I used the following code to create a timer object in my c++ application running on a debian 8.
class Timer
{
private:
std::condition_variable cond_;
std::mutex mutex_;
int duration;
void *params;
public:
Timer::Timer(void (*func)(void*))
{
this->handler = func;
this->duration = 0;
this->params = NULL;
};
Timer::~Timer(){};
void Timer::start(int duree, void* handlerParams)
{
this->duration = duree;
this->params = handlerParams;
/*
* Launch the timer thread and wait it
*/
std::thread([this]{
std::unique_lock<std::mutex> mlock(mutex_);
std::cv_status ret = cond_.wait_for(mlock,
std::chrono::seconds(duration));
if ( ret == std::cv_status::timeout )
{
handler(params);
}
}).detach();
};
void Timer::stop()
{
cond_.notify_all();
}
};
It works correctly under gdb and under normal conditions, but in a load test of 30 requests or more, it crashes with the assertion :
nptl/pthread_mutex_lock.c:350: __pthread_mutex_cond_lock_full: Assertion `(-(e)) != 3 || !robust' failed.
I don't understand the cause of this assertion. Can anyone help me please ??
Thank you
Basically you have a detached thread that accesses the timer object, so it's likely that you destroyed the Timer object but the thread is still running and accessing it's member(mutex, conditional variable).
The assert itself says, from glibc source code, that the owner of the mutex has died.
Thanks a lot for your comments ! I'll try to change the thread detach, and do the load tests.
This is a MVCE of my problem, which is a part of a huge application.
/**
* \file Timer.hxx
* \brief Definition of Timer class.
*/
#include <chrono>
#include <thread>
#include <mutex>
#include <condition_variable>
class Timer
{
private:
std::condition_variable cond_;
std::mutex mutex_;
int duration;
void *params;
public:
Timer(void (*func)(void*));
~Timer();
void (*handler)(void*);
void start(int duree, void* handlerParams);
void stop();
};
/*
* Timer.cxx
*/
#include "Timer.hxx"
Timer::Timer(void (*func)(void*))
{
//this->set_handler(func, params);
this->handler = func;
this->duration = 0;
this->params = NULL;
}
Timer::~Timer()
{
}
void Timer::start(int duree, void* handlerParams)
{
this->duration = duree;
this->params = handlerParams;
/*
* Launch the timer thread and wait it
*/
std::thread([this]{
std::unique_lock<std::mutex> mlock(mutex_);
std::cv_status ret = cond_.wait_for(mlock, std::chrono::seconds(duration));
if ( ret == std::cv_status::timeout )
{
handler(params);
}
}).detach();
}
void Timer::stop()
{
cond_.notify_all();
}
/*
* MAIN
*/
#include <stdio.h>
#include <iostream>
#include <unistd.h>
#include "Timer.hxx"
using namespace std;
void timeoutHandler(void* params)
{
char* data= (char*)params;
cout << "Timeout triggered !! Received data is: " ;
if (data!=NULL)
cout << data << endl;
}
int main(int argc, char **argv)
{
int delay=5;
char data[20] ="This is a test" ;
Timer *t= new Timer(&timeoutHandler) ;
t->start(delay, data);
cout << "Timer started !! " << endl;
sleep(1000);
t->stop();
delete t;
cout << "Timer deleted !! " << endl;
return 0;
}
Related
I'm using std::thread to launch threads. Also, I need stats for the worker thread available at /proc/[pid]/tasks/[tid]. I need tid to be able to monitor thread stats. I was wondering if there was a way to extract tid from the parent thread. I know that syscall gettid() from the worker returns its id, but I want the threadId from the master and not the slave. Is there a way to extract tid from the thread_id gor from std::thread.get_tid() ?
I believe there might be better ways of doing this, please suggest :)
UPDATE:
How can you get the Linux thread Id of a std::thread() this provides some information on getting tid from the worker, adds an overhead to the thread launch. For instance, std::thread t = std::thread(&wrapper); t.get_id() can be called from the launcher thread. I was/am looking if there was a to do the same thing from the main/launcher thread in a safe way.
