How to write delta s i j in sympy? - sympy

I write this,
from sympy import *
deltas = symbols('Delta_s_i_j')
it gives me all three s, i, and j in the subscript.
I want only i and j in the subscript.
Delta and s should be in the same height

>>> Symbol('\Delta{s}_{ij}')

Related

Gurobi constraints and objective function

I am very new to Gurobi. I am trying to solve the following ILP
minimize \sum_i c_i y_i + \sum_i \sum_j D_{ij} x_{ij}
Here D is stored as a 2D numpy array.
My constraints are as follows
x_{ij} <= y_i
y_i + \sum_j x_{ij} = 1
Here's the image of the algebra :
My code so far is as follows,
from gurobipy import *
def gurobi(D,c):
n = D.shape[0]
m = Model()
X = m.addVars(n,n,vtype=GRB.BINARY)
y = m.addVars(n,vtype=GRB.BINARY)
m.update()
for j in range(D.shape[0]):
for i in range(D.shape[0]):
m.addConstr(X[i,j] <= y[i])
I am not sure about, how to implement the second constraint and specify the objective function, as objective terms includes a numpy array. Any help ?
Unfortunately I don't have GUROBI because it's really expensive...
but, according to this tutorial the second constraint should be implemented like this :
for i in range(n):
m.addConstr(y[i] + quicksum(X[i,j] for j in range(n), i) == 1)
while the objective function can be defined as :
m.setObjective(quicksum(c[i]*y[i] for i in range(n)) + quicksum(quicksum(D[i,j] * x[i,j]) for i in range(n) for j in range(n)), GRB.MINIMIZE)
N.B: I'm assuming D is a matrix n x n
This is a very simple case. You can write the first constraint this way. It is a good habit to name your constraints.
m.addConstrs((x[i,j] <= y[j] for i in range(D.shape[0]) for j in range(D.shape[0])), name='something')
If you want to add the second constraint, you can write it like this
m.addConstrs((y[i] + x.sum(i, '*') <= 1 for i in range(n)), name='something')
you could write the second equations ass well using quicksum as suggested by digEmAll.
The advantage of using quicksum is that you can add if condition so that you don't um over all values of j. Here is how you could do it
m.addConstrs((y[i] + quicksum(x[i, j] for j in range(n)) <= 1 for i in range(n)), name='something')
if you only needed some values of j to sum over then you could:
m.addConstrs((y[i] + quicksum(x[i, j] for j in range(n) if j condition) <= 1 for i in range(n)), name='something')
I hope this helps

Check calculation with summation

How to use Sympy to check calculations step by step, for instance that the 2 formulas below are equal?
from sympy import IndexedBase, Sum, symbols
i, n = symbols('i n', integer=True)
a = IndexedBase('a')
Sum(a[i], (i, 0, n - 1)) + a[n]
Sum(a[i], (i, 0, n))
The simplify function is used to check whether two expressions are equal.
from sympy import IndexedBase, Sum, symbols, simplify
i, n = symbols('i n', integer=True)
a = IndexedBase('a')
#to check calculations
n=5
x=Sum(a[i], (i, 0, n - 1)).doit() + a[n].doit()
y=Sum(a[i], (i, 0, n)).doit()
print x,y
#To check functions are equal
if simplify(x-y) == 0:
print "The two functions are equal"

Cholesky decomposition in Halide

I'm trying to implement a Cholesky decomposition in Halide. Part of common algorithm such as crout consists of an iteration over a triangular matrix. In a way that, the diagonal elements of the decomposition are computed by subtracting a partial column sum from the diagonal element of the input matrix. Column sum is calculated over squared elements of a triangular part of the input matrix, excluding the diagonal element.
Using BLAS the code would in C++ look as follows:
double* a; /* input matrix */
int n; /* dimension */
const int c__1 = 1;
const double c_b12 = 1.;
const double c_b10 = -1.;
for (int j = 0; j < n; ++j) {
double ajj = a[j + j * n] - ddot(&j, &a[j + n], &n, &a[j + n], &n);
ajj = sqrt(ajj);
a[j + j * n] = ajj;
if (j < n) {
int i__2 = n - j;
dgemv("No transpose", &i__2, &j, &c_b10, &a[j + 1 + n], &n, &a[j + n], &b, &c_b12, &a[j + 1 + j * n], &c__1);
double d__1 = 1. / ajj;
dscal(&i__2, &d__1, &a[j + 1 + j * n], &c__1);
}
}
My question is if a pattern like this is in general expressible by Halide? And if so, how would it look like?
I think Andrew may have a more complete answer, but in the interest of a timely response, you can use an RDom predicate (introduced via RDom::where) to enumerate triangular regions (or their generalization to more dimensions). A sketch of the pattern is:
Halide::RDom triangular(0, extent, 0, extent);
triangular.where(triangular.x < triangular.y);
Then use triangular in a reduction.
I once had a fast Cholesky written in Halide. Unfortunately I can't find the code. I put the outer loop in C and wrote a good block-panel update routine that operated on something like a 32-wide panel at a time. This was before Halide had triangular iteration, so maybe you can do better now.

