Sum types in C++ - c++

At work, I ran into a situation where the best type to describe the result returned from a function would be std::variant<uint64_t, uint64_t> - of course, this isn't valid C++, because you can't have two variants of the same type. I could represent this as a std::pair<bool, uint64_t>, or where the first element of the pair is an enum, but this is a special case; a std::variant<uint64_t, uint64_t, bool> isn't so neatly representable, and my functional programming background really made me want Either - so I went to try to implement it, using the Visitor pattern as I have been able to do in other languages without native support for sum types:
template <typename A, typename B, typename C>
class EitherVisitor {
virtual C onLeft(const A& left) = 0;
virtual C onRight(const B& right) = 0;
};
template <typename A, typename B>
class Either {
template <typename C>
virtual C Accept(EitherVisitor<A, B, C> visitor) = 0;
};
template <typename A, typename B>
class Left: Either<A, B> {
private:
A value;
public:
Left(const A& valueIn): value(valueIn) {}
template <typename C>
virtual C Accept(EitherVisitor<A, B, C> visitor) {
return visitor.onLeft(value);
}
};
template <typename A, typename B>
class Right: Either<A, B> {
private:
B value;
public:
Right(const B& valueIn): value(valueIn) {}
template <typename C>
virtual C Accept(EitherVisitor<A, B, C> visitor) {
return visitor.onRight(value);
}
};
C++ rejects this, because the template method Accept cannot be virtual. Is there a workaround to this limitation, that would allow me to correctly represent the fundamental sum type in terms of its f-algebra and catamorphism?

Perhaps the simplest solution is a lightweight wrapper around T for Right and Left?
Basically a strong type alias (could also use Boost's strong typedef)
template<class T>
struct Left
{
T val;
};
template<class T>
struct Right
{
T val;
};
And then we can distinguish between them for visitation:
template<class T, class U>
using Either = std::variant<Left<T>, Right<U>>;
Either<int, int> TrySomething()
{
if (rand() % 2 == 0) // get off my case about rand(), I know it's bad
return Left<int>{0};
else
return Right<int>{0};
}
struct visitor
{
template<class T>
void operator()(const Left<T>& val_wrapper)
{
std::cout << "Success! Value is: " << val_wrapper.val << std::endl;
}
template<class T>
void operator()(const Right<T>& val_wrapper)
{
std::cout << "Failure! Value is: " << val_wrapper.val << std::endl;
}
};
int main()
{
visitor v;
for (size_t i = 0; i < 10; ++i)
{
auto res = TrySomething();
std::visit(v, res);
}
}
Demo

std::variant<X,X> is valid C++.
It is a bit awkward to use, because std::visit doesn't give you the index, and std::get<X> won't work either.
The way you can work around this is to create a variant-of-indexes, which is like a strong enum.
template<std::size_t i>
using index_t = std::integral_constant<std::size_t, i>;
template<std::size_t i>
constexpr index_t<i> index = {};
template<std::size_t...Is>
using number = std::variant< index_t<Is>... >;
namespace helpers {
template<class X>
struct number_helper;
template<std::size_t...Is>
struct number_helper<std::index_sequence<Is...>> {
using type=number<Is...>;
};
}
template<std::size_t N>
using alternative = typename helpers::number_helper<std::make_index_sequence<N>>::type;
we can then extract the alternative from a variant:
namespace helpers {
template<class...Ts, std::size_t...Is, class R=alternative<sizeof...(Ts)>>
constexpr R get_alternative( std::variant<Ts...> const& v, std::index_sequence<Is...> ) {
constexpr R retvals[] = {
R(index<Is>)...
};
return retvals[v.index()];
}
}
template<class...Ts>
constexpr alternative<sizeof...(Ts)> get_alternative( std::variant<Ts...> const& v )
{
return helpers::get_alternative(v, std::make_index_sequence<sizeof...(Ts)>{});
}
so now you have a std::variant<int, int>, you can
auto which = get_alternative( var );
and which is a variant, represented at runtime by an integer which is the index of the active type in var. You can:
std::variant<int, int> var( std::in_place_index_t<1>{}, 7 );
auto which = get_alternative( var );
std::visit( [&var](auto I) {
std::cout << std::get<I>(var) << "\n";
}, get_alternative(var) );
and get access to which of the alternative possibilities in var is active with a compile time constant.
The get_alternative(variant), I find, makes variant<X,X,X> much more usable, and fills in the hole I think you might be running into.
Live example.
Now if you don't need a compile-time index of which one is active, you can just call var.index(), and visit via visit( lambda, var ).
When you construct the variant, you do need the compile time index to do a variant<int, int> var( std::in_place_index_t<0>{}, 7 ). The wording is a bit awkward, because while C++ supports variants of multiples of the same type, it considers them a bit less likely than a "standard" disjoint variant outside of generic code.