All threads have a unique id:
std::thread::id this_id = std::this_thread::get_id();
You can store it in a variable when the program starts and it'll be accessible from the other threads.
I understand what you mean when you say parent thread, but even though one thread gave birth to another, they are siblings.
if you want the master thread to be able to get the /proc path to each worker thread, you could wrap the worker thread object in a class that, when it starts the actual thread, creates a path property that the master can later get.
An example:
#include <unistd.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread>
// A base class for thread object wrappers
class abstract_thread {
public:
abstract_thread() {}
abstract_thread(const abstract_thread&) = delete;
abstract_thread(abstract_thread&& rhs) :
m_th(std::move(rhs.m_th)), m_terminated(rhs.m_terminated), m_cv{}, m_mtx{} {}
abstract_thread& operator=(const abstract_thread&) = delete;
abstract_thread& operator=(abstract_thread&& rhs) {
terminate();
join();
m_th = std::move(rhs.m_th);
m_terminated = rhs.m_terminated;
return *this;
}
virtual ~abstract_thread() {
// make sure we don't destroy a running thread object
terminate();
join();
}
virtual void start() {
if(joinable())
throw std::runtime_error("thread already running");
else {
std::unique_lock<std::mutex> lock(m_mtx);
m_terminated = true;
// start thread and wait for it to signal that setup has been done
m_th = std::thread(&abstract_thread::proxy, this);
m_cv.wait(lock, [this] { return m_terminated == false; });
}
}
inline bool joinable() const { return m_th.joinable(); }
inline void join() {
if(joinable()) {
m_th.join();
}
}
inline void terminate() { m_terminated = true; }
inline bool terminated() const { return m_terminated; }
protected:
// override if thread specific setup needs to be done before start() returns
virtual void setup_in_thread() {}
// must be overridden in derived classes
virtual void execute() = 0;
private:
std::thread m_th{};
bool m_terminated{};
std::condition_variable m_cv{};
std::mutex m_mtx{};
void proxy() {
{
std::unique_lock<std::mutex> lock(m_mtx);
setup_in_thread(); // call setup function
m_terminated = false;
m_cv.notify_one();
}
execute(); // run thread code
}
};
// an abstract thread wrapper capable of returning its /proc path
class proc_path_thread : public abstract_thread {
public:
// function to call from master to get the path
const std::string& get_proc_path() const { return m_proc_path; }
protected:
void setup_in_thread() override {
m_proc_path =
std::move(std::string("/proc/")) + std::to_string(syscall(SYS_gettid));
}
private:
std::string m_proc_path{};
};
// two different thread wrapper classes. Just inherit proc_path_thread and implement
// "execute()". Loop until terminated() is true (or you're done with the work)
class AutoStartThread : public proc_path_thread {
public:
AutoStartThread() { start(); }
private:
void execute() override {
while(!terminated()) {
std::this_thread::sleep_for(std::chrono::milliseconds(500));
std::cout << std::this_thread::get_id() << " AutoStartThread running\n";
}
}
};
class ManualStartThread : public proc_path_thread {
void execute() override {
std::this_thread::sleep_for(std::chrono::milliseconds(100));
std::cout << std::this_thread::get_id() << " ManualStartThread running\n";
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
};
int main() {
AutoStartThread a;
std::cout << a.get_proc_path() << "\t// AutoStartThread, will have path\n";
ManualStartThread b;
std::cout << b.get_proc_path()
<< "\t// ManualStartThread not started, no path\n";
b.start();
std::cout << b.get_proc_path()
<< "\t// ManualStartThread will now have a path\n";
b.join();
std::this_thread::sleep_for(std::chrono::milliseconds(1500));
// terminate() + join() is called automatically when abstract_thread descendants
// goes out of scope:
//
// a.terminate();
// a.join();
}
Possible output:
/proc/38207 // AutoStartThread, will have path
// ManualStartThread not started, no path
/proc/38208 // ManualStartThread will now have a path
139642064209664 ManualStartThread running
139642072602368 AutoStartThread running
139642072602368 AutoStartThread running
139642072602368 AutoStartThread running
