expansion parameters pack (values) from template arguments - c++

there is a trying to expand the pack using usual way with recursion:
template<bool first> int func1(int value = 0) {
return some_func(first, value);
}
template<bool first, bool... args> int func1(int value = 0) {
return func1<args...>(some_func(first, value) );
}
at the last step of compile time recursion, the call of func1 is ambiguous,
first candidate is a first function , it's clear , some concrete specialization in my case:
int func1(int) [with bool first = false]
but second one is
int func1(int) [with bool first = false; bool ...args = {}]
you see that is also correct - empty set of the arguments after first one.
any idea to prevent this ?
thank you

Disambiguate the base case from the recursive case by adding an explicit second parameter:
template<bool first> int func1(int value = 0) {
return some_func(first, value);
}
template<bool first, bool second, bool... args> int func1(int value = 0) {
return func1<second, args...>(some_func(first, value) );
}
Wandbox example

so the finally, I didn't use the recursion, but the only code below.
(actually std::array is not required but more useful from my perspective ,
the expanding can be archived by using C-like array too)
template <bool... args> unsigned long func1() {
std::array<bool, sizeof...(args)> ar{args...};
// the piece specific for my task
std::bitset<sizeof...(args)> bs;
for(std::size_t i = 0; i < ar.size(); ++i) {
bs[i] = ar[i];
}
// ... processing ...
return bs.to_ulong();
}

Related

Expand template class list in C++

I have a template function to do sth with type T
template <class T>
void EmplaceProcessor()
{
T* pProcessor = new T();
m_vItemProcessors.emplace_back(pProcessor);
}
If I want to implement a lot of types to emplace to the vector, just sth like:
template<class...A>
void EmplaceAllProcessor()
{
const int size = sizeof...(A);
for (int i = 0; i < size; ++i)
{
EmplaceProcessor<A[i]>(); //how to expand it?????
}
}
and I want to call EmplaceAllProcessor<P1, P2, P3>(); to emplace all types of processor
I want to call EmplaceAllProcessor<P1, P2, P3>(); to emplace all types of processor, How can it be?
In C++11, you can use a dummy array initialization trick:
template<class... A>
void EmplaceAllProcessor() {
int dummy[] = {0, (EmplaceProcessor<A>(), 0)...};
(void)dummy;
}
A comma operator expression is used to invoke EmplaceProcessor<A>() for each type in the pack A..., in order (the order of evaluation of arguments in a braced list is fixed by their order in that list per [dcl.init.list/4]). The first 0 is needed to support an empty pack and (void)dummy; suppresses an unused variable warning.
If I want to return a value, for example: bool EmplaceAllProcessor() to return whether it is succeeded and bool EmplaceAllProcessor() to tell if all the EmplaceProcessor work succeeded, how can it be?
If you don't need short circuiting, it's a simple extension of the above approach:
template<class... A>
bool EmplaceAllProcessor() {
bool res[] = {true, EmplaceProcessor<A>()...};
return std::all_of(std::begin(res), std::end(res), [](bool b) { return b; });
}
If short circuiting is needed, another small trick might be used:
template<class... A>
bool EmplaceAllProcessor() {
bool res = true;
bool dummy[] = {true, (res = res && EmplaceProcessor<A>())...};
(void)dummy;
return res;
}

