About time complexity of the algorithm - c++

I am trying to solve the following question from LeetCode.com:
Given an input string, reverse the string word by word. Thus, "the sky is blue" should become "blue is sky the".
I came up with the following code snippet:
class Solution {
public:
void reverseWords(string &s) {
if(s.empty()) return;
istringstream iss(s);
string data, ans;
while(iss>>data) {
ans.insert(0, data+" ");
}
s=ans.substr(0,ans.size()-1);
}
};
and I was wondering about the time complexity of the same. I think that it is O(n^2) where n is the number of words in the input string. Could someone please confirm?
Thanks. (^_^)

I believe this algorithm's complexity is a bit more (haha) complex than other answers assume, intuitively down to the fact that we're prepending (not appending) and looping, and also because there's a bit of oversimplifying going on.
To be formal (and correct), the other analyses here aren't using enough variables - let's call w the number of words in the sentence and l the maximum length of a word in this sentence.
Then iss >> data is O(w) ("at most as expensive as the longest word"). Over l iterations of the loop, this is O(lw).
ans.insert(0, data + " ") is more complicated - insert is O(x + y) for x the length of the existing content and y the length of the new content. As the length of the existing content keeps growing (adding at most w each time), the complexity of this function isn't entirely obvious.
The cost of performing l prepends is at most w + 2w + 3w + ... + lw - each iteration we have to pay for all the words we've previously added as well as the word we're just adding now. This has a closed form expression:
w(1+2+...+l) = w * l(l+1)/2, and this is O(w*l^2).
Putting it together, the cost of the loop is O(wl + w*l^2), which is just O(w*l^2). It's informally "quadratic", but it depends on more than just one variable n, so it's best to classify it as a function of all the relevant ones.
Ps. One of the easy mistakes to make with big O notation is to always just talk about n - but what is n? In this example, we depend on more than just one variable, so using n can be misleading. insert is O(n) where n is the new length - but if you're already talking about n with regards to some other parameter (like the number of words), mistakes will happen.
PPs. Please point out mistakes/corrections in my analysis!
PPPs. insert isn't guaranteed to be O(x + y) as I claimed above - but it's safe to assume this complexity.

The complexity is O(N), as correctly explained by J.Doe
istringstream uses an O(n) and appending at the beginning (and resulting in consequent moves) uses another O(n)
See here the explanation, why the constant 2 is not relevant:
https://en.wikipedia.org/wiki/Big_O_notation#Example
If f(x) is a product of several factors, any constants (terms in the product that do not depend on x) can be omitted.

Related

How to calculate time complexitiy?

I'm really having trouble calculating big O. I get the basics but when it gets to nested for loops and all that, my mind just blanks out. I was asked to write down the complexity of the following algorithm which I have no clue how to do. The input string contains only A,B,C and D
string solution(string &S) {
int length = S.length();
int i = 0;
while(i < length - 1)
{
if ( (S[i] == 'A' && S[i+1] == 'B') || (S[i] == 'B' && S[i+1] == 'A'))
{
S = S.erase(i,2);
i = 0;
length = S.length();
}
if ( (S[i] == 'C' && S[i+1] == 'D') || (S[i] == 'D' && S[i+1] == 'C'))
{
S = S.erase(i,2);
i = 0;
length = S.length();
}
i++;
}
return S;
}
What would the big O of this algorithm be?
It is O(n^2).
DDDDDDDDDDDDDDDDDDDABABABABABABABABABABABAB
First n/2 characters are D
Last n/2 characters are AB
For each AB, (there are 1/4n such) - O(n)
You are resetting i (iterating from start)
shifting all successive elements to fill the gap created after erase.
Total:
O(n)*(O(n) + O(n)) = O(n^2)
It's easy to get hung up about the precise detail of how efficient an algorithm is. Fundamentally though, all you're concerned about is whether the operation is:
Constant time
Proportional to the number of elements
Proportional to the square of the number of elements
etc...