139642072602368 AutoStartThread running
You can launch the thread through a function whose first task will be to message it's id, e.g., either classically using mutexes and condvars:
#include <stdio.h>
#include <pthread.h>
#include <sys/syscall.h>
#include <unistd.h>
struct tid_msg{
pthread_mutex_t mx;
pthread_cond_t cond;
pid_t tid;
};
void *thr(void*A)
{
struct tid_msg *msg = A;
pid_t tid = syscall(SYS_gettid);
pthread_mutex_lock(&msg->mx);
msg->tid = tid;
pthread_mutex_unlock(&msg->mx);
pthread_cond_signal(&msg->cond);
printf("my tid=%lu\n", (long unsigned)tid);
return 0;
}
int main()
{
struct tid_msg msg = { PTHREAD_MUTEX_INITIALIZER, PTHREAD_COND_INITIALIZER, -1 };
pthread_t ptid;
pthread_create(&ptid,0,thr,&msg);
pthread_mutex_lock(&msg.mx);
while(-1==msg.tid) pthread_cond_wait(&msg.cond,&msg.mx);
pthread_mutex_unlock(&msg.mx);
printf("their tid=%lu\n", (long unsigned)msg.tid);
pthread_join(ptid,0);
}
or simply via an atomic variable (relaxed memory ordering should be fine here,
but you can play it safe and use the sequentially consistent default):
#include <stdio.h>
#include <pthread.h>
#include <sys/syscall.h>
#include <unistd.h>
#include <stdatomic.h>
void *thr(void*A)
{
_Atomic pid_t *tidp = A;
pid_t tid;
tid = syscall(SYS_gettid);
atomic_store_explicit(tidp, tid, memory_order_relaxed);
printf("my tid=%lu\n", (long unsigned)tid);
return 0;
}
int main()
{
_Atomic pid_t tid=-1;
pthread_t ptid;
pthread_create(&ptid,0,thr,&tid);
while(-1==atomic_load_explicit(&tid,memory_order_relaxed)) ;
printf("their tid=%lu\n", (long unsigned)tid);
pthread_join(ptid,0);
}
I've implemented thread pooling following the answer of Kerrek SB in this question.
I've implemented MPMC queue for the functions and vector threads for the threads.
Everything worked perfectly, except that I don't know how to terminate the program, in the end if I just do thread.join since the thread is still waiting for more tasks to do, it will not join and the main thread will not continue.
Any idea how to end the program correctly?
For completeness, this is my code:
function_pool.h
#pragma once
#include <queue>
#include <functional>
#include <mutex>
#include <condition_variable>
class Function_pool
{
private:
std::queue<std::function<void()>> m_function_queue;
std::mutex m_lock;
std::condition_variable m_data_condition;
public:
Function_pool();
~Function_pool();
void push(std::function<void()> func);
std::function<void()> pop();
};
function_pool.cpp
#include "function_pool.h"
Function_pool::Function_pool() : m_function_queue(), m_lock(), m_data_condition()
{
}
Function_pool::~Function_pool()
{
}
void Function_pool::push(std::function<void()> func)
{
std::unique_lock<std::mutex> lock(m_lock);
m_function_queue.push(func);
// when we send the notification immediately, the consumer will try to
get the lock , so unlock asap
lock.unlock();
m_data_condition.notify_one();
}
std::function<void()> Function_pool::pop()
{
std::unique_lock<std::mutex> lock(m_lock);
m_data_condition.wait(lock, [this]() {return !m_function_queue.empty();
});
auto func = m_function_queue.front();
m_function_queue.pop();
return func;
// Lock will be released
}
main.cpp
#include "function_pool.h"
#include <string>
#include <iostream>
#include <mutex>
#include <functional>
#include <thread>
#include <vector>
Function_pool func_pool;
void example_function()
{
std::cout << "bla" << std::endl;
}
void infinite_loop_func()
{
while (true)
{
std::function<void()> func = func_pool.pop();
func();
}
}
int main()
{
std::cout << "stating operation" << std::endl;
int num_threads = std::thread::hardware_concurrency();
std::cout << "number of threads = " << num_threads << std::endl;
std::vector<std::thread> thread_pool;
for (int i = 0; i < num_threads; i++)
{
thread_pool.push_back(std::thread(infinite_loop_func));
}
//here we should send our functions
func_pool.push(example_function);
for (int i = 0; i < thread_pool.size(); i++)
{
thread_pool.at(i).join();
}
int i;
std::cin >> i;
}
Your problem is located in infinite_loop_func, which is an infinite loop and by result doesn't terminate. I've read the previous answer which suggests throwing an exception, however, I don't like it since exceptions should not be used for the regular control flow.