How to get arguments from Variadics Template

This is a good answer already, however, they passed arbitrary numbers of arguments as the parameters when I tried to do the same with arguments as typename (don't know the exact word) like this for example:
int sum=0;
int func()
{
return sum;
}
template <int first, int ... rest>
int func()
{
sum += first;
return func(rest...); //Error C2660 'func': function does not take 4 arguments
/*
return func<rest...>(); this also doesn't work: Error 'int func(void)': could not deduce template argument for 'first' and 'func': no matching overloaded function found
*/
}
int main()
{
cout << func<1,2,3,4,5>();
}
Why there's an error there? Are there any possible fixes? Also, I'm required to pass the argument as typenames, not parameters.
First of all, the "base" function also needs to be a template.
Then to differentiate the two templates, the parameter-pack template needs to take at least two template arguments.
And lastly, you can solve this without the global sum variable, but using the addition in the return statement.
Putting it all together:
template <int first>
int func()
{
return first;
}
template <int first, int second, int ...rest>
int func()
{
return first + func<second, rest...>();
}
For a simple use case as a sum of values, there are many ways (as in Some programmer dude and P Kramer answers).
I'll show you a variant of the recursive solution (Some programmer dude's answer) that isn't particular useful in this case but can come useful in other circumstances (avoiding code repetition when the ground function make something consistent and equal to the recursive version): instead of a ground case version that receive and manage the last value, a ground version that receive a defaulted type and do nothing (return zero, in the sum case):
template <typename = void>
int func ()
{ return 0; }
so you can write the recursive version as follows, without second
template <int first, int ... rest>
int func ()
{ return first + func<rest...>(); }
The trick is in the recursive call: func<rest...>()
When the ...rest template pack isn't empty, the recursive call func<rest...>() invoke the recursive func().
But when the ...rest template pack is empty, the recursive call func<rest...>() become func<>() that doesn't matches the recursive func() (at least a template integer value is required) but matches (thanks to the default void type) func<void>(), so the ground func() function.
If you want to return the sum of a parameter pack and you're okay with a slightly different syntax, you can use fold expressions from C++17 onward or build up recursion with 'if constexpr'
template<typename... args_t>
static constexpr auto sum(args_t&&... values)
{
return (values + ...);
}
// the sum is evaluated at compile time
static_assert(sum(1, 2, 3, 4) == 10ul);
// or like this without fold
template<int value, int... values>
constexpr int sum2()
{
if constexpr (sizeof...(values) > 0)
{
return value + sum2<values...>();
}
else
{
return value;
}
};
static_assert(sum2<1,2,3,4>() == 10);
Just for curiosity here is the version without recursion:
// C++11
template<typename... Ts>
void dummy(Ts... t)
{
}
template<typename T>
T addValue(T& sum, T value)
{
sum += value;
return 0;
}
template<typename SumType, typename... Ts>
SumType sumVariadicArgs(Ts... t)
{
SumType sum = 0;
dummy(addValue(sum, t)...);
return sum;
}
int main()
{
int sum = sumVariadicArgs<int>(1, 2, 3);
double sum2 = sumVariadicArgs<double>(1.0, 2.0, 3.0);
return 0;
}

How can I pass a free-form predicate as a template function pointer argument?

