Weighted Matrix Factorization - pca

So I have got this weird function which can be formulated in to objective function as shown on the image attached. I do know I can't use any L2 Low rank matrix factorization(LRMF) algorithms to solve this as this is considered a weighted Low rank matrix factorization(LRMF). I have looked at Iterative reweighted least square and Weighted principal component analysis but unfortunately they are available in matlab only. Any one knows any python functions I can use to solve this problem? My project does not require me to write a L2 LRMF algorithm and merely requires me to solve it using any existing functions. Any help would be ideal.

Related

C++: Solve underdetermined linear system with lapack

Let's put it simple: I have an under-determined linear system of equations
Ax = b
and I want to get one valid solution, no matter which one of the infinite solutions for the system. And I want to get it as efficiently as possible.
I have checked general LAPACK routines and it seems that they cannot handle the under-determined case. For example, dgesv(), whose documentation is found here, will return and integer larger than 1 in INFO if the factor U, from PLU factorization, is singular, and it will not solve the system if that is the case.
I have also checked some routines for Linear Least Squares problems (LLS) (documentation here), which does exactly solve my problem, just not as efficiently as I wished. If the LLS problems I provide is under-determined, the LLS routine will return the vector that minimizes
||Ax-b||
Which is a valid solution. However, it is calculated as the solution to an optimization problem, and I was wondering if there is a more efficient way of obtaining a valid solution for my under-determined problem.
A similar question was made here, but I believe that my question is more concrete than that: I am using LAPACK, and I want to solve an under-determined system of linear equations as efficiently as possible.
For an under-determined system of equations:
The correct approach is to use singular value decomposition (SVD). Lapack offers singular value decomposition in the form of dgesvd.
To perform the SVD you will have to homogenize your problem to turn it into a matrix problem of the form: My = 0. This is easy to do by introducing another degree of freedom (another variable). This will transform the vector x -> y and matrix A -> M. When performing the SVD on the matrix M, the smallest singular vector will be the solution to your under-determined least squares problem.
I would recommend using matlab or octave to experiment before wasting time coding anything up.

batch CUDA solution of sparse banded Ax=b for various b's

I have a sparse banded matrix A and I'd like to (direct) solve Ax=b. I have about 500 vectors b, so I'd like to solve for the corresponding 500 x's.
I'm brand new to CUDA, so I'm a little confused as to what options I have available.
cuSOLVER has a batch direct solver cuSolverSP for sparse A_i x_i = b_i using QR here. (I'd be fine with LU too since A is decently conditioned.) However, as far as I can tell, I can't exploit the fact that all my A_i's are the same.
Would an alternative option be to first determine a sparse LU (QR) factorization on the CPU or GPU then perform in parallel the backsubstitution (respectively, backsub and matrix mult) on the GPU? If cusolverSp< t >csrlsvlu() is for one b_i, is there a standard way to batch perform this operation for multiple b_i's?
Finally, since I don't have intuition for this, should I expect a speedup on a GPU for either of these options, given the necessary overhead? x has length ~10000-100000. Thanks.
I'm currently working on something similar myself. I decided to basically wrap the conjugate gradient and level-0 incomplete cholesky preconditioned conjugate gradient solvers utility samples that came with the CUDA SDK into a small class.
You can find them in your CUDA_HOME directory under the path:
samples/7_CUDALibraries/conjugateGradient and /Developer/NVIDIA/CUDA-samples/7_CUDALibraries/conjugateGradientPrecond
Basically, you would load the matrix into the device memory once (and for ICCG, compute the corresponding conditioner / matrix analysis) then call the solve kernel with different b vectors.
I don't know what you anticipate your matrix band structure to look like, but if it is symmetric and either diagonally dominant (off diagonal bands along each row and column are opposite sign of diagonal and their sum is less than the diagonal entry) or positive definite (no eigenvectors with an eigenvalue of 0.) then CG and ICCG should be useful. Alternately, the various multigrid algorithms are another option if you are willing to go through coding them up.
If your matrix is only positive semi-definite (e.g. has at least one eigenvector with an eigenvalue of zero) you can still ofteb get away with using CG or ICCG as long as you ensure that:
1) The right hand side (b vectors) are orthogonal to the null space (null space meaning eigenvectors with an eigenvalue of zero).
2) The solution you obtain is orthogonal to the null space.
It is interesting to note that if you do have a non-trivial null space, then different numeric solvers can give you different answers for the same exact system. The solutions will end up differing by a linear combination of the null space... That problem has caused me many many man hours of debugging and frustration before I finally caught on, so its good to be aware of it.
Lastly, if your matrix has a Circulant Band structure you might consider using a fast fourier transform (FFT) based solver. FFT based numerical solvers can often yield superior performance in cases where they are applicable.
is there a standard way to batch perform this operation for multiple b_i's?
One option is to use the batched refactorization module in CUDA's cuSOLVER, but I am not sure if it is standard.
Batched refactorization module in cuSOLVER provides an efficient method to solve batches of linear systems with fixed left-hand side sparse matrix (or matrices with fixed sparsity pattern but varying coefficients) and varying right-hand sides, based on LU decomposition. Only some partially completed code snippets can be found in the official documentation (as of CUDA 10.1) that are related to it. A complete example can be found here.
If you don't mind going with an open-source library, you could also check out CUSP:
CUSP Quick Start Page
It has a fairly decent suite of solvers, including a few preconditioned methods:
CUSP Preconditioner Examples
The smoothed aggregation preconditioner (a variant of algebraic multigrid) seems to work very well as long as your GPU has enough onboard memory for it.