The best way to solve this is to explicitly deal with the stop condition. For example:
std::atomic<bool> acceptsFunctions;
Adding this to the function pool allows you to clearly have state and to assert that no new functions being added when you destruct.
std::optional<std::function<void()>> Function_pool::pop()
Returning an empty optional (or function in C++14 and before), allows you to deal with an empty queue. You have to, as condition_variable can do spurious wakeups.
With this, m_data_condition.notify_all() can be used to wake all threads.
Finally we have to fix the infinite loop as it doesn't cover overcommitment and at the same time allows you to execute all functions still in the queue:
while (func_pool.acceptsFunctions || func_pool.containsFunctions())
{
auto f = func_pool.pop();
If (!f)
{
func_pool.m_data_condition.wait_for(1s);
continue;
}
auto &function = *f;
function ();
}
I'll leave it up to you to implement containsFunctions() and clean up the code (infinite_loop_func as member function?) Note that with a counter, you could even deal with background task being spawned.
You can always use a specific exception type to signal to infinite_loop_func that it should return...
class quit_worker_exception: public std::exception {};
Then change infinite_loop_func to...
void infinite_loop_func ()
{
while (true) {
std::function<void()> func = func_pool.pop();
try {
func();
}
catch (quit_worker_exception &ex) {
return;
}
}
}
With the above changes you could then use (in main)...
/*
* Enqueue `thread_pool.size()' function objects whose sole job is
* to throw an instance of `quit_worker_exception' when invoked.
*/
for (int i = 0; i < thread_pool.size(); i++)
func_pool.push([](){ throw quit_worker_exception(); });
/*
* Now just wait for each worker to terminate having received its
* quit_worker_exception.
*/
for (int i = 0; i < thread_pool.size(); i++)
thread_pool.at(i).join();
Each instance of infinite_loop_func will dequeue one function object which, when called, throws a quit_worker_exception causing it to return.
Follwoing [JVApen](https://stackoverflow.com/posts/51382714/revisions) suggestion, I copy my code in case anyone will want a working code:
function_pool.h
#pragma once
#include <queue>
#include <functional>
#include <mutex>
#include <condition_variable>
#include <atomic>
#include <cassert>
class Function_pool
{
private:
std::queue<std::function<void()>> m_function_queue;
std::mutex m_lock;
std::condition_variable m_data_condition;
std::atomic<bool> m_accept_functions;
public:
Function_pool();
~Function_pool();
void push(std::function<void()> func);
void done();
void infinite_loop_func();
};
function_pool.cpp
#include "function_pool.h"
Function_pool::Function_pool() : m_function_queue(), m_lock(), m_data_condition(), m_accept_functions(true)
{
}
Function_pool::~Function_pool()
{
}
void Function_pool::push(std::function<void()> func)
{
std::unique_lock<std::mutex> lock(m_lock);
m_function_queue.push(func);
// when we send the notification immediately, the consumer will try to get the lock , so unlock asap
lock.unlock();
m_data_condition.notify_one();
}
void Function_pool::done()
{
std::unique_lock<std::mutex> lock(m_lock);
m_accept_functions = false;
lock.unlock();
// when we send the notification immediately, the consumer will try to get the lock , so unlock asap
m_data_condition.notify_all();
//notify all waiting threads.