But I've used this alternative and get_alternative like code to support functional programming like data glue code before.

Related

aliasing a std template function

I need to alias std::get function in order to improve readability in my code.
Unfortunately I got a compile-time error get<0> in namespace ‘std’ does not name a type. using is equivalent to typedef so it needs types to work with.
I am using a std::tuple to represent some data type:
using myFoo = std::tuple<int,int,double,string>;
using getNumber = std::get<0>;
I look at some previous questions but the solution proposed is to wrap and use std::forward. I don't want to write such code for each member.
Q1 from SO
Q2 from SO
Is there a way to get around this using only using keyword?
is there a way to get around this using only using keyword?
I would say no, for std::get is not a type (thus it's not eligible for such an use).
Moreover, even if it was possible, note that std::get is an overloaded function, thus you would have been required to bind yourself to a specific implementation.
That said, in C++17, you can do something like this:
#include<tuple>
#include<utility>
using myFoo = std::tuple<int,int,double>;
constexpr auto getNumber = [](auto &&t) constexpr -> decltype(auto) { return std::get<0>(std::forward<decltype(t)>(t)); };
template<int> struct S {};
int main() {
constexpr myFoo t{0,0,0.};
S<getNumber(t)> s{};
(void)s;
}
As you can see, constexpr lambdas and variables help you creating compile-time (let me say) wrappers you can use to rename functions.
As correctly pointed out by #T.C. in the comments, if you want to generalize it even more and get an almost perfect alias for std::get, you can use a variable template:
template<int N>
constexpr auto getFromPosition = [](auto &&t) constexpr -> decltype(auto) { return std::get<N>(std::forward<decltype(t)>(t)); };
Now you can invoke it as it follows:
S<getFromPosition<0>(t)> s{};
See it on wandbox.
You can do it with a using + an enum:
#include<tuple>
using myFoo = std::tuple<int,int,double>;
int main() {
constexpr myFoo t{0,0,0.};
enum { Number = 0 };
using std::get;
auto&& x = get<Number>(t);
(void)x;
}
Although unfortunately, this is not DRY since you have to maintain an enum and a tuple simultaneously.
In my view, the most DRY and safest way to achieve this is to use tagged values in the tuple. Limit the tuple to maximum one of each tag type.
The tag is essentially a mnemonic for some unique concept:
#include <tuple>
#include <iostream>
//
// simple example of a tagged value class
//
template<class Type, class Tag>
struct tagged
{
constexpr tagged(Type t)
: value_(t) {}
operator Type&() { return value_; }
operator Type const&() const { return value_; }
Type value_;
};
struct age_tag {};
struct weight_tag {};
struct height_tag {};
using Age = tagged<int, age_tag>;
using Weight = tagged<int, weight_tag>;
using Height = tagged<double, height_tag>;
int main()
{
constexpr auto foo1 = std::make_tuple(Age(21), Weight(150), Height(165.5));
constexpr auto foo2 = std::make_tuple(Weight(150), Height(165.5), Age(21));
using std::get;
//
// note below how order now makes no difference
//
std::cout << get<Age>(foo1) << std::endl;
std::cout << get<Weight>(foo1) << std::endl;
std::cout << get<Height>(foo1) << std::endl;
std::cout << "\n";
std::cout << get<Age>(foo2) << std::endl;
std::cout << get<Weight>(foo2) << std::endl;
std::cout << get<Height>(foo2) << std::endl;
}
expected output:
21
150
165.5
21
150
165.5
In general, tuple should be used in generic code.
If you know field 1 is a Number or a Chicken, you shouldn't be using a tuple. You should be using a struct with a field called Number.
If you need tuple-like functionality (as one does), you can simply write as_tie:
struct SomeType {
int Number;
std::string Chicken;
auto as_tie() { return std::tie(Number, Chicken); }
auto as_tie() const { return std::tie(Number, Chicken); }
};
Now you can access SomeType as a tuple of references by typing someInstance.as_tie().
This still doesn't give you < or == etc for free. We can do that in one place and reuse it everywhere you use the as_tie technique:
struct as_tie_ordering {
template<class T>
using enable = std::enable_if_t< std::is_base_of<as_tie_ordering, std::decay_t<T>>, int>;
template<class T, enable<T> =0>
friend bool operator==(T const& lhs, T const& rhs) {
return lhs.as_tie() == rhs.as_tie();
}
template<class T, enable<T> =0>
friend bool operator!=(T const& lhs, T const& rhs) {
return lhs.as_tie() != rhs.as_tie();
}
template<class T, enable<T> =0>
friend bool operator<(T const& lhs, T const& rhs) {
return lhs.as_tie() < rhs.as_tie();
}
template<class T, enable<T> =0>
friend bool operator<=(T const& lhs, T const& rhs) {
return lhs.as_tie() <= rhs.as_tie();
}
template<class T, enable<T> =0>
friend bool operator>=(T const& lhs, T const& rhs) {
return lhs.as_tie() >= rhs.as_tie();
}
template<class T, enable<T> =0>
friend bool operator>(T const& lhs, T const& rhs) {
return lhs.as_tie() > rhs.as_tie();
}
};
which gives us:
struct SomeType:as_tie_ordering {
int Number;
std::string Chicken;
auto as_tie() { return std::tie(Number, Chicken); }
auto as_tie() const { return std::tie(Number, Chicken); }
};
and now
SomeTime a,b;
bool same = (a==b);
works. Note that as_tie_ordering doesn't use CRTP and is an empty stateless class; this technique uses Koenig lookup to let instances find the operators.