Look at this for guidance on how to estimate the Big-O for a compound operation:
https://hackernoon.com/big-o-for-beginners-622a64760e2
The big-O essentially defines the worst-case complexity of a method, with particular regard to effects that would be observed with very large n. On the face of it you would consider how many times you repeat an operation, but you also need to consider if any embodied methods (e.g. string erase, string length) have complexity that's "constant time", "proportional to the number of elements", "proportional to the number of elements - squared" and so on.
So if your outer loop performs n scans but also invokes methods which also perform n scans on up to every item then you end up with O(n^2).
The main concern is the exponential dimension; you could have a very time-consuming linear-complexity operation, but also a very fast, say, power-of-4 element. In such a case, it's considered to be O(n^4) ( as opposed to O(20000n + n^4) ) because as n tends to infinity, all of the lesser exponent factors become insignificant. See here : https://en.wikipedia.org/wiki/Big_O_notation#Properties
So in your case, you have the following loops:
Repetition of the scan (setting i=0) whose frequency is proportional to number of matches (worst case n for argument's sake - even if it's a fraction, when n becomes infinite it remains significant). Although this is not supposedly the outer loop, it does fundamentally govern how many times the other scans are performed.
String scan whose frequency is proportional to length (n), PLUS Embodied loop in the string erase - n in the worst case. Note these operations are performed in isolation, together governed by the frequency of the aforementioned repetition. As stated elsewhere, O(n)+O(n) reduces to O(n) because we only care about exponent.
So in this case the complexity is O(n^2)
A separate consideration when assessing the performance of any algorithm regards how cache friendly it is; algorithms using hashmaps, linked lists etc are considered prima-facie to be more efficient, but in some cases a O(n^2) algorithm that operates within a cache line and doesn't invoke page faults nor cache flushes can execute a lot faster than a supposedly more efficient algorithm that has memory scattered all over the place.
I guess this would be O(n) because there is one loop thats going through the string.
The longer the string the more time it takes so i would say O(n)
In big O notation, you give the answer for the worst case. Here the worst case will be that the string does not satisfy any if statements. Then time complexity here will be O(n) because there is only one loop.

Given a string, find two identical subsequences with consecutive indexes C++

I need to construct an algorithm (not necessarily effective) that given a string finds and prints two identical subsequences (by print I mean color for example). What more, the union of the sets of indexes of these two subsequences has to be a set of consecutive natural numbers (a full segment of integers).
In mathematics, the thing what I am looking for is called "tight twins", if it helps anything. (E.g., see the paper (PDF) here.)
Let me give a few examples:
1) consider string 231213231
It has two subsequences I am looking for in the form of "123". To see it better look at this image:
The first subsequence is marked with underlines and the second with overlines. As you can see they have all the properties I need.
2) consider string 12341234
3) consider string 12132344.
Now it gets more complicated:
4) consider string: 13412342
It is also not that easy:
I think that these examples explain well enough what I meant.
I've been thinking a long time about an algorithm that could do that but without success.
For coloring, I wanted to use this piece of code:
using namespace std;
HANDLE hConsole;
hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
SetConsoleTextAttribute(hConsole, k);
where k is color.
Any help, even hints, would be highly appreciated.
Here's a simple recursion that tests for tight twins. When there's a duplicate, it splits the decision tree in case the duplicate is still part of the first twin. You'd have to run it on each substring of even length. Other optimizations for longer substrings could include hashing tests for char counts, as well as matching the non-duplicate portions of the candidate twins (characters that only appear twice in the whole substring).
Explanation of the function:
First, a hash is created with each character as key and the indexes it appears in as values. Then we traverse the hash: if a character count is odd, the function returns false; and indexes of characters with a count greater than 2 are added to a list of duplicates - characters half of which belong in one twin but we don't know which.
The basic rule of the recursion is to only increase i when a match for it is found later in the string, while maintaining a record of chosen matches (js) that i must skip without looking for a match. It works because if we find n/2 matches, in order, by the time j reaches the end, that's basically just another way of saying the string is composed of tight twins.