C++ armadillo not correctly solving poorly conditioned matrix

I have a relatively simple question regarding the linear solver built into Armadillo. I am a relative newcomer to C++ but have experience coding in other languages. I am solving a fluid flow problem by successive linearization, using the armadillo function Solve(A,b) to get the solution at each iteration.
The issue that I am running into is that my matrix is very ill-conditioned. The determinant is on the order of 10^-20 and the condition number is 75000. I know these are terrible conditions but it's what I've got. Does anyone know if it is possible to specify the precision in my A matrix and in the solve function to something beyond double (long double perhaps)? I know that there are double matrix classes in Armadillo but I haven't found any documentation for higher levels of precision.
To approach this from another angle, I wrote some code in Mathematica and the LinearSolve worked very well and the program converged to the correct answer. My reasoning is that Mathematica variables have higher precision which can handle the higher levels of rounding error.
If anyone has any insight on this, please let me know. I know there are other ways to approach a poorly conditioned matrix (like preconditioning and pivoting), but my work is more in the physics than in the actual numerical solution so I'm trying to steer clear of that.
EDIT: I just limited the precision in the Mathematica version to 15 decimal places and the program still converges. This leads me to believe it is NOT a variable precision question but rather an issue with the method.
As you said "your work is more in the physics": rather than trying to increase the accuracy, I would use the Moore-Penrose Pseudo-Inverse, which in Armadillo can be obtained by the function pinv. You should then experience a bit with the parameter tolerance to set it to a reasonable level.
The geometrical interpretation is as follows: bad condition numbers are due to the fact that the row/column-vectors are linearly dependent. In physics, such linearly dependencies usually have an origin which at least needs to be interpreted. The pseudoinverse first projects the matrix onto a lower dimensional space in which the vectors are "less linearly dependent" by dropping all singular vectors with singular values smaller than the parameter tolerance. The reulting matrix has a better condition number such that the standard inverse can be constructed with less problems.

What is a fast simple solver for a large Laplacian matrix?

I need to solve some large (N~1e6) Laplacian matrices that arise in the study of resistor networks. The rest of the network analysis is being handled with boost graph and I would like to stay in C++ if possible. I know there are lots and lots of C++ matrix libraries but no one seems to be a clear leader in speed or usability. Also, the many questions on the subject, here and elsewhere seem to rapidly devolve into laundry lists which are of limited utility. In an attempt to help myself and others, I will try to keep the question concise and answerable:
What is the best library that can effectively handle the following requirements?
Matrix type: Symmetric Diagonal Dominant/Laplacian
Size: Very large (N~1e6), no dynamic resizing needed
Sparsity: Extreme (maximum 5 nonzero terms per row/column)
Operations needed: Solve for x in A*x=b and mat/vec multiply
Language: C++ (C ok)
Priority: Speed and simplicity to code. I would really rather avoid having to learn a whole new framework for this one problem or have to manually write too much helper code.
Extra love to answers with a minimal working example...
If you want to write your own solver, in terms of simplicity, it's hard to beat Gauss-Seidel iteration. The update step is one line, and it can be parallelized easily. Successive over-relaxation (SOR) is only slightly more complicated and converges much faster.
Conjugate gradient is also straightforward to code, and should converge much faster than the other iterative methods. The important thing to note is that you don't need to form the full matrix A, just compute matrix-vector products A*b. Once that's working, you can improve the convergance rate again by adding a preconditioner like SSOR (Symmetric SOR).
Probably the fastest solution method that's reasonable to write yourself is a Fourier-based solver. It essentially involves taking an FFT of the right-hand side, multiplying each value by a function of its coordinate, and taking the inverse FFT. You can use an FFT library like FFTW, or roll your own.
A good reference for all of these is A First Course in the Numerical Analysis of Differential Equations by Arieh Iserles.
Eigen is quite nice to use and one of the fastest libraries I know:
http://eigen.tuxfamily.org/dox/group__TutorialSparse.html
There is a lot of related post, you could have look.
I would recommend C++ and Boost::ublas as used in UMFPACK and BOOST's uBLAS Sparse Matrix

Is there any free ITERATIVE linear system solver in c++ that allows me to feed in an arbitrary initial guess?

I am looking for an iterative linear system solver to calculate a continuously changing field. For the simulation to work properly, I need to re-calculate the field (maybe several times) for every time step. Fortunately, I have a good initial guess for each time step, so it is better I can feed it into an iterative solver. And the coefficient matrix is very dense.
The problem is I checked several iterative solvers online like Gmm++, IML++, ITL, DUNE/ISTL and so on. They are either for sparse systems or don't provide interfaces for inputting initial guesses (I might be wrong since I didn't have time to go through all the documents).
So I have two questions:
1 Is there any such c++ solver available online?
2 Since the coefficient matrix can be as large as thousands * thousands, could a direct solver be quicker than an iterative solver with a really good initial guess?
Great Thanks!
He
If you check the header for Conjugate Gradient in IML++ (http://math.nist.gov/iml++/cg.h.txt), you'll see that you can very easily provide the initial guess for the solution in the very variable where you'd expect to get the solution.