You can also implement an ADL-based get
struct as_tie_get {
template<class T>
using enable = std::enable_if_t< std::is_base_of<as_tie_get, std::decay_t<T>>, int>;
template<std::size_t I, class T,
enable<T> =0
>
friend decltype(auto) get( T&& t ) {
using std::get;
return get<I>( std::forward<T>(t).as_tie() );
}
};
Getting std::tuple_size to work isn't as easy, sadly.
The enable<T> =0 clauses above should be replaced with class=enable<T> in MSVC, as their compiler is not C++11 compliant.
You'll note above I use tuple; but I'm using it generically. I convert my type to a tuple, then use tuple's < to write my <. That glue code deals with tie as a generic bundle of types. That is what tuple is for.

Generating one class member per variadic template argument

I have a template class where each template argument stands for one type of value the internal computation can handle. Templates (instead of function overloading) are needed because the values are passed as boost::any and their types are not clear before runtime.
To properly cast to the correct types, I would like to have a member list for each variadic argument type, something like this:
template<typename ...AcceptedTypes> // e.g. MyClass<T1, T2>
class MyClass {
std::vector<T1> m_argumentsOfType1;
std::vector<T2> m_argumentsOfType2; // ...
};
Or alternatively, I'd like to store the template argument types in a list, as to do some RTTI magic with it (?). But how to save them in a std::initializer_list member is also unclear to me.
Thanks for any help!
As you have already been hinted, the best way is to use a tuple:
template<typename ...AcceptedTypes> // e.g. MyClass<T1, T2>
class MyClass {
std::tuple<std::vector<AcceptedTypes>...> vectors;
};
This is the only way to multiply the "fields" because you cannot magically make it spell up the field names. Another important thing may be to get some named access to them. I guess that what you're trying to achieve is to have multiple vectors with unique types, so you can have the following facility to "search" for the correct vector by its value type:
template <class T1, class T2>
struct SameType
{
static const bool value = false;
};
template<class T>
struct SameType<T, T>
{
static const bool value = true;
};
template <typename... Types>
class MyClass
{
public:
typedef std::tuple<vector<Types>...> vtype;
vtype vectors;
template<int N, typename T>
struct VectorOfType: SameType<T,
typename std::tuple_element<N, vtype>::type::value_type>
{ };
template <int N, class T, class Tuple,
bool Match = false> // this =false is only for clarity
struct MatchingField
{
static vector<T>& get(Tuple& tp)
{
// The "non-matching" version
return MatchingField<N+1, T, Tuple,
VectorOfType<N+1, T>::value>::get(tp);
}
};
template <int N, class T, class Tuple>
struct MatchingField<N, T, Tuple, true>
{
static vector<T>& get(Tuple& tp)
{
return std::get<N>(tp);
}
};
template <typename T>
vector<T>& access()
{
return MatchingField<0, T, vtype,
VectorOfType<0, T>::value>::get(vectors);
}
};
Here is the testcase so you can try it out:
int main( int argc, char** argv )
{
int twelf = 12.5;
typedef reference_wrapper<int> rint;
MyClass<float, rint> mc;
vector<rint>& i = mc.access<rint>();
i.push_back(twelf);
mc.access<float>().push_back(10.5);
cout << "Test:\n";
cout << "floats: " << mc.access<float>()[0] << endl;
cout << "ints: " << mc.access<rint>()[0] << endl;
//mc.access<double>();
return 0;
}
If you use any type that is not in the list of types you passed to specialize MyClass (see this commented-out access for double), you'll get a compile error, not too readable, but gcc at least points the correct place that has caused the problem and at least such an error message suggests the correct cause of the problem - here, for example, if you tried to do mc.access<double>():
error: ‘value’ is not a member of ‘MyClass<float, int>::VectorOfType<2, double>’
An alternate solution that doesn't use tuples is to use CRTP to create a class hierarchy where each base class is a specialization for one of the types:
#include <iostream>
#include <string>
template<class L, class... R> class My_class;
template<class L>
class My_class<L>
{
public:
protected:
L get()
{
return val;
}
void set(const L new_val)
{
val = new_val;
}
private:
L val;
};
template<class L, class... R>
class My_class : public My_class<L>, public My_class<R...>
{
public:
template<class T>
T Get()
{
return this->My_class<T>::get();
}
template<class T>
void Set(const T new_val)
{
this->My_class<T>::set(new_val);
}
};
int main(int, char**)
{
My_class<int, double, std::string> c;
c.Set<int>(4);
c.Set<double>(12.5);
c.Set<std::string>("Hello World");
std::cout << "int: " << c.Get<int>() << "\n";
std::cout << "double: " << c.Get<double>() << "\n";
std::cout << "string: " << c.Get<std::string>() << std::endl;
return 0;
}
One way to do such a thing, as mentioned in πάντα-ῥεῖ's comment is to use a tuple. What he didn't explain (probably to save you from yourself) is how that might look.