JavaScript code:
function isTightTwins(s){
var n = s.length,
char_idxs = {};
for (var i=0; i<n; i++){
if (char_idxs[s[i]] == undefined){
char_idxs[s[i]] = [i];
} else {
char_idxs[s[i]].push(i);
}
}
var duplicates = new Set();
for (var i in char_idxs){
// character with odd count
if (char_idxs[i].length & 1){
return false;
}
if (char_idxs[i].length > 2){
for (let j of char_idxs[i]){
duplicates.add(j);
}
}
}
function f(i,j,js){
// base case positive
if (js.size == n/2 && j == n){
return true;
}
// base case negative
if (j > n || (n - j < n/2 - js.size)){
return false;
}
// i is not less than j
if (i >= j) {
return f(i,j + 1,js);
}
// this i is in the list of js
if (js.has(i)){
return f(i + 1,j,js);
// yet to find twin, no match
} else if (s[i] != s[j]){
return f(i,j + 1,js);
} else {
// maybe it's a twin and maybe it's a duplicate
if (duplicates.has(j)) {
var _js = new Set(js);
_js.add(j);
return f(i,j + 1,js) | f(i + 1,j + 1,_js);
// it's a twin
} else {
js.add(j);
return f(i + 1,j + 1,js);
}
}
}
return f(0,1,new Set());
}
console.log(isTightTwins("1213213515")); // true
console.log(isTightTwins("11222332")); // false
WARNING: Commenter גלעד ברקן points out that this algorithm gives the wrong answer of 6 (higher than should be possible!) for the string 1213213515. My implementation gets the same wrong answer, so there seems to be a serious problem with this algorithm. I'll try to figure out what the problem is, but in the meantime DO NOT TRUST THIS ALGORITHM!
I've thought of a solution that will take O(n^3) time and O(n^2) space, which should be usable on strings of up to length 1000 or so. It's based on a tweak to the usual notion of longest common subsequences (LCS). For simplicity I'll describe how to find a minimal-length substring with the "tight twin" property that starts at position 1 in the input string, which I assume has length 2n; just run this algorithm 2n times, each time starting at the next position in the input string.
"Self-avoiding" common subsequences
If the length-2n input string S has the "tight twin" (TT) property, then it has a common subsequence with itself (or equivalently, two copies of S have a common subsequence) that:
is of length n, and
obeys the additional constraint that no character position in the first copy of S is ever matched with the same character position in the second copy.
In fact we can safely tighten the latter constraint to no character position in the first copy of S is ever matched to an equal or lower character position in the second copy, due to the fact that we will be looking for TT substrings in increasing order of length, and (as the bottom section shows) in any minimal-length TT substring, it's always possible to assign characters to the two subsequences A and B so that for any matched pair (i, j) of positions in the substring with i < j, the character at position i is assigned to A. Let's call such a common subsequence a self-avoiding common subsequence (SACS).
The key thing that makes efficient computation possible is that no SACS of a length-2n string can have more than n characters (since clearly you can't cram more than 2 sets of n characters into a length-2n string), so if such a length-n SACS exists then it must be of maximum possible length. So to determine whether S is TT or not, it suffices to look for a maximum-length SACS between S and itself, and check whether this in fact has length n.
Computation by dynamic programming
Let's define f(i, j) to be the length of the longest self-avoiding common subsequence of the length-i prefix of S with the length-j prefix of S. To actually compute f(i, j), we can use a small modification of the usual LCS dynamic programming formula:
f(0, _) = 0
f(_, 0) = 0
f(i>0, j>0) = max(f(i-1, j), f(i, j-1), m(i, j))
m(i, j) = (if S[i] == S[j] && i < j then 1 else 0) + f(i-1, j-1)
As you can see, the only difference is the additional condition && i < j. As with the usual LCS DP, computing it takes O(n^2) time, since the 2 arguments each range between 0 and n, and the computation required outside of recursive steps is O(1). (Actually we need only compute the "upper triangle" of this DP matrix, since every cell (i, j) below the diagonal will be dominated by the corresponding cell (j, i) above it -- though that doesn't alter the asymptotic complexity.)
