Optimize operation between fragment and vertex shader - opengl

I am learning to make a graphical engine with OpenGL. I wanted to know, should repetitive operations be moved from the vertex shader to the fragment shader, since from what I understood the vertex shader is only run once per vertex?
For instance, when normalizing a vector for the light direction, since this light is the same in the entire vertex should it be moved to the vertex shader, instead of calculating it for every pixel? Is there a particular reason to keep it in the fragment shader?

If the calculation is exactly the same: yes, it should usually be more efficient to do it in the vertex shader than the fragment shader. Some situations where it might not be more efficient:
when drawing geometry that results in fewer shaded pixels than transformable vertices -- either due to dense geometry or extreme discards/occlusion. If this is the case, usually you would want to address it by switching to lower level-of-detail geometry or smarter geometry culling.
when doing the calculation in the vertex shader requires you to send more data to the fragment shader in order to use the calculation's results. Sending more data can be slower because it requires more memory manipulation and because the rasterizer needs to interpolate more "varying" values across each polygon.
For light calculations, specifically, be mindful that moving calculations from the fragment shader to the vertex shader can affect the quality of your rendering. Particularly, normalized direction vectors at each vertex can become shorter after "varying" interpolation, which can slightly darken triangle interiors if used directly without renormalization. And, of course, moving the entire lighting calculation to the vertex shader has even more drastic effects.
But how visible these effects are depends on the frequency of textures, the resolution of geometry, the size on screen, how far away the lights are, etc. -- in some cases, the quality/performance tradeoff may make sense.

Related

OpenGL Lighting Shader

I can't understand concept of smaller shaders in OpenGL. How does it work? For example: do I need to create one shader for positioning object in space and then shader another shader for lighting or what? Could someone explain this to me? Thanks in advance.
This is a very complex topic, especially since your question isn't very specific. At first, there are various shader stages (vertex shader, pixel shader, and so on). A shader program consists of different shader stages, at least a pixel and a vertex shader (except for compute shader programs, which are each single compute shaders). The vertex shader calculates the possition of the points on screen, so here the objects are being moved. The pixel shader calculates the color of each pixel, that is covered by the rendered geometry your vertex shader produced. Now, in terms of lighting, there are different ways of doing it:
Forward Shading
This is the straight-forward way, where you simply calculate the lighting in pixel shader of the same shader program, that moves to objects. This is the oldest way of calculating lighting, and the easiest one. However, it's abilities are very limited.
Deffered Shading
For ages, this is the go-to variant in games. Here, you have one shader program (vertex + pixel shader) that renders the geometrie on one (or multiple) textures (so it moves the objects, but it doesn't save the lit color, but rather things like the base color and surface normals into the texture), and then an other shader program that renders a quad on screen for each light you want to render, the pixel shader of this shader program reads the informations previously rendered in the textur by the first shader program, and uses it to render the lit objects on an other textur (which is then the final image). In constrast to forward shading, this allows (in theory) any number of lights in the scene, and allows easier usage of shadow maps
Tiled/Clustered Shading
This is a rather new and very complex way of calculating lighting, that can be build on top of deffered or forward shading. It basicly uses compute shaders to calculate an accelleration-structure on the gpu, which is then used draw huge amount of lights very fast. This allows to render thousands of lights in a scene in real time, but using shadow maps for these lights is very hard, and the algorithm is way more complex then the previous ones.
Writing smaller shaders means to separate some of your shader functionalities in another files. Then if you are writing a big shader which contains lightning algorithms, antialiasing algorithms, and any other shader computation algorithm, you can separate them in smaller shader files (light.glsl, fxaa.glsl, and so on...) and you have to link these files in your main shader file (the shader file which contains the void main() function) since in OpenGL a vertex array can only have one shader program (composition of vertex shader, fragment shader, geometry shader, etc...) during the rendering pipeline.
The way of writing smaller shader depends also on your rendering algorithm (forward rendering, deffered rendering, or forward+ rendering).
It's important to notice that writing a lot of shader will increase the shader compilation time, and also, writing a big shader with a lot of uniforms will also slow things down...

Drawing a mix of quads and triangles using the geometry shader and lines_adjacency

My current rendering implementation is as follows:
Store all vertex information as quads rather than triangles
For triangles, simply repeat the last vertex (i.e. v0 v1 v2 v2)
Pass vertex information as lines_adjacency to geometry shader
Check if quad or triangle, output as triangle_strip
The reason I went this route was because I was implementing a wireframe shader, and I wanted to draw the quads without a diagonal line through them. But, I've since discarded the feature.
I'm now wondering if I should go back to simply drawing GL_TRIANGLES, and leave the geometry shader out of the equation. But that got me thinking... what's actually more efficient from a performance point of view?
In average, my scenes are composed of quads and triangles in equal amounts.
Drawing with all triangles would mean: 6 vertices per quad, 3 per triangle.
Drawing with lines_adjacency would mean: 4 vertices per quad, 4 per triangle.
(This is with indexed drawing, so the vertex buffer is the same size for both of them)
So the vertex ratio is 9:8 (triangles : lines_adjacency).
Would I be correct in assuming that with indexed drawing, each vertex is only getting processed once by the vertex shader (as opposed to once per index)? In which case drawing triangles is going to be more efficient (since there isn't an extra geometry-shader step to perform), with the only negative being the slight amount of extra memory the indices take up.
Then again, if the vertices do get processed once per index, I could see the edge being with the lines_adjacency method, considering the geometry conversion is very simple, whilst the vertex shader might be running more intensive lighting calculations.
So that pretty much sums up my question: how do vertices get treated with indexed drawing, and what sort of performance impact could be expected if including a simple geometry shader?
Geometry shaders never improve efficiency in this sort of situation, they only complicate the primitive assembly process. When you use geometry shaders, the post-T&L cache no longer works the way it was originally designed.
While it is true that the geometry shader will reuse any shared (indexed) vertices transformed in the vertex shader stage when it needs to fetch vertex data, the geometry shader still computes and emits a unique set of vertices per-output-primitive.
Furthermore, because geometry shaders are allowed to emit a variable number of data points they are unlike other shader stages. It is much more difficult to parallelize geometry shaders than it is vertex or fragment. There are just too many negative things about geometry shaders for me to suggest using them unless you actually need them.