Here is an example:
using namespace std;
// define the abomination
template<typename...Types>
struct thing
{
thing(std::vector<Types>... args)
: _x { std::move(args)... }
{}
void print()
{
do_print_vectors(std::index_sequence_for<Types...>());
}
private:
template<std::size_t... Is>
void do_print_vectors(std::index_sequence<Is...>)
{
using swallow = int[];
(void)swallow{0, (print_one(std::get<Is>(_x)), 0)...};
}
template<class Vector>
void print_one(const Vector& v)
{
copy(begin(v), end(v), ostream_iterator<typename Vector::value_type>(cout, ","));
cout << endl;
}
private:
tuple<std::vector<Types>...> _x;
};
// test it
BOOST_AUTO_TEST_CASE(play_tuples)
{
thing<int, double, string> t {
{ 1, 2, 3, },
{ 1.1, 2.2, 3.3 },
{ "one"s, "two"s, "three"s }
};
t.print();
}
expected output:
1,2,3,
1.1,2.2,3.3,
one,two,three,
There is a proposal to allow this kind of expansion, with the intuitive syntax: P1858R1 Generalized pack declaration and usage. You can also initialize the members and access them by index. You can even support structured bindings by writing using... tuple_element = /*...*/:
template <typename... Ts>
class MyClass {
std::vector<Ts>... elems;
public:
using... tuple_element = std::vector<Ts>;
MyClass() = default;
explicit MyClass(std::vector<Ts>... args) noexcept
: elems(std::move(args))...
{
}
template <std::size_t I>
requires I < sizeof...(Ts)
auto& get() noexcept
{
return elems...[I];
}
template <std::size_t I>
requires I < sizeof...(Ts)
const auto& get() const
{
return elems...[I];
}
// ...
};
Then the class can be used like this:
using Vecs = MyClass<int, double>;
Vecs vecs{};
vecs.[0].resize(3, 42);
std::array<double, 4> arr{1.0, 2.0, 4.0, 8.0};
vecs.[1] = {arr.[:]};
// print the elements
// note the use of vecs.[:] and Vecs::[:]
(std::copy(vecs.[:].begin(), vecs.[:].end(),
std::ostream_iterator<Vecs::[:]>{std::cout, ' '},
std::cout << '\n'), ...);
Here is a less than perfectly efficient implementation using boost::variant:
template<typename ... Ts>
using variant_vector = boost::variant< std::vector<Ts>... >;
template<typename ...Ts>
struct MyClass {
using var_vec = variant_vector<Ts...>;
std::array<var_vec, sizeof...(Ts)> vecs;
};
we create a variant-vector that can hold one of a list of types in it. You have to use boost::variant to get at the contents (which means knowing the type of the contents, or writing a visitor).
We then store an array of these variant vectors, one per type.
Now, if your class only ever holds one type of data, you can do away with the array, and just have one member of type var_vec.
I cannot see why you'd want one vector of each type. I could see wanting a vector where each element is one of any type. That would be a vector<variant<Ts...>>, as opposed to the above variant<vector<Ts>...>.
variant<Ts...> is the boost union-with-type. any is the boost smart-void*. optional is the boost there-or-not.
template<class...Ts>
boost::optional<boost::variant<Ts...>> to_variant( boost::any );
may be a useful function, that takes an any and tries to convert it to any of the Ts... types in the variant, and returns it if it succeeds (and returns an empty optional if not).

Type sensitive tuple visitor

Suppose I have a std::tuple made up of types like
struct A {
static void tip();
};
struct B {
static void tip();
};
struct Z {
};
std::tuple<const A&,const B&,const Z&> tpl;
Yes, I need separate A, B. (The implementation of ::tip() differs for each type.) What I try to implement is a type-sensitive "visitor" that iterates through the tuple starting from the beginning to the end. Upon visiting a particular element of type T a function should be called depending on whether T has the ::tip() method or not. In the simple example of above only A and B have ::tip() implemented and Z not. So, the iterator should call twice the function for types with the ::tip() method and once the other function.