To determine whether the length-2j prefix of the string is TT, we need the maximum value of f(i, 2j) over all 0 <= i <= 2n -- that is, the largest value in column 2j of the DP matrix. This maximum can be computed in O(1) time per DP cell by recording the maximum value seen so far and updating as necessary as each DP cell in the column is calculated. Proceeding in increasing order of j from j=1 to j=2n lets us fill out the DP matrix one column at a time, always treating shorter prefixes of S before longer ones, so that when processing column 2j we can safely assume that no shorter prefix is TT (since if there had been, we would have found it earlier and already terminated).
Let the string length be N.
There are two approaches.
Approach 1. This approach is always exponential-time.
For each possible subsequence of length 1..N/2, list all occurences of this subsequence. For each occurence, list positions of all characters.
For example, for 123123 it should be:
(1, ((1), (4)))
(2, ((2), (5)))
(3, ((3), (6)))
(12, ((1,2), (4,5)))
(13, ((1,3), (4,6)))
(23, ((2,3), (5,6)))
(123, ((1,2,3),(4,5,6)))
(231, ((2,3,4)))
(312, ((3,4,5)))
The latter two are not necessary, as their appear only once.
One way to do it is to start with subsequences of length 1 (i.e. characters), then proceed to subsequences of length 2, etc. At each step, drop all subsequences which appear only once, as you don't need them.
Another way to do it is to check all 2**N binary strings of length N. Whenever a binary string has not more than N/2 "1" digits, add it to the table. At the end drop all subsequences which appear only once.
Now you have a list of subsequences which appear more than 1 time. For each subsequence, check all the pairs, and check whether such a pair forms a tight twin.
Approach 2. Seek for tight twins more directly. For each N*(N-1)/2 substrings, check whether the substring is even length, and each character appears in it even number of times, and then, being its length L, check whether it contains two tight twins of the length L/2. There are 2**L ways to divide it, the simplest you can do is to check all of them. There are more interesting ways to seek for t.t., though.
I would like to approach this as a dynamic programming/pattern matching problem. We deal with characters one at a time, left to right, and we maintain a herd of Non-Deterministic Finite Automata / NDFA, which correspond to partial matches. We start off with a single null match, and with each character we extend each NDFA in every possible way, with each NDFA possibly giving rise to many children, and then de-duplicate the result - so we need to minimise the state held in the NDFA to put a bound on the size of the herd.
I think a NDFA needs to remember the following:
1) That it skipped a stretch of k characters before the match region.
2) A suffix which is a p-character string, representing characters not yet matched which will need to be matched by overlines.
I think that you can always assume that the p-character string needs to be matched with overlines because you can always swap overlines and underlines in an answer if you swap throughout the answer.
When you see a new character you can extend NDFAs in the following ways:
a) An NDFA with nothing except skips can add a skip.
b) An NDFA can always add the new character to its suffix, which may be null
c) An NDFA with a p character string whose first character matches the new character can turn into an NDFA with a p-1 character string which consists of the last p-1 characters of the old suffix. If the string is now of zero length then you have found a match, and you can work out what it was if you keep links back from each NDFA to its parent.
I thought I could use a neater encoding which would guarantee only a polynomial herd size, but I couldn't make that work, and I can't prove polynomial behaviour here, but I notice that some cases of degenerate behaviour are handled reasonably, because they lead to multiple ways to get to the same suffix.

Increase string overlap matrix building efficiency

I have a huge list (N = ~1million) of strings 100 characters long that I'm trying to find the overlaps between. For instance, one string might be
XXXXXXXXXXXXXXXXXXAACTGCXAACTGGAAXA (and so on)
I need to build an N by N matrix that contains the longest overlap value for every string with every other string. My current method is (pseudocode)
read in all strings to array
create empty NxN matrix
compare each string to every string with a higher array index (to avoid redoing comparisons)
Write longest overlap to matrix
There's a lot of other stuff going on, but I really need a much more efficient way to build the matrix. Even with the most powerful computing clusters I can get my hands on this method takes days.
In case you didn't guess, these are DNA fragments. X indicates "wild card" (probe gave below a threshold quality score) and all other options are a base (A, C, T, or G). I tried to write a quaternary tree algorithm, but this method was far too memory intensive.
