
// add to functions here
int offset = 0;
std::for_each(functions.begin(), functions.end(), [&](std::shared_ptr<FunctionBase>& ref) {
ref->Call(vertices, vertexdecl, offset);
});
vertexdecl.push_back(D3DDECL_END());
Excuse my use of lambdas, I use a C++0x compiler.
Your solution looks fine. But if you want something a bit more C++ish, you could try something like this:
Edit My previous solution basically recreated something that already existed, std::pair. I don't know what I was thinking, here's the even more C++ish solution:
template<typename InIt_A, typename InIt_B, typename OutIt>
void MergeArrays(InIt_A ia, InIt_B ib, OutIt out, std::size_t size)
{
for(std::size_t i=0; i<size; i++)
{
*out = make_pair(*ia,*ib);
++out;
++ia;
++ib;
}
}
int main()
{
pos p[100];
color c[100];
typedef pair<pos,color> CustomVertex;
CustomVertex cv[100];
MergeArrays(p,c,cv,100);
}
You shouldn't have to worry about padding, because all elements in a D3D vertex are either 32 bit floats, or 32 bit integers.
Edit
Here's a solution that might work. It will do all your mergings at once, and you don't need to worry about passing around the size:
// declare a different struct for each possible vertex element
struct Position { FLOAT x,y,z; };
struct Normal { FLOAT x,y,z; };
struct Diffuse { BYTE a,r,g,b; };
struct TextureCoordinates { FLOAT u,v; };
// etc...
// I'm not all too sure about all the different elements you can have in a vertex
// But you would want a parameter for each one in this function. Any element that
// you didn't use, you would just pass in a null pointer. Since it's properly
// typed, you won't be able to pass in an array of the wrong type without casting.
std::vector<char> MergeArrays(Position * ppos, Normal * pnorm, Diffuse * pdif, TextureCoordinates * ptex, int size)
{
int element_size = 0;
if(ppos) element_size += sizeof(Position);
if(pnorm) element_size += sizeof(Normal);
if(pdif) element_size += sizeof(Diffuse);
if(ptex) element_size += sizeof(TextureCoordinates);
vector<char> packed(element_size * size);
vector<char>::iterator it = packed.begin();
while(it != packed.end())
{
if(ppos)
{
it = std::copy_n(reinterpret_cast<char*>(ppos), sizeof(Position), it);
ppos++;
}
if(pnorm)
{
it = std::copy_n(reinterpret_cast<char*>(pnorm), sizeof(Normal), it);
pnorm++;
}
if(pdif)
{
it = std::copy_n(reinterpret_cast<char*>(pdif), sizeof(Diffuse), it);
pdif++;
}
if(ptex)
{
it = std::copy_n(reinterpret_cast<char*>(ptex), sizeof(TextureCoordinates), it);
ptex++;
}
}
return packed;
}
// Testing it out. We'll create an array of 10 each of some of the elements.
// We'll use Position, Normal, and Texture Coordinates. We'll pass in a NULL
// for Diffuse.
int main()
{
Position p[10];
Normal n[10];
TextureCoordinates tc[10];
// Fill in the arrays with dummy data that we can easily read. In this
// case, what we'll do is cast each array to a char*, and fill in each
// successive element with an incrementing value.
for(int i=0; i<10*sizeof(Position); i++)
{
reinterpret_cast<char*>(p)[i] = i;
}
for(int i=0; i<10*sizeof(Normal); i++)
{
reinterpret_cast<char*>(n)[i] = i;
}
for(int i=0; i<10*sizeof(TextureCoordinates); i++)
{
reinterpret_cast<char*>(tc)[i] = i;
}
vector<char> v = MergeArrays(p,n,NULL,tc,10);
// Output the vector. It should be interlaced:
// Position-Normal-TexCoordinates-Position-Normal-TexCoordinates-etc...
for_each(v.begin(), v.end(),
[](const char & c) { cout << (int)c << endl; });
cout << endl;
}
Altering your code, this should do it:
void* Utils::MergeArrays(char *ArrayA, char *ArrayB, int elementSizeA, int elementSizeB, int numElements)
{
char *packedElements = (char*)malloc(numElements* (elementSizeA + elementSizeB));
char *nextElement = packedElements;
for(int i = 0; i < numElements; ++i)
{
memcpy(nextElement, ArrayA + i*elementSizeA, elementSizeA);
nextElement += elementSizeA;
memcpy(nextElement, ArrayB + i*elementSizeB, elementSizeB);
nextElement += elementSizeB;
}
return packedElements;
}
Note that you probably want some code that merges all the attributes at once, rather than 2 at a time (think position+normal+texture coordinate+color+...). Also note that you can do that merging at the time you fill out your vertex buffer, so that you don't ever need to allocate packedElements.
Something like:
//pass the Locked buffer in as destArray
void Utils::MergeArrays(char* destArray, char **Arrays, int* elementSizes, int numArrays, int numElements)
{
char* nextElement = destArray;
for(int i = 0; i < numElements; ++i)
{
for (int array=0; array<numArrays; ++array)
{
int elementSize = elementSizes[array];
memcpy(nextElement, Arrays[array] + i*elementSize, elementSize);
nextElement += elementSize;
}
}
}
I don't know DirectX, but the exact same sort of concept exists in OpenGL, and in OpenGL you can specify the location and stride of each vertex attribute. You can have alternating attributes (like your first struct) or you scan store them in different blocks. In OpenGL you use glVertexPointer to set these things up. Considering that DirectX is ultimately running on the same hardware underneath, I suspect there's some way to do the same thing in DirectX, but I don't know what it is.
Some Googling with DirectX and glVertexPointer as keywords turns up SetFVF and SetVertexDeclaration
MSDN on SetFVF, gamedev discussion comparing them