Here is what I came up with:
template< int N , bool end >
struct TupleIter
{
template< typename T , typename... Ts >
typename std::enable_if< std::is_function< typename T::tip >::value , void >::type
static Iter( const T& dummy , const std::tuple<Ts...>& tpl ) {
std::cout << "tip\n";
std::get<N>(tpl); // do the work
TupleIter<N+1,sizeof...(Ts) == N+1>::Iter( std::get<N+1>(tpl) , tpl );
}
template< typename T , typename... Ts >
typename std::enable_if< ! std::is_function< typename T::tip >::value , void >::type
static Iter( const T& dummy , const std::tuple<Ts...>& tpl ) {
std::cout << "no tip\n";
std::get<N>(tpl); // do the work
TupleIter<N+1,sizeof...(Ts) == N+1>::Iter( std::get<N+1>(tpl) , tpl );
}
};
template< int N >
struct TupleIter<N,true>
{
template< typename T , typename... Ts >
static void Iter( const std::tuple<Ts...>& tpl ) {
std::cout << "end\n";
}
};
I use a dummy instance of the type of the element at the iterator position and decide via enable_if which function to call. Unfortunately this doesn't work/isn't a nice solution:
The compiler complains about recursive instantiation
The const T& dummy is not a clean solution
I was wondering if enable_if is the right strategy to do the decision and how can one recursively iterate through the std::tuple capturing the first type and keeping all the remaining arguments in vital state. Read through How to split a tuple? but it doesn't do any decision.
How can one implement such a thing in a correct and portable way in C++11?
Well, it was harder than I expected, but this works.
Some things you were doing wrong/that I modified:
You can't evaluate this: std::is_function< typename T::tip >::value, since T::tip is not a type. Even if this could be evaluated, what would happen when T::tip does not exist? Substitution would still fail.
Since you use const references as your tuple's inner types, you had to clean them before trying to find the tip member inside them. By cleaning I mean removing const and removing the reference.
That dummy type stuff was not a good idea, there was no need to use that parameter. You can achieve the same thing using std::tuple_element, which retrieves the i-th type from a tuple.
I modified TupleIter's template parameters to the following, which means:
"TupleIter that processes the index-th type, inside a tuple of size n".
template<size_t index, size_t n>
struct TupleIter;
The whole code is this:
#include <tuple>
#include <iostream>
#include <type_traits>
struct A {
static void tip();
};
struct B {
static void tip();
};
struct Z {
};
// Indicates whether the template parameter contains a static member named tip.
template<class T>
struct has_tip {
template<class U>
static char test(decltype(&U::tip));
template<class U>
static float test(...);
static const bool value = sizeof(test<typename std::decay<T>::type>(0)) == sizeof(char);
};
// Indicates whether the n-th type contains a tip static member
template<size_t n, typename... Ts>
struct nth_type_has_tip {
static const bool value = has_tip<typename std::tuple_element<n, std::tuple<Ts...>>::type>::value;
};
// Generic iteration
template<size_t index, size_t n>
struct TupleIter
{
template< typename... Ts >
typename std::enable_if< nth_type_has_tip<index, Ts...>::value , void >::type
static Iter(const std::tuple<Ts...>& tpl)
{
std::cout << "tip\n";
TupleIter<index + 1, n>::Iter(tpl );
}
template< typename... Ts >
typename std::enable_if< !nth_type_has_tip<index, Ts...>::value , void >::type
static Iter(const std::tuple<Ts...>& tpl) {
std::cout << "no tip\n";
TupleIter<index + 1, n>::Iter(tpl );
}
};
// Base class, we've reached the tuple end
template<size_t n>
struct TupleIter<n, n>
{
template<typename... Ts >
static void Iter( const std::tuple<Ts...>& tpl ) {
std::cout << "end\n";
}
};
// Helper function that forwards the first call to TupleIter<>::Iter
template<typename... Ts>
void iterate(const std::tuple<Ts...> &tup) {
TupleIter<0, sizeof...(Ts)>::Iter(tup);
}
int main() {
A a;
B b;
Z z;
std::tuple<const A&,const B&,const Z&> tup(a,b,z);
iterate(tup);
}
Here is another take on the question, very similar to mfontanini answer, but showcasing:
boost::fusion::for_each (instead of manually iterate over the tuple).
A variant for implementing has_type using an expression-based SFINAE approach, that I feel a little bit simpler to follow than the usual sizeof trick.