I'd love any suggestions you can give for a more efficient method; I'm working in C++ but pseudocode/ideas or other language code would also be very helpful.
Edit: some code excerpts that illustrate my current method. Anything not particularly relevant to the concept has been removed
//part that compares them all to each other
for (int j=0; j<counter; j++) //counter holds # of DNA
for (int k=j+1; k<counter; k++)
int test = determineBestOverlap(DNArray[j],DNArray[k]);
//boring stuff
//part that compares strings. Definitely very inefficient,
//although I think the sheer number of comparisons is the main problem
int determineBestOverlap(string str1, string str2)
{
int maxCounter = 0, bestOffset = 0;
//basically just tries overlapping the strings every possible way
for (int j=0; j<str2.length(); j++)
{
int counter = 0, offset = 0;
while (str1[offset] == str2[j+offset] && str1[offset] != 'X')
{
counter++;
offset++;
}
if (counter > maxCounter)
{
maxCounter = counter;
bestOffset = j;
}
}
return maxCounter;
} //this simplified version doesn't account for flipped strings
Do you really need to know the match between ALL string pairs? If yes, then you will have to compare every string with every other string, which means you will need n^2/2 comparisons, and you will need one half terabyte of memory even if you just store one byte per string pair.
However, i assume what you really are interested in is long strings, those that have more than, say, 20 or 30 or even more than 80 characters in common, and you probably don't really want to know if two string pairs have 3 characters in common while 50 others are X and the remaining 47 don't match.
What i'd try if i were you - still without knowing if that fits your application - is:
1) From each string, extract the largest substring(s) that make(s) sense. I guess you want to ignore 'X'es at the start and end entirely, and if some "readable" parts are broken by a large number of 'X'es, it probably makes sense to treat the readable parts individually instead of using the longer string. A lot of this "which substrings are relevant?" depends on your data and application that i don't really know.
2) Make a list of these longest substrings, together with the number of occurences of each substring. Order this list by string length. You may, but don't really have to, store the indexes of every original string together with the substring. You'll get something like (example)
AGCGCTXATCG 1
GAGXTGACCTG 2
.....
CGCXTATC 1
......
3) Now, from the top to the bottom of the list:
a) Set the "current string" to the string topmost on the list.
b) If the occurence count next to the current string is > 1, you found a match. Search your original strings for the substring if you haven't remembered the indexes, and mark the match.
c) Compare the current string with all strings of the same length, to find matches where some characters are X.
d) Remove the 1st character from the current string. If the resulting string is already in your table, increase its occurence counter by one, else enter it into the table.
e) Repeat 3b with the last, instead of the first, character removed from the current string.
f) Remove the current string from the list.
g) Repeat from 3a) until you run out of computing time, or your remaining strings become too short to be interesting.
If this is a better algorithm depends very much on your data and which comparisons you're really interested in. If your data is very random/you have very few matches, it will probably take longer than your original idea. But it might allow you to find the interesting parts first and skip the less interesting parts.
I don't see many ways to improve the fact that you need to compare each string with each other including shifting them, and that is by itself super long, a computation cluster seems the best approach.
The only thing I see how to improve is the string comparison by itself: replace A,C,T,G and X by binary patterns:
A = 0x01
C = 0x02
T = 0x04
G = 0x08
X = 0x0F
This way you can store one item on 4 bits, i.e. two per byte (this might not be a good idea though, but still a possible option to investigate), and then compare them quickly with a AND operation, so that you 'just' have to count how many consecutive non zero values you have. That's just a way to process the wildcard, sorry I don't have a better idea to reduce the complexity of the overall comparison.

Generating random integers with a difference constraint

I have the following problem:
Generate M uniformly random integers from the range 0-N, where N >> M, and where no pair has a difference less than K. where M >> K.
At the moment the best method I can think of is to maintain a sorted list, then determine the lower bound of the current generated integer and test it with the lower and upper elements, if it's ok to then insert the element in between. This is of complexity O(nlogn).
Would there happen to be a more efficient algorithm?