Performance difference between geometry shader and vertex shader

Currently am rendering a model of around 1 million vertices. And inside vertex shader i am doing some complex computation for each vertex. Now i would like to increase the resolution of the model.
I have two queries regarding this:
Is it advisable to use geometry shader for increasing resolution to very large factors like 64 times?
If i introduce a geometry shader i might need to move my computation from vertex shader to geometry shader. Whether doing an operation in verterx shader is same as doing it in geometry shader, in terms of performance.
Is it advisable to use geometry shader for increasing resolution to very large factors like 64 times.
Absolutely not. While GS's can amplify geometry and perform tessellation, that's not really what they're for. Their main purposes are for handling transform feedback data (particularly hardware that can handle multi-stream output) and layered rendering.
If i introduce a geometry shader i might need to move my computation from vertex shader to geometry shader. Whether doing an operation in verterx shader is same as doing it in geometry shader, in terms of performance.
Do as little work in the GS as is reasonable. The GS happens after the post-T&L cache, and you want to get as much out of that as possible. So do as much of your real transformation work as is reasonable in the vertex shader.

GLSL Geometry Shaders and projection matrices

So from playing around with it so far, I gather that GLSL geometry shaders work after the input vertices are transformed by the projection/modelview matrices. In other words, the geometry shaders processes things on clip coordinate.
What if I was to use the geometry shader to transform GL_POINTS into, say, cubes made out of GL_TRIANGLES? When calculating things on clip coordinates, the resulting shape always seem to face you / ignore rotations/scaling etc.
Also, it seems that GL_TRIANGLES is not supported as one of the possible geometry output types. But I tried anyways, and it seems to work. I suppose this is video card dependent? Is it possible to make cubes if GL_TRIANGLES is not supported? Make zero width triangle strips in between spaces maybe??
You are using shaders: geometry shaders work on whatever the vertex shader passed them. If you want that to be clip-space values, then the geometry shader works on clip-space values. If your vertex shader passes them eye-space values, then the geometry shader must work on eye-space values.
What matters is what the final pre-rasterization shader stage outputs to gl_Position. That is what needs to be in homogeneous clip-space. A vertex shader that has a geometry shader behind it doesn't even need to write to gl_Position.
Also, it seems that GL_TRIANGLES is not supported as one of the possible geometry output types.
You must be using ARB_geometry_shader4, not the actual core geometry shader functionality. You probably should avoid that extension if you are able. Any hardware that has geometry shaders can run OpenGL 3.2.
In any case, the core feature doesn't support triangles as output. It supports points, line strips, and triangle strips.
Is it possible to make cubes if GL_TRIANGLES is not supported?
That's what EndPrimitive() is for. You call it when you are finished with a primitive; there's nothing that stops you from emitting a second primitive. Or third.
Also, you should be advised that this will probably be slow. Geometry shaders are not known for fast rendering performance.

C++ shader optimization question

Could someone explain me the pretty basics of pixel and vertex shader interaction.
The obvious things are that vertex shaders receive basic vertex properties and then repass some of them to the actual pixel shader.
But how does the actual vertex->pixel transition happens? I know that obviously all types of pipelines include the rasterizer change, which is capable of interpolating the vertex parameters and can apply textures based on the certain texture coordinates.
And as far as I understand those are also interpolated (not quite sure about this moment, heard something about complex UV derivative math, but I assume that we can say that they are being interpolated).
So, here are some "targeted" questions.
How does the pixel shader operate? I mean that pixel shader obviously does some actions "per pixel", but due to the unobvious vertex->pixel transition this yields some questions.
Can I assume that if I evaluate matrix - vector product once in my pixel shader, it would be evaluated once when the image is rasterized? Or would it be better to evaluate everything that's possible in my vertex shader and then pass it to the pixel shader?
Also, if someone could point articles / abstracts on this topic, I would really appreciate that.
Thank you.
UPDATE
I thought it actually doesn't matter, because the interaction should be pretty same everywhere. I'm developing visualization applications and games for desktops, using HLSL / GLSL / Nvidia CG for shaders and mostly C++ as the base language.
The vertex shader is executed once for every vertex. It allows you to transform the vertex from world space coordinates (or whichever other coordinate system it might be in) into screenspace coordinates.
That is, if you have a triangle, each vertex is transformed, so it ends up with a position on the screen.
And given these positions, the rasterizer determines which pixels are covered by the triangle spanned by those three vertices.
And then, for each pixel inside the triangle, the pixel shader is invoked. The output from the vertex shader is usually interpolated for each pixel, so pixels close to vertex v0 will receive values very close to those computed by the vertex shader for v0.
And this means that everything you do in the pixel shader is executed once per pixel covered by the primitive being rasterized