I am trying to write a function that constructs a bit mask by testing a sequence of objects with a free-form predicate:
template<typename... Args, bool(*TestingFunc)(Object, Args...)>
inline uint32_t getMask(const std::vector<Object>& objects, Args... args)
{
uint32_t mask = 0;
for(size_t i = 0; i < objects.size(); i++)
if(TestingFunc(objects[i], args...))
mask |= 1 << i;
return mask;
}
However, the code above does not work: gcc/clang report a no matching function for call to on each invocation of the function (note: candidate template ignored: invalid explicitly-specified argument for template parameter 'Args' by clang, note: template argument deduction/substitution failed: by gcc; the invocation is getMask<int, pred1>(objects, 10), the predicate is bool pred1(Object, int), see information below).
There are a few well-defined predicates which accept a different number of additional arguments specific to the invocation of getMask(). Each predicate is a simple function. Ideally, the getMask() function should be written so that I could invoke it like this:
/* bool predicate1(Object, size_t, size_t, int, int); */
mask = getMask<predicate1>(objects, a.height(), b.width(), 10, 15);
/* ... */
/* bool predicate2(Object, int, int); */
mask = getMask<predicate2>(objects, x, y);
This is a hot spot in my program; the performance is critical. getMask() and the predicates are marked with inline. The code must be written in C++11 (not C++14 or higher).
So, how getMask() should be written?
I suggest you follow the standard-library and just pass a callable of templated type by value. If it's not a function-pointer, it will be inlined.
template<class... Args, class F>
inline uint32_t getMask(F f, const std::vector<Object>& objects, Args... args)
{
uint32_t mask = 0;
for(size_t i = 0; i < objects.size(); i++)
if(f(objects[i], args...))
mask |= 1 << i;
return mask;
}
And there is a very simple way to transform a function-pointer into a stateless callable, if it is a ctce:
Use std::integral_constant<decltype(p), p>. In C++17, maybe with a helper.
template <auto f>
using to_type = std::integral_constant<decltype(f), f>;
getMask(to_type<checkit>(), somedata, arg0, arg1, arg2);
getMask([](auto... x){ return checkit(x...); }, somedata, arg0, arg1, arg2);
From c++17 you can write
template<auto TestingFunc, typename... Args>
inline uint32_t getMask(const std::vector<Object>& objects, Args... args)
{
uint32_t mask = 0;
for(size_t i = 0; i < objects.size(); i++)
if(TestingFunc(objects[i], args...))
mask |= 1 << i;
return mask;
}
In C++11 you have to a lot more:
First of all, we can not use a template function as we need partial overload for it. So simply take a struct with static function:
struct Object
{
Object( int _val ):val{_val}{}
int val;
};
template <class F, F f> struct caller;
template <class Obj, class... Args, bool (* TestingFunc)(Obj, Args...)>
struct caller<bool (*)(Obj, Args...), TestingFunc>
{
static uint32_t Do( std::vector<Object>& objects, Args... args)
{
uint32_t mask = 0;
for(size_t i = 0; i < objects.size(); i++)
if(TestingFunc(objects[i], args...))
mask |= 1 << i;
return mask;
}
};
bool checkit( const Object& o, int i )
{
return o.val==i;
}
int main()
{
std::vector<Object> objects;
objects.emplace_back(1);
objects.emplace_back(2);
objects.emplace_back(3);
// The ugly thing before c++17 is, that you have to specify the
// function type itself as a template parameter. As said: C++17
// has offered exactly the feature of auto here in template parameter lists
// to allow deduction of type from parameter.
std::cout << caller<decltype(&checkit), checkit>::Do(objects,3) << std::endl;
}
But I believe that the time consuming thing is not the using of a function pointer at all. Before you manually hack a lot of things, measure, measure, measure!

How can implement dynamic function call with C++11 and C++14?