An example of the problem:
Generate 1000 uniformly random integers between zero and 100million where the difference between any two integers is no less than 1000
A comprehensive way to solve this would be to:
Determine all the combinations of n-choose-m that satisfy the constraint, lets called it set X
Select a uniformly random integer i in the range [0,|X|).
Select the i'th combination from X as the result.
This solution is problematic when the n-choose-m is large, as enumerating and storing all possible combinations will be extremely costly. Hence an efficient online generating solution is sought.
Note: The following is a C++ implementation of the solution provided by pentadecagon
std::vector<int> generate_random(const int n, const int m, const int k)
{
if ((n < m) || (m < k))
return std::vector<int>();
std::random_device source;
std::mt19937 generator(source());
std::uniform_int_distribution<> distribution(0, n - (m - 1) * k);
std::vector<int> result_list;
result_list.reserve(m);
for (int i = 0; i < m; ++i)
{
result_list.push_back(distribution(generator));
}
std::sort(std::begin(result_list),std::end(result_list));
for (int i = 0; i < m; ++i)
{
result_list[i] += (i * k);
}
return result_list;
}
http://ideone.com/KOeR4R
.
EDIT: I adapted the text for the requirement to create ordered sequences, each with the same probability.
Create random numbers a_i for i=0..M-1 without duplicates. Sort them. Then create numbers
b_i=a_i + i*(K-1)
Given the construction, those numbers b_i have the required gaps, because the a_i already have gaps of at least 1. In order to make sure those b values cover exactly the required range [1..N], you must ensure a_i are picked from a range [1..N-(M-1)*(K-1)]. This way you get truly independent numbers. Well, as independent as possible given the required gap. Because of the sorting you get O(M log M) performance again, but this shouldn't be too bad. Sorting is typically very fast. In Python it looks like this:
import random
def random_list( N, M, K ):
s = set()
while len(s) < M:
s.add( random.randint( 1, N-(M-1)*(K-1) ) )
res = sorted( s )
for i in range(M):
res[i] += i * (K-1)
return res
First off: this will be an attempt to show that there's a bijection between the (M+1)- compositions (with the slight modification that we will allow addends to be 0) of the value N - (M-1)*K and the valid solutions to your problem. After that, we only have to pick one of those compositions uniformly at random and apply the bijection.
Bijection:
Let
Then the xi form an M+1-composition (with 0 addends allowed) of the value on the left (notice that the xi do not have to be monotonically increasing!).
From this we get a valid solution
by setting the values mi as follows:
We see that the distance between mi and mi + 1 is at least K, and mM is at most N (compare the choice of the composition we started out with). This means that every (M+1)-composition that fulfills the conditions above defines exactly one valid solution to your problem. (You'll notice that we only use the xM as a way to make the sum turn out right, we don't use it for the construction of the mi.)
To see that this gives a bijection, we need to see that the construction can be reversed; for this purpose, let
be a given solution fulfilling your conditions. To get the composition this is constructed from, define the xi as follows:
Now first, all xi are at least 0, so that's alright. To see that they form a valid composition (again, every xi is allowed to be 0) of the value given above, consider:
The third equality follows since we have this telescoping sum that cancels out almost all mi.
So we've seen that the described construction gives a bijection between the described compositions of N - (M-1)*K and the valid solutions to your problem. All we have to do now is pick one of those compositions uniformly at random and apply the construction to get a solution.
Picking a composition uniformly at random
Each of the described compositions can be uniquely identified in the following way (compare this for illustration): reserve N - (M-1)*K spaces for the unary notation of that value, and another M spaces for M commas. We get an (M+1)- composition of N - (M-1)*K by choosing M of the N - (M-1)*K + M spaces, putting commas there, and filling the rest with |. Then let x0 be the number of | before the first comma, xM+1 the number of | after the last comma, and all other xi the number of | between commas i and i+1. So all we have to do is pick an M-element subset of the integer interval[1; N - (M-1)*K + M] uniformly at random, which we can do for example with the Fisher-Yates shuffle in O(N + M log M) (we need to sort the M delimiters to build the composition) since M*K needs to be in O(N) for any solutions to exist. So if N is bigger than M by at least a logarithmic factor, then this is linear in N.