}
void Function_pool::infinite_loop_func()
{
std::function<void()> func;
while (true)
{
{
std::unique_lock<std::mutex> lock(m_lock);
m_data_condition.wait(lock, [this]() {return !m_function_queue.empty() || !m_accept_functions; });
if (!m_accept_functions && m_function_queue.empty())
{
//lock will be release automatically.
//finish the thread loop and let it join in the main thread.
return;
}
func = m_function_queue.front();
m_function_queue.pop();
//release the lock
}
func();
}
}
main.cpp
#include "function_pool.h"
#include <string>
#include <iostream>
#include <mutex>
#include <functional>
#include <thread>
#include <vector>
Function_pool func_pool;
class quit_worker_exception : public std::exception {};
void example_function()
{
std::cout << "bla" << std::endl;
}
int main()
{
std::cout << "stating operation" << std::endl;
int num_threads = std::thread::hardware_concurrency();
std::cout << "number of threads = " << num_threads << std::endl;
std::vector<std::thread> thread_pool;
for (int i = 0; i < num_threads; i++)
{
thread_pool.push_back(std::thread(&Function_pool::infinite_loop_func, &func_pool));
}
//here we should send our functions
for (int i = 0; i < 50; i++)
{
func_pool.push(example_function);
}
func_pool.done();
for (unsigned int i = 0; i < thread_pool.size(); i++)
{
thread_pool.at(i).join();
}
}
I am using an online C++11 compiler, link found here: cpp.sh (C++ Shell).
In my current project, I would like to have a watchdog class, to be able to check somehow the status of a thread or FSM (for example).
After some work (I'm not a C++11 guru), I finally got the code below, that compiles ok.
I also did some basic/trivial tests, but it seems the test program doesn't want to exit.
It says "Program running" and the only way to (force) exit is to hit the "Stop" button... :(
Well, my question : What am I doing wrong?
Any ideas, suggestions you can provide are highly appreciated.
Here is the full code, including my test app:
Watchdog (as MCVE):
#include <thread>
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <mutex>
#include <iostream>
using namespace std::chrono;
class Watchdog
{
public:
Watchdog();
~Watchdog();
void Start(unsigned int milliseconds, std::function<void()> callback = 0);
void Stop();
void Pet();
private:
unsigned int m_interval;
std::atomic<bool> m_running;
std::thread m_thread;
std::function<void()> m_callback;
std::mutex m_mutex;
steady_clock::time_point m_lastPetTime;
std::condition_variable m_stopCondition;
void Loop();
};
Watchdog::Watchdog()
{
m_running = false;
}
Watchdog::~Watchdog()
{
Stop();
}
void Watchdog::Start(unsigned int milliseconds, std::function<void()> callback)
{
std::unique_lock<std::mutex> locker(m_mutex);
if(m_running == false)
{
m_lastPetTime = steady_clock::now();
m_interval = milliseconds;
m_callback = callback;
m_running = true;
m_thread = std::thread(&Watchdog::Loop, this);
}
}
void Watchdog::Stop()
{
std::unique_lock<std::mutex> locker(m_mutex);
if(m_running == true)
{
m_running = false;
m_stopCondition.notify_all();
m_thread.join();
}
}
void Watchdog::Pet()
{
std::unique_lock<std::mutex> locker(m_mutex);
m_lastPetTime = steady_clock::now();
m_stopCondition.notify_all();
}
void Watchdog::Loop()
{
std::unique_lock<std::mutex> locker(m_mutex);
while(m_running == true)
{
if(m_stopCondition.wait_for(locker, milliseconds(m_interval)) == std::cv_status::timeout)
{
if(m_callback != nullptr)
m_callback();
}
}
}
int main(int argc, char *argv[])
{
Watchdog wdog;
wdog.Start(3000, [] { std::cout << " WDOG TRIGGERED!!! "; });
for(auto i = 0; i < 10; i++)
{
std::cout << "[+]";
wdog.Pet();
std::this_thread::sleep_for(std::chrono::milliseconds(500));
}
}
-
You're doing a deadlock here.
void Watchdog::Stop()
{
std::unique_lock<std::mutex> locker(m_mutex);
if(m_running == true)
{
m_running = false;
m_stopCondition.notify_all();
m_thread.join();
^ ~~~~~~~~~~~~~~
m_mutex is locked; m_thread cannot continue execution
}
}
Some additional suggestion: use simple if conditions, do not compare with true or false.