Here is code that I hope explains what I want to achieve.
vector<int> ints;
vector<double> doubles;
struct Arg {
enum Type {
Int,
Double
};
Type type;
int index;
};
template <typename F>
void Call(const F& f, const vector<Arg>& args) {
// TODO:
// - First assert that count and types or arguments of <f> agree with <args>.
// - Call "f(args)"
}
// Example:
void copy(int a, double& b) {
b = a;
}
int test() {
Call(copy, {{Int, 3}, {Double, 2}}); // copy(ints[3], double[2]);
}
Can this be done in C++11 ?
If yes, can the solution be simplified in C++14 ?
I'd do this in two steps.
First, I'd wrap f in an object able to understand Arg-like parameters, and generate errors on failure. For simplicity, suppose we throw.
This is a bit simpler than your Arg to be understood at this layer, so I might translate Arg into MyArg:
struct MyArg {
MyArg(MyArg const&)=default;
MyArg(int* p):i(p){}
MyArg(double* p):d(p){}
MyArg(Arg a):MyArg(
(a.type==Arg::Int)?
MyArg(&ints.at(a.index)):
MyArg(&doubles.at(a.index))
) {}
int * i = nullptr;
double* d = nullptr;
operator int&(){ if (!i) throw std::invalid_argument(""); return *i; }
operator double&(){ if (!d) throw std::invalid_argument(""); return *d; }
};
We map void(*)(Ts...) to std::function<void(MyArg, MyArg, MyArg)> like this:
template<class T0, class T1>using second_type = T1;
template<class...Ts>
std::function<void( second_type<Ts,MyArg>... )> // auto in C++14
my_wrap( void(*f)(Ts...) ) {
return [f](second_type<Ts,MyArg>...args){
f(args...);
};
}
now all that is left is counting function parameter count vs vector size count, and unpacking the std::vector into a function call.
The last looks like:
template<class...Ts, size_t...Is>
void call( std::function<void(Ts...)> f, std::index_sequence<Is...>, std::vector<Arg> const& v ) {
f( v[Is]... );
}
template<class...Ts>
void call( std::function<void(Ts...)> f, std::vector<Arg> const& v ) {
call( std::move(f), std::index_sequence_for<Ts...>{}, v );
}
where index_sequence and index_sequence_for are C++14, but equivalents can be implemented in C++11 (there are many implementations on stack overflow).
So we end up with something like:
template<class...Ts>
void Call( void(*pf)(Ts...), std::vector<Arg> const& v ) {
if (sizeof...(Ts)>v.size())
throw std::invalid_argument("");
auto f = my_wrap(pf);
call( std::move(f), v );
}
Dealing with the throws is left as an exercise, as is handling return values.
This code has not been compiled or tested, but the design should be sound. It only supports calling function pointers -- calling generalized callable objects is tricky, because counting how many arguments they want (of type int or double) is tricky. If you passed in how many arguments they want as a compile-time constant, it is easy. You could also build a magic switch that handles counts up to some constant (10, 20, 1000, whatever), and dispatch the runtime length of the vector into a compile time constant that throws on a argument length mismatch.
This is trickier.
The hard coded pointers sort of suck.
template<class...Ts>struct types{using type=types;};
template<size_t I> using index=std::integral_constant<size_t, I>;
template<class T, class types> struct index_in;
template<class T, class...Ts>
struct index_in<T, types<T,Ts...>>:
index<0>
{};
template<class T, class T0, class...Ts>
struct index_in<T, types<T0,Ts...>>:
index<1+index_in<T, types<Ts...>>{}>
{};
is a package of types.
Here is how we can store buffers:
template<class types>
struct buffers;
template<class...Ts>
struct buffers<types<Ts...>> {
struct raw_view {
void* start = 0;
size_t length = 0;
};
template<class T>
struct view {
T* start = 0;
T* finish = 0;
view(T* s, T* f):start(s), finish(f) {}
size_t size() const { return finish-start; }
T& operator[](size_t i)const{
if (i > size()) throw std::invalid_argument("");
return start[i];
}
}
std::array< raw_view, sizeof...(Ts) > views;
template<size_t I>
using T = std::tuple_element_t< std::tuple<Ts...>, I >;
template<class T>
using I = index_of<T, types<Ts...> >;
template<size_t I>
view<T<I>> get_view() const {
raw_view raw = views[I];
if (raw.length==0) { return {0,0}; }
return { static_cast<T<I>*>(raw.start), raw.length/sizeof(T) };
}
template<class T>
view<T> get_view() const {
return get_view< I<T>{} >();
}
template<class T>
void set_view( view<T> v ) {
raw_view raw{ v.start, v.finish-v.start };
buffers[ I<T>{} ] = raw;
}
};
now we modify Call:
template<class R, class...Args, size_t...Is, class types>
R internal_call( R(*f)(Args...), std::vector<size_t> const& indexes, buffers<types> const& views, std::index_sequence<Is...> ) {
if (sizeof...(Args) != indexes.size()) throw std::invalid_argument("");
return f( views.get_view<Args>()[indexes[Is]]... );
}