Note: #DavidEisenstat suggested that there are more space efficient ways of picking the M-element subset of that interval; I'm not aware of any, I'm afraid.
You can get an error-proof algorithm out of this by doing the simple input validation we get from the construction above that N ≥ (M-1) * K and that all three values are at least 1 (or 0, if you define the empty set as a valid solution for that case).
Why not do this:
for (int i = 0; i < M; ++i) {
pick a random number between K and N/M
add this number to (N/M)* i;
Now you have M random numbers, distributed evenly along N, all of which have a difference of at least K. It's in O(n) time. As an added bonus, it's already sorted. :-)
EDIT:
Actually, the "pick a random number" part shouldn't be between K and N/M, but between min(K, [K - (N/M * i - previous value)]). That would ensure that the differences are still at least K, and not exclude values that should not be missed.
Second EDIT:
Well, the first case shouldn't be between K and N/M - it should be between 0 and N/M. Just like you need special casing for when you get close to the N/M*i border, we need special initial casing.
Aside from that, the issue you brought up in your comments was fair representation, and you're right. As my pseudocode is presented, it currently completely misses the excess between N/M*M and N. It's another edge case; simply change the random values of your last range.
Now, in this case, your distribution will be different for the last range. Since you have more numbers, you have slightly less chance for each number than you do for all the other ranges. My understanding is that because you're using ">>", this shouldn't really impact the distribution, i.e. the difference in size in the sample set should be nominal. But if you want to make it more fair, you divide the excess equally among each range. This makes your initial range calculation more complex - you'll have to augment each range based on how much remainder there is divided by M.
There are lots of special cases to look out for, but they're all able to be handled. I kept the pseudocode very basic just to make sure that the general concept came through clearly. If nothing else, it should be a good starting point.
Third and Final EDIT:
For those worried that the distribution has a forced evenness, I still claim that there's nothing saying it can't. The selection is uniformly distributed in each segment. There is a linear way to keep it uneven, but that also has a trade-off: if one value is selected extremely high (which should be unlikely given a very large N), then all the other values are constrained:
int prevValue = 0;
int maxRange;
for (int i = 0; i < M; ++i) {
maxRange = N - (((M - 1) - i) * K) - prevValue;
int nextValue = random(0, maxRange);
prevValue += nextValue;
store previous value;
prevValue += K;
}
This is still linear and random and allows unevenness, but the bigger prevValue gets, the more constrained the other numbers become. Personally, I prefer my second edit answer, but this is an available option that given a large enough N is likely to satisfy all the posted requirements.
Come to think of it, here's one other idea. It requires a lot more data maintenance, but is still O(M) and is probably the most fair distribution:
What you need to do is maintain a vector of your valid data ranges and a vector of probability scales. A valid data range is just the list of high-low values where K is still valid. The idea is you first use the scaled probability to pick a random data range, then you randomly pick a value within that range. You remove the old valid data range and replace it with 0, 1 or 2 new data ranges in the same position, depending on how many are still valid. All of these actions are constant time other than handling the weighted probability, which is O(M), done in a loop M times, so the total should be O(M^2), which should be much better than O(NlogN) because N >> M.
Rather than pseudocode, let me work an example using OP's original example:
0th iteration: valid data ranges are from [0...100Mill], and the weight for this range is 1.0.
1st iteration: Randomly pick one element in the one element vector, then randomly pick one element in that range.
If the element is, e.g. 12345678, then we remove the [0...100Mill] and replace it with [0...12344678] and [12346678...100Mill]
If the element is, e.g. 500, then we remove the [0...100Mill] and replace it with just [1500...100Mill], since [0...500] is no longer a valid range. The only time we will replace it with 0 ranges is in the unlikely event that you have a range with only one number in it and it gets picked. (In that case, you'll have 3 numbers in a row that are exactly K apart from each other.)