I am trying to develop a console application, where I will display the system date and time in real time (or as real as I can get). This is the easy part. The hard part is that I must also have the cursor available for the user to enter information through. I can't use NCurses in my application, nor any other library that it not included in vanilla GCC 4.4 (there goes boost! Noooo....)
This is my code so far:
The realtime class, where I am incorporating the solution given by Jeremy Friesner here pthreads in c++ inside classes
#ifndef _REALTIME_H_
#define _REALTIME_H_
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
class MyThreadClass
{
public:
MyThreadClass() {/* empty */}
virtual ~MyThreadClass() {/* empty */}
/** Returns true if the thread was successfully started, false if there was an error starting the thread */
bool startMainThread()
{
return (pthread_create(&_mainThread, NULL, mainRunnerFunc, this) == 0);
}
bool startDisplayThread()
{
return (pthread_create(&_displayThread, NULL, displayThreadFunc, this) == 0);
}
/** Will not return until the main thread has exited. */
void waitForMainThreadToExit()
{
(void) pthread_join(_mainThread, NULL);
}
void waitForDisplayThreadToExit()
{
(void) pthread_join(_displayThread, NULL);
}
protected:
/** Implement this method in your subclass with the code you want your thread to run. */
virtual void mainRunner() = 0;
virtual void displayTime() = 0;
private:
static void * mainRunnerFunc(void * This) {((MyThreadClass *)This)->mainRunner(); return NULL;}
static void * displayThreadFunc(void * This) {((MyThreadClass *)This)->displayTime(); return NULL;}
pthread_t _mainThread;
pthread_t _displayThread;
};
class DynamicTime : public MyThreadClass
{
private:
const string currentDate();
void gotoxy(int,int);
void displayTime();
void mainRunner();
pthread_mutex_t mutex1;
public:
// pthread_mutex_t mutex1;
DynamicTime();
unsigned int lifeTime;
unsigned int updateTime;
void start();
int Exit;
};
const string DynamicTime::currentDate()
{
time_t now = time(0);
struct tm tstruct;
char buf[80];
tstruct = *localtime(&now);
strftime(buf,sizeof(buf),"%I:%M:%S %p, %d-%m-%y",&tstruct);
return buf;
}
DynamicTime::DynamicTime()
{
pthread_mutex_init(&(mutex1),NULL);
lifeTime=-1; /* 100 seconds */
updateTime = 1; /* 5 seconds interval */
Exit=1;
}
void DynamicTime::gotoxy(int x,int y)
{
/* go to location */
printf("\033[%d;%df",y,x);
}
void DynamicTime::displayTime()
{
pthread_mutex_lock(&mutex1);
/* save the cursor location */
printf("\033[s");
gotoxy(75,30);
cout << "Date : " << currentDate() << endl;
/* restore the cursor location */
printf("\033[u");
pthread_mutex_unlock(&mutex1);
}
void DynamicTime::mainRunner()
{
unsigned long iterate, iterate2;
int iret1,iret2;
if(lifeTime!=-1)
{
for(iterate=0;iterate<lifeTime*100000;iterate++)
{
if(iterate%(updateTime*50)==0)
{
iret2 = startDisplayThread();
waitForDisplayThreadToExit();
}
for(iterate2=0;iterate2<100000;iterate2++);
}
std::cout << "Ending main thread..." << endl;
}
else
{
while(1&Exit) /* infinitely */
{
iret2 = startDisplayThread();
waitForDisplayThreadToExit();
for(iterate2=0;iterate2<100000;iterate2++);
}
std::cout << "Exiting Application.... " << endl;
}
}
void DynamicTime::start()
{
//system("clear");
//cout << "Starting...." << endl;
if(startMainThread()==false)
{
std::cerr << "Coudln't start main Thread! " << endl;
}
/* call this function in the main program
* else
{
waitForMainThreadToExit();
}*/
}
/* Example
* on how to use the program
* int main()
{
DynamicTime DT;
DT.lifeTime = 100;
DT.start();
return 0;
}
*/
#endif
and my example program, where I am trying to read data from the user, while showing the time at the same time:
//#include <iostream>
#include "realtime2.h"
int main()
{
DynamicTime DT;
string temp="abcd";
DT.start();
while(temp!="exit")
{
std::cout << "$> " ;
std::cin >> temp;
}
DT.waitForMainThreadToExit();
return 0;
}
This would be called a fully-functional program, if only I could get the user to enter data without interruption from the display thread. Any ideas as to how to get around this ? Or if I can't get around this, what would be the proper way to do so ?