template<class R, class...Args, size_t...Is, class types>
R Call( R(*f)(Args...), std::vector<size_t> const& indexes, buffers<types> const& views ) {
return internal_call( f, indexes, views, std::index_sequence_for<Args...>{} );
}
which is C++14, but most components can be translated to C++11.
This uses O(1) array lookups, no maps. You are responsible for populating buffers<types> with the buffers, sort of like this:
buffers<types<double, int>> bufs;
std::vector<double> d = {1.0, 3.14};
std::vector<int> i = {1,2,3};
bufs.set_view<int>( { i.data(), i.data()+i.size() } );
bufs.set_view<double>( { d.data(), d.data()+d.size() } );
parameter mismatch counts and index out of range generate thrown errors. It only works with raw function pointers -- making it work with anything with a fixed (non-template) signature is easy (like a std::function).
Making it work with an object with no signature is harder. Basically instead of relying on the function called for the arguments, you instead build the cross product of the types<Ts...> up to some fixed size. You build a (large) table of which of these are valid calls to the passed in call target (at compile time), then at run time walk that table and determine if the arguments passed in are valid to call the object with.
It gets messy.
This is why my above version simply asks for indexes, and deduces the types from the object being called.
I have a partial solution, using C++11 grammar.
First I make a function overloader accepting arbitrator kinds of arguments
template< typename Function >
struct overloader : Function
{
overloader( Function const& func ) : Function{ func } {}
void operator()(...) const {}
};
template< typename Function >
overloader<Function> make_overloader( Function const& func )
{
return overloader<Function>{ func };
}
then, using the overloader to deceive the compiler into believing the following code ( in switch-case block )is legal:
template <typename F>
void Call( F const& f, const vector<Arg>& args )
{
struct converter
{
Arg const& arg;
operator double&() const
{
assert( arg.type == Double );
return doubles[arg.index];
}
operator int() const
{
assert( arg.type == Int );
return ints[arg.index];
}
converter( Arg const& arg_ ): arg( arg_ ) {}
};
auto function_overloader = make_overloader( f );
unsigned long const arg_length = args.size();
switch (arg_length)
{
case 0 :
function_overloader();
break;
case 1 :
function_overloader( converter{args[0]} );
break;
case 2 :
function_overloader( converter{args[0]}, converter{args[1]} );
break;
case 3 :
function_overloader( converter{args[0]}, converter{args[1]}, converter{args[2]} );
break;
/*
case 4 :
.
.
.
case 127 :
*/
}
}
and test it this way:
void test_1()
{
Call( []( int a, double& b ){ b = a; }, vector<Arg>{ Arg{Int, 3}, Arg{Double, 2} } );
}
void test_2()
{
Call( []( double& b ){ b = 3.14; }, vector<Arg>{ Arg{Double, 0} } );
}
void my_copy( int a, double& b, double& c )
{
b = a;
c = a+a;
}
void test_3()
{
//Call( my_copy, vector<Arg>{ Arg{Int, 4}, Arg{Double, 3}, Arg{Double, 1} } ); // -- this one does not work
Call( []( int a, double& b, double& c ){ my_copy(a, b, c); }, vector<Arg>{ Arg{Int, 4}, Arg{Double, 3}, Arg{Double, 1} } );
}
the problems with this solution is:
g++5.2 accept it, clang++6.1 doesn's
when the argument(s) of function Call is/are not legal, it remains silent
the first argument of function Call cannot be a C-style function, one must wrap that into a lambda object to make it work.
the code is available here - http://melpon.org/wandbox/permlink/CHZxVfLM92h1LACf -- for you to play with.
First of all, you need some mechanism to register your argument values that are later referenced by some type and an index:
class argument_registry
{
public:
// register a range of arguments of type T
template <class T, class Iterator>
void register_range(Iterator begin, Iterator end)
{
// enclose the range in a argument_range object and put it in our map
m_registry.emplace(typeid(T), std::make_unique<argument_range<T, Iterator>>(begin, end));
}
template <class T>
const T& get_argument(size_t idx) const
{
// check if we have a registered range for this type
auto itr = m_registry.find(typeid(T));
if (itr == m_registry.end())
{
throw std::invalid_argument("no arguments registered for this type");
}
// we are certain about the type, so downcast the argument_range object and query the argument
auto range = static_cast<const argument_range_base1<T>*>(itr->second.get());
return range->get(idx);
}
private:
// base class so we can delete the range objects properly
struct argument_range_base0
{
virtual ~argument_range_base0(){};
};
// interface for querying arguments
template <class T>
struct argument_range_base1 : argument_range_base0
{
virtual const T& get(size_t idx) const = 0;