#include <boost/tuple/tuple.hpp>
#include <boost/fusion/include/boost_tuple.hpp>
#include <boost/fusion/algorithm.hpp>
#include <iostream>
struct nat // not a type
{
private:
nat();
nat(const nat&);
nat& operator=(const nat&);
~nat();
};
template <typename T>
struct has_tip
{
static auto has_tip_imp(...) -> nat;
template <typename U>
static auto has_tip_imp(U&&) -> decltype(U::tip());
typedef decltype(has_tip_imp(std::declval<T>())) type;
static const bool value = !std::is_same<type, nat>::value;
};
struct CallTip
{
template<typename T>
typename std::enable_if<has_tip<T>::value>::type
operator()(T& t) const
{
std::cout << "tip\n";
T::tip();
}
template<typename T>
typename std::enable_if<!has_tip<T>::value>::type
operator()(T& t) const
{
std::cout << "no tip\n";
return;
}
};
struct A {
static void tip(){}
};
struct B {
static void tip(){}
};
struct Z {
};
int main()
{
A a;
B b;
Z z;
boost::tuple<const A&,const B&,const Z&> tpl(a, b, z);
boost::fusion::for_each(tpl, CallTip());
}
Note that if your compiler support variadic template you can use std::tuple instead of boost::tuple inside fusion::for_each by including #include<boost/fusion/adapted/std_tuple.hpp>
Edit :
As pointed by Xeo in the comment, it is possible to simplify a lot the expression-SFINAE approach by removing completely the trait has_tip and simply forward to a little call helper.
The final code is really neat and tight !
#include <boost/tuple/tuple.hpp>
#include <boost/fusion/include/boost_tuple.hpp>
#include <boost/fusion/algorithm.hpp>
#include <iostream>
struct CallTip
{
template<typename T>
void operator()(const T& t) const
{
call(t);
}
template<class T>
static auto call(const T&) -> decltype(T::tip())
{
std::cout << "tip\n";
T::tip();
}
static void call(...)
{
std::cout << "no tip\n";
}
};
struct A {
static void tip(){}
};
struct B {
static void tip(){}
};
struct Z {
};
int main()
{
A a;
B b;
Z z;
boost::tuple<const A&,const B&,const Z&> tpl(a, b, z);
boost::fusion::for_each(tpl, CallTip());
}

Detecting a function in C++ at compile time

Is there a way, presumably using templates, macros or a combination of the two, that I can generically apply a function to different classes of objects but have them respond in different ways if they do not have a specific function?
I specifically want to apply a function which will output the size of the object (i.e. the number of objects in a collection) if the object has that function but will output a simple replacement (such as "N/A") if the object doesn't. I.e.
NO_OF_ELEMENTS( mySTLMap ) -----> [ calls mySTLMap.size() to give ] ------> 10
NO_OF_ELEMENTS( myNoSizeObj ) --> [ applies compile time logic to give ] -> "N/A"
I expect that this might be something similar to a static assertion although I'd clearly want to compile a different code path rather than fail at build stage.
From what I understand, you want to have a generic test to see if a class has a certain member function. This can be accomplished in C++ using SFINAE. In C++11 it's pretty simple, since you can use decltype:
template <typename T>
struct has_size {
private:
template <typename U>
static decltype(std::declval<U>().size(), void(), std::true_type()) test(int);
template <typename>
static std::false_type test(...);
public:
typedef decltype(test<T>(0)) type;
enum { value = type::value };
};
If you use C++03 it is a bit harder due to the lack of decltype, so you have to abuse sizeof instead:
template <typename T>
struct has_size {
private:
struct yes { int x; };
struct no {yes x[4]; };
template <typename U>
static typename boost::enable_if_c<sizeof(static_cast<U*>(0)->size(), void(), int()) == sizeof(int), yes>::type test(int);
template <typename>
static no test(...);
public:
enum { value = sizeof(test<T>(0)) == sizeof(yes) };
};
Of course this uses Boost.Enable_If, which might be an unwanted (and unnecessary) dependency. However writing enable_if yourself is dead simple:
template<bool Cond, typename T> enable_if;
template<typename T> enable_if<true, T> { typedef T type; };
In both cases the method signature test<U>(int) is only visible, if U has a size method, since otherwise evaluating either the decltype or the sizeof (depending on which version you use) will fail, which will then remove the method from consideration (due to SFINAE. The lengthy expressions std::declval<U>().size(), void(), std::true_type() is an abuse of C++ comma operator, which will return the last expression from the comma-separated list, so this makes sure the type is known as std::true_type for the C++11 variant (and the sizeof evaluates int for the C++03 variant). The void() in the middle is only there to make sure there are no strange overloads of the comma operator interfering with the evaluation.