Extratcing all square submatrices from matrix using Numpy

Say I have a NxN numpy matrix. I am looking for the fastest way of extracting all square chunks (sub-matrices) from this matrix. Meaning all CxC parts of the original matrix for 0 < C < N+1. The sub-matrices should correspond to contiguous rows/columns indexes of the original matrix. I want to achieve this in as little time as possible.
You could use Numpy slicing,
import numpy as np
n = 20
x = np.random.rand(n, n)
slice_list = [slice(k, l) for k in range(0, n) for l in range(k, n)]
results = [x[sl,sl] for sl in slice_list]
avoiding loops in Numpy, is not a goal by itself. As long as you are being mindful about it, there shouldn't be much overhead.
Tricky enough, but here is an example of extracting all MxM submatrices in a NxN matrix.
import numpy as NP
import numpy.random as RNG
P = N - M + 1
x = NP.arange(P).repeat(M)
y = NP.tile(NP.arange(M), P) + x
a = RNG.randn(N, N)
b = a[NP.newaxis].repeat(P, axis=0)
c = b[x, y]
d = c.reshape(P, M, N)
e = d[:, NP.newaxis].repeat(P, axis=1)
f = e[:, x, :, y]
g = f.reshape(P, M, P, M)
h = g.transpose(2, 0, 3, 1)
for i in range(0, P):
for j in range(0, P):
assert NP.equal(h[i, j], a[i:i+M, j:j+M]).all()

How do you multiply a matrix by itself?

This is what i have so far but I do not think it is right.
for (int i = 0 ; i < 5; i++)
{
for (int j = 0; j < 5; j++)
{
matrix[i][j] += matrix[i][j] * matrix[i][j];
}
}
Suggestion: if it's not a homework don't write your own linear algebra routines, use any of the many peer reviewed libraries that are out there.
Now, about your code, if you want to do a term by term product, then you're doing it wrong, what you're doing is assigning to each value it's square plus the original value (n*n+n or (1+n)*n, whatever you like best)
But if you want to do an authentic matrix multiplication in the algebraic sense, remember that you had to do the scalar product of the first matrix rows by the second matrix columns (or the other way, I'm not very sure now)... something like:
for i in rows:
for j in cols:
result(i,j)=m(i,:)·m(:,j)
and the scalar product "·"
v·w = sum(v(i)*w(i)) for all i in the range of the indices.
Of course, with this method you cannot do the product in place, because you'll need the values that you're overwriting in the next steps.
Also, explaining a little bit further Tyler McHenry's comment, as a consecuence of having to multiply rows by columns, the "inner dimensions" (I'm not sure if that's the correct terminology) of the matrices must match (if A is m x n, B is n x o and A*C is m x o), so in your case, a matrix can be squared only if it's square (he he he).
And if you just want to play a little bit with matrices, then you can try Octave, for example; squaring a matrix is as easy as M*M or M**2.
I don't think you can multiply a matrix by itself in-place.
for (i = 0; i < 5; i++) {
for (j = 0; j < 5; j++) {
product[i][j] = 0;
for (k = 0; k < 5; k++) {
product[i][j] += matrix[i][k] * matrix[k][j];
}
}
}
Even if you use a less naïve matrix multiplication (i.e. something other than this O(n3) algorithm), you still need extra storage.
That's not any matrix multiplication definition I've ever seen. The standard definition is
for (i = 1 to m)
for (j = 1 to n)
result(i, j) = 0
for (k = 1 to s)
result(i, j) += a(i, k) * b(k, j)
to give the algorithm in a sort of pseudocode. In this case, a is a m x s matrix and b is an s x n, the result is a m x n, and subscripts begin with 1..
Note that multiplying a matrix in place is going to get the wrong answer, since you're going to be overwriting values before using them.
It's been too long since I've done matrix math (and I only did a little bit of it, on top), but the += operator takes the value of matrix[i][j] and adds to it the value of matrix[i][j] * matrix[i][j], which I don't think is what you want to do.
Well it looks like what it's doing is squaring the row/column, then adding it to the row/column. Is that what you want it to do? If not, then change it.