Running on:
mehoggan#mehoggan-laptop:~/Code/svn_playground/C++/timer/timer0$ uname -a
Linux mehoggan-laptop 2.6.32-37-generic #81-Ubuntu SMP Fri Dec 2 20:32:42 UTC 2011 x86_64 GNU/Linux
mehoggan#mehoggan-laptop:~/Code/svn_playground/C++/timer/timer0$ cat /etc/*release*
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=10.04
DISTRIB_CODENAME=lucid
DISTRIB_DESCRIPTION="Ubuntu 10.04.3 LTS"
mehoggan#mehoggan-laptop:~/Code/svn_playground/C++/timer/timer0$ g++ --version
g++ (Ubuntu 4.4.3-4ubuntu5) 4.4.3
Copyright (C) 2009 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
mehoggan#mehoggan-laptop:~/Code/svn_playground/C++/timer/timer0$
I am trying to write a timer class that runs on a background thread and uses gettimeofday(3) function plus a user specified callback function. The usage of this will be in a OpenGL app I am in the process of porting from Windows to Linux.
When I run this code (see below). My threads get hung up when running in release mode. However, when I step through the code with a debugger everything seems to work just fine. This indicates a timing issue to me. I might be wrong about this since I am just now learning how to use threads. Could someone help me understand why my threaded application is getting this signal from the OS?
There are two place you can get the code, you can download it from my trac site:
Trac Site
Or you can just copy and paste:
MAIN.CPP
#include "TimerManager.h"
#include <iostream>
#include <fstream>
#include <sys/time.h>
std::ofstream out;
void func1(int id)
{
struct timeval l_tv;
gettimeofday(&l_tv, NULL);
std::cout << "I was called (1) # " << l_tv.tv_usec << std::endl;
out.flush();
}
void func2(int id)
{
struct timeval l_tv;
gettimeofday(&l_tv, NULL);
std::cout << "I was called (2) # " << l_tv.tv_usec << std::endl;
out.flush();
}
int main(int, char *[])
{
out.open("/home/mehoggan/Desktop/log.log");
TimerManager t;
t.addTimer(1000000 * 10, func1);
t.addTimer(1000000 * 20, func2);
t.start();
while(true) {
sleep(1);
}
return 0;
}
#ifndef TIMERMANAGER_H_
#define TIMERMANAGER_H_
#include <stdlib.h>
#include <iostream>
#include <pthread.h>
#include <list>
extern "C" {
void *create_pthread(void *data);
}
class TimerManager {
public:
TimerManager();
~TimerManager();
void start();
void stop();
void addTimer(long usec, void (*callback)(int id));
private:
class Timer
{
public:
Timer(long usec, void (*callback)(int)) :
duration(usec),
callback(callback),
start(0)
{
}
bool operator ==(Timer other)
{
if ((this->callback == other.callback) && (this->duration == other.duration)) {
return true;
}
return false;
}
void operator =(Timer other)
{
duration = other.duration;
callback = other.callback;
start = other.start;
}
suseconds_t duration;
void (*callback)(int);
suseconds_t start;
};
std::list<Timer> m_timers;
Timer setUpTimer(long micro_duration, void (*callback)(int id));
friend void *create_pthread(void *data);
void run();
bool m_bRunning;
bool m_bGo;
long m_lMinSleep;
pthread_t m_tTimerThread;
pthread_cond_t m_tGoLockCondition;
pthread_mutex_t m_tGoLock;
};
#endif