The weight for the ranges are their length over the total length, e.g. 12344678/(12344678 + (100Mill - 12346678)) and (100Mill - 12346678)/(12344678 + (100Mill - 12346678))
In the next iterations, you do the same thing: randomly pick a number between 0 and 1 and determine which of the ranges that scale falls into. Then randomly pick a number in that range, and replace your ranges and scales.
By the time it's done, we're no longer acting in O(M), but we're still only dependent on the time of M instead of N. And this actually is both uniform and fair distribution.
Hope one of these ideas works for you!

counting of the occurrence of substrings

Is there an efficient algorithm to count the total number of occurrence of a sub-string X in a longer string Y ?
To be more specific, what I want is, the total number of ways of selecting A.size() elements from B such that there exists a permutation of the selected elements that matches B.
An example is as follows: search the total number of occurrence of X=AB in string Y=ABCDBFGHIJ ?
The answer is 2 : first A and second B, and first A and 5-th B.
I know we can generate all permutations of the long string (which will be N! length N strings Y) and use KMP algorithm to search/count the occurrence of X in Y.
Can we do better than that ?
The original problem I try to solve is as follows: let's say we have a large matrix M of size r by c (r and c in the range of 10000's). Given a small matrix P of size a by b (a and b are in the range of 10's). Find the total number of different selections of a rows and b columns of M (this will give us an a by b "submatrix" H) so that there exists a permutation of the rows and columns of H that gives us a matrix which matches P.
I think once I can solve 1-D case, 2-D may follow the solution.
After research, I find out that this is a sub-graph isomorphism problem and it is NP-hard. There are some algorithms solve this efficiently. One can google it and see many papers on this.
After having read, then re-read the question (at #Charlie 's suggestion), I have concluded that these answers are not addressing the real issue. I have concluded also that I still do not know exactly what the issue is, but if OP answer's my questions and clarifies the issue, then I will come back and make a better attempt at addressing it. For now, I will leave this as a place holder...
To find occurrences of a letter or other character:
char buf[]="this is the string to search";
int i, count=0, len;
len = strlen(buf);
for(i=0;i<len;i++)
{
if(buf[i] == 's') count++;
}
or, using strtok(), find occurrences of a sub-string:
Not pretty, brute force method.
// strings to search
char str1[]="is";
char str2[]="s";
int count = 0;
char buf[]="this is the string to search";
char *tok;
tok = strtok(buf, str1);
while(tok){
count++;
tok = strtok(NULL, str1);
}
tok = strtok(buf, str2);
while(tok){
count++;
tok = strtok(NULL, str2);
}
count should contain the total of occurrences of "s", + occurrences of "is"
[EDIT]
First, let me ask for a technical clarification of your question, given A = "AR", B = "START", the solutions would be "A", "R" and "AR", in this case all found in the 3rd and 4th letters of B. Is that correct?. If so, that's easy enough. You can do that with some small modifications and additions to what I have already done above. And if you have questions about that code, I would be happy to address them if I can.
The second part is your real question: Searching with better than, or at least with the same efficiency as the KMP algorithm - that's the real trick. If choosing the best approach is the real question, then some Google searching is in order. Because once you find, and settle on the best approach (efficiency >= KPM) to solving the sub-string search, then the implementation will be a set of simple steps (if you give it enough time), possibly, but not necessarily using some of the same components of C used above. (Pointer manipulation will be faster than using the string functions I think.) But these techniques are just implementation, and should always follow a good design. Here are a few Google searches to help you get started with a search... (you may have already been to some of these)
Validating KMP
KMP - Can we do better?
KMP - Defined
KMP - Improvements using Fibonacci String
If once you have made your algorithm selection, and begin to implement your design, you have questions about techniques, or coding suggestions, Post them. My guess is there are several people here who would enjoy helping with such a useful algorithm.
If X is a substring in Y, then each character of X must be in Y. So we first iterate through X and find the counts of each character, in an array counts.
Then for each character that has count >= 1, we count the number of times it appears in Y which can be done trivially in O(n).
From here the answer should just be the multiplication of the combinations C(count(Y),count(X)).
If after the 3rd time reading your question I finally understand it correctly.