Of course this will return true if T has a size method which is callable without arguments, but gives no guarantees about the return value. I assume wou probably want to detect only those methods which don't return void. This can be easily accomplished with a slight modification of the test(int) method:
// C++11
template <typename U>
static typename std::enable_if<!is_void<decltype(std::declval<U>().size())>::value, std::true_type>::type test(int);
//C++03
template <typename U>
static typename std::enable_if<boost::enable_if_c<sizeof(static_cast<U*>(0)->size()) != sizeof(void()), yes>::type test(int);
There was a discussion about the abilities of constexpr some times ago. It's time to use it I think :)
It is easy to design a trait with constexpr and decltype:
template <typename T>
constexpr decltype(std::declval<T>().size(), true) has_size(int) { return true; }
template <typename T>
constexpr bool has_size(...) { return false; }
So easy in fact that the trait loses most of its value:
#include <iostream>
#include <vector>
template <typename T>
auto print_size(T const& t) -> decltype(t.size(), void()) {
std::cout << t.size() << "\n";
}
void print_size(...) { std::cout << "N/A\n"; }
int main() {
print_size(std::vector<int>{1, 2, 3});
print_size(1);
}
In action:
3
N/A
This can be done using a technique called SFINAE. In your specific case you could implement that using Boost.Concept Check. You'd have to write your own concept for checking for a size-method. Alternatively you could use an existing concept such as Container, which, among others, requires a size-method.
You can do something like
template< typename T>
int getSize(const T& t)
{
return -1;
}
template< typename T>
int getSize( const std::vector<T>& t)
{
return t.size();
}
template< typename T , typename U>
int getSize( const std::map<T,U>& t)
{
return t.size();
}
//Implement this interface for
//other objects
class ISupportsGetSize
{
public:
virtual int size() const= 0;
};
int getSize( const ISupportsGetSize & t )
{
return t.size();
}
int main()
{
int s = getSize( 4 );
std::vector<int> v;
s = getSize( v );
return 0;
}
basically the most generic implementation is always return -1 or "NA" but for vector and maps it will return the size. As the most general one always matches there is never a build time failure
Here you go. Replace std::cout with the output of your liking.
template <typename T>
class has_size
{
template <typename C> static char test( typeof(&C::size) ) ;
template <typename C> static long test(...);
public:
enum { value = sizeof(test<T>(0)) == sizeof(char) };
};
template<bool T>
struct outputter
{
template< typename C >
static void output( const C& object )
{
std::cout << object.size();
}
};
template<>
struct outputter<false>
{
template< typename C >
static void output( const C& )
{
std::cout << "N/A";
}
};
template<typename T>
void NO_OF_ELEMENTS( const T &object )
{
outputter< has_size<T>::value >::output( object );
}
You could try something like:
#include <iostream>
#include <vector>
template<typename T>
struct has_size
{
typedef char one;
typedef struct { char a[2]; } two;
template<typename Sig>
struct select
{
};
template<typename U>
static one check (U*, select<char (&)[((&U::size)!=0)]>* const = 0);
static two check (...);
static bool const value = sizeof (one) == sizeof (check (static_cast<T*> (0)));
};
struct A{ };
int main ( )
{
std::cout << has_size<int>::value << "\n";
std::cout << has_size<A>::value << "\n";
std::cout << has_size<std::vector<int>>::value << "\n";
}
but you have to be careful, this does neither work when size is overloaded, nor when it is a template. When you can use C++11, you can replace the above sizeof trick by decltype magic

In C++, is it possible to get the type of one element of a tuple when the element index is known at runtime?

typedef std::tuple< int, double > Tuple;
Tuple t;
int a = std::get<0>(t);
double b = std::get<1>(t);
for( size_t i = 0; i < std::tuple_size<Tuple>::value; i++ ) {
std::tuple_element<i,Tuple>::type v = std::get<i>(t);// will not compile because i must be known at compile time
}
I know it is possible to write code for get std::get working (see for example iterate over tuple ), is it possible to get std::tuple_element working too?
Some constraints (they can be relaxed):
no variadic templates, no Boost
C++ is a compile-time typed language. You cannot have a type that the C++ compiler cannot determine at compile-time.
You can use polymorphism of various forms to work around that. But at the end of the day, every variable must have a well-defined type. So while you can use Boost.Fusion algorithms to iterate over variables in a tuple, you cannot have a loop where each execution of the loop may use a different type than the last.
The only reason Boost.Fusion can get away with it is because it doesn't use a loop. It uses template recursion to "iterate" over each element and call your user-provided function.
If you want to do without boost, the answers to iterate over tuple already tell you everything you need to know. You have to write a compile-time for_each loop (untested).
template<class Tuple, class Func, size_t i>
void foreach(Tuple& t, Func fn) {
// i is defined at compile-time, so you can write:
std::tuple_element<i, Tuple> te = std::get<i>(t);
fn(te);
foreach<i-1>(t, fn);
}
template<class Tuple, class Func>
void foreach<0>(Tuple& t, Func fn) { // template specialization
fn(std::get<0>(t)); // no further recursion
}
and use it like that:
struct SomeFunctionObject {
void operator()( int i ) const {}
void operator()( double f ) const {}
};
foreach<std::tuple_size<Tuple>::value>(t, SomeFunctionObject());
However, if you want to iterate over members of a tuple, Boost.Fusion really is the way to go.