#include <algorithm>
#include <iterator>
#include <sys/time.h>
#include "TimerManager.h"
extern "C" void *create_pthread(void *data)
{
TimerManager *thread_timer_manager = static_cast<TimerManager *>(data);
thread_timer_manager->run();
return data;
}
TimerManager::TimerManager() :
m_bRunning(false),
m_bGo(false),
m_lMinSleep(0)
{
int mutex_creation = pthread_mutex_init(&m_tGoLock, NULL);
if(mutex_creation != 0) {
std::cerr << "Failed to create mutex" << std::endl;
return;
}
int mutex_cond_creation = pthread_cond_init(&m_tGoLockCondition, NULL);
if(mutex_cond_creation != 0) {
std::cerr << "Failed to create condition mutex" << std::endl;
return;
}
int thread_creation = pthread_create(&m_tTimerThread, NULL, create_pthread, this);
if(thread_creation != 0) {
std::cerr << "Failed to create thread" << std::endl;
return;
}
m_bRunning = true;
}
TimerManager::~TimerManager()
{
m_bRunning = false;
pthread_mutex_destroy(&m_tGoLock);
void *result;
pthread_join(m_tTimerThread, &result);
}
void TimerManager::run()
{
pthread_mutex_lock(&m_tGoLock);
while(m_bRunning) {
while (!m_bGo) {
pthread_cond_wait(&m_tGoLockCondition, &m_tGoLock);
}
pthread_mutex_unlock(&m_tGoLock);
if (!m_bRunning) {
break;
}
pthread_detach(m_tTimerThread);
struct timeval l_tv;
sleep(std::max(0l, m_lMinSleep));
gettimeofday(&l_tv, NULL);
m_lMinSleep = 0;
long l_lMin = 0;
for(std::list<Timer>::iterator it = m_timers.begin(); it != m_timers.end(); ++it) {
TimerManager::Timer l_oTimer = *it;
long elapsed_time = ((l_tv.tv_sec * 1000000 + l_tv.tv_usec) - (l_oTimer.start));
l_lMin = elapsed_time - l_oTimer.duration;
if (elapsed_time >= l_oTimer.duration) {
l_lMin = l_oTimer.duration;
l_oTimer.callback(0);
gettimeofday(&l_tv, NULL);
it->start = (l_tv.tv_sec * 1000000) + l_tv.tv_usec;
}
m_lMinSleep = std::min(m_lMinSleep, l_lMin);
}
}
}
void TimerManager::start()
{
pthread_mutex_lock(&m_tGoLock);
m_bGo = true;
pthread_cond_signal(&m_tGoLockCondition);
pthread_mutex_unlock(&m_tGoLock);
}
void TimerManager::stop()
{
pthread_mutex_lock(&m_tGoLock);
m_bGo = false;
pthread_mutex_unlock(&m_tGoLock);
}
TimerManager::Timer TimerManager::setUpTimer(long micro_duration, void (*callback)(int id))
{
struct timeval l_tv;
gettimeofday(&l_tv, NULL);
Timer l_oTimer(micro_duration, callback);
l_oTimer.start = (l_tv.tv_sec * 1000000) + l_tv.tv_usec;
return l_oTimer;
}
void TimerManager::addTimer(long usec, void (*callback)(int id))
{
Timer insert = setUpTimer(usec, callback);
typedef std::list<Timer>::iterator li;
m_timers.push_back(insert);
}
Well, your destructor is definitely broken. You can't destroy a mutex while another thread might be using it. And you can't modify m_bRunning while another thread might be accessing it. You want:
TimerManager::~TimerManager()
{
pthread_mutex_lock(&m_tGoLock);
m_bRunning = false;
pthread_mutex_unlock(&m_tGoLock);
void *result;
pthread_join(m_tTimerThread, &result);
pthread_mutex_destroy(&m_tGoLock);
}
You have a lot of concurrency bugs. For example, your addTimer function modifies the shared m_timers structure without holding a mutex.