#include <boost/fusion/algorithm/iteration/for_each.hpp>
#include <boost/fusion/adapted/boost_tuple.hpp>
and in your code write:
boost::for_each(t, SomeFunctionObject());
This an example for boost::tuple. There is an adapter for boost::fusion to work with the std::tuple here: http://groups.google.com/group/boost-list/browse_thread/thread/77622e41af1366af/
No, this is not possible the way you describe it. Basically, you'd have to write your code for every possible runtime-value of i and then use some dispatching-logic (e.g. switch(i)) to run the correct code based on the actual runtime-value of i.
In practice, it might be possible to generate the code for the different values of i with templates, but I am not really sure how to do this, and whether it would be practical. What you are describing sounds like a flawed design.
Here is my tuple foreach/transformation function:
#include <cstddef>
#include <tuple>
#include <type_traits>
template<size_t N>
struct tuple_foreach_impl {
template<typename T, typename C>
static inline auto call(T&& t, C&& c)
-> decltype(::std::tuple_cat(
tuple_foreach_impl<N-1>::call(
::std::forward<T>(t), ::std::forward<C>(c)
),
::std::make_tuple(c(::std::get<N-1>(::std::forward<T>(t))))
))
{
return ::std::tuple_cat(
tuple_foreach_impl<N-1>::call(
::std::forward<T>(t), ::std::forward<C>(c)
),
::std::make_tuple(c(::std::get<N-1>(::std::forward<T>(t))))
);
}
};
template<>
struct tuple_foreach_impl<0> {
template<typename T, typename C>
static inline ::std::tuple<> call(T&&, C&&) { return ::std::tuple<>(); }
};
template<typename T, typename C>
auto tuple_foreach(T&& t, C&& c)
-> decltype(tuple_foreach_impl<
::std::tuple_size<typename ::std::decay<T>::type
>::value>::call(std::forward<T>(t), ::std::forward<C>(c)))
{
return tuple_foreach_impl<
::std::tuple_size<typename ::std::decay<T>::type>::value
>::call(::std::forward<T>(t), ::std::forward<C>(c));
}
The example usage uses the following utility to allow printing tuples to ostreams:
#include <cstddef>
#include <ostream>
#include <tuple>
#include <type_traits>
template<size_t N>
struct tuple_print_impl {
template<typename S, typename T>
static inline void print(S& s, T&& t) {
tuple_print_impl<N-1>::print(s, ::std::forward<T>(t));
if (N > 1) { s << ',' << ' '; }
s << ::std::get<N-1>(::std::forward<T>(t));
}
};
template<>
struct tuple_print_impl<0> {
template<typename S, typename T>
static inline void print(S&, T&&) {}
};
template<typename S, typename T>
void tuple_print(S& s, T&& t) {
s << '(';
tuple_print_impl<
::std::tuple_size<typename ::std::decay<T>::type>::value
>::print(s, ::std::forward<T>(t));
s << ')';
}
template<typename C, typename... T>
::std::basic_ostream<C>& operator<<(
::std::basic_ostream<C>& s, ::std::tuple<T...> const& t
) {
tuple_print(s, t);
return s;
}
And finally, here is the example usage:
#include <iostream>
using namespace std;
struct inc {
template<typename T>
T operator()(T const& val) { return val+1; }
};
int main() {
// will print out "(7, 4.2, z)"
cout << tuple_foreach(make_tuple(6, 3.2, 'y'), inc()) << endl;
return 0;
}
Note that the callable object is constructed so that it can hold state if needed. For example, you could use the following to find the last object in the tuple that can be dynamic casted to T:
template<typename T>
struct find_by_type {
find() : result(nullptr) {}
T* result;
template<typename U>
bool operator()(U& val) {
auto tmp = dynamic_cast<T*>(&val);
auto ret = tmp != nullptr;
if (ret) { result = tmp; }
return ret;
}
};
Note that one shortcoming of this is that it requires that the callable returns a value. However, it wouldn't be that hard to rewrite it to detect whether the return type is void for a give input type, and then skip that element of the resulting tuple. Even easier, you could just remove the return value aggregation stuff altogether and simply use the foreach call as a tuple modifier.
Edit:
I just realized that the tuple writter could trivially be written using the foreach function (I have had the tuple printing code for much longer than the foreach code).
template<typename T>
struct tuple_print {
print(T& s) : _first(true), _s(&s) {}
template<typename U>
bool operator()(U const& val) {
if (_first) { _first = false; } else { (*_s) << ',' << ' '; }
(*_s) << val;
return false;
}
private:
bool _first;
T* _s;
};
template<typename C, typename... T>
::std::basic_ostream<C> & operator<<(
::std::basic_ostream<C>& s, ::std::tuple<T...> const& t
) {
s << '(';
tuple_foreach(t, tuple_print< ::std::basic_ostream<C>>(s));
s << ')';
return s;
}