};
// implements get by querying a registered range of arguments
template <class T, class Iterator>
struct argument_range : argument_range_base1<T>
{
argument_range(Iterator begin, Iterator end)
: m_begin{ begin }, m_count{ size_t(std::distance(begin, end)) } {}
const T& get(size_t idx) const override
{
if (idx >= m_count)
throw std::invalid_argument("argument index out of bounds");
auto it = m_begin;
std::advance(it, idx);
return *it;
}
Iterator m_begin;
size_t m_count;
};
std::map<std::type_index, std::unique_ptr<argument_range_base0>> m_registry;
};
Than we define a small type to combine a type and a numerical index for referencing arguments:
typedef std::pair<std::type_index, size_t> argument_index;
// helper function for creating an argument_index
template <class T>
argument_index arg(size_t idx)
{
return{ typeid(T), idx };
}
Finally, we need some template recursion to go through all expected arguments of a function, check if the user passed an argument of matching type and query it from the registry:
// helper trait for call function; called when there are unhandled arguments left
template <bool Done>
struct call_helper
{
template <class FuncRet, class ArgTuple, size_t N, class F, class... ExpandedArgs>
static FuncRet call(F func, const argument_registry& registry, const std::vector<argument_index>& args, ExpandedArgs&&... expanded_args)
{
// check if there are any arguments left in the passed vector
if (N == args.size())
{
throw std::invalid_argument("not enough arguments");
}
// get the type of the Nth argument
typedef typename std::tuple_element<N, ArgTuple>::type arg_type;
// check if the type matches the argument_index from our vector
if (std::type_index{ typeid(arg_type) } != args[N].first)
{
throw std::invalid_argument("argument of wrong type");
}
// query the argument from the registry
auto& arg = registry.get_argument<arg_type>(args[N].second);
// add the argument to the ExpandedArgs pack and continue the recursion with the next argument N + 1
return call_helper<std::tuple_size<ArgTuple>::value == N + 1>::template call<FuncRet, ArgTuple, N + 1>(func, registry, args, std::forward<ExpandedArgs>(expanded_args)..., arg);
}
};
// helper trait for call function; called when there are no arguments left
template <>
struct call_helper<true>
{
template <class FuncRet, class ArgTuple, size_t N, class F, class... ExpandedArgs>
static FuncRet call(F func, const argument_registry&, const std::vector<argument_index>& args, ExpandedArgs&&... expanded_args)
{
if (N != args.size())
{
// unexpected arguments in the vector
throw std::invalid_argument("too many arguments");
}
// call the function with all the expanded arguments
return func(std::forward<ExpandedArgs>(expanded_args)...);
}
};
// call function can only work on "real", plain functions
// as you could never do dynamic overload resolution in C++
template <class Ret, class... Args>
Ret call(Ret(*func)(Args...), const argument_registry& registry, const std::vector<argument_index>& args)
{
// put the argument types into a tuple for easier handling
typedef std::tuple<Args...> arg_tuple;
// start the call_helper recursion
return call_helper<sizeof...(Args) == 0>::template call<Ret, arg_tuple, 0>(func, registry, args);
}
Now you can use it like this:
int foo(int i, const double& d, const char* str)
{
printf("called foo with %d, %f, %s", i, d, str);
// return something
return 0;
}
int main()
{
// prepare some arguments
std::vector<int> ints = { 1, 2, 3 };
std::vector<double> doubles = { 10., 20., 30. };
std::vector<const char*> str = { "alpha", "bravo", "charlie" };
// register them
argument_registry registry;
registry.register_range<int>(ints.begin(), ints.end());
registry.register_range<double>(doubles.begin(), doubles.end());
registry.register_range<const char*>(str.begin(), str.end());
// call function foo with arguments from the registry
return call(foo, registry, {arg<int>(2), arg<double>(0), arg<const char*>(1)});
}
Live example: http://coliru.stacked-crooked.com/a/7350319f88d86c53
This design should be open for any argument type without the need to list all the supported types somewhere.
As noted in the code comments, you cannot call any callable object like this in general, because overload resolution could never be done at runtime in C++.
Instead of clarifying the question, as I requested, you have put it up for bounty. Except if that really is the question, i.e. a homework assignment with no use case, just exercising you on general basic programming, except for that only sheer luck will then give you an answer to your real question: people have to guess about what the problem to be solved, is. That's the reason why nobody's bothered, even with the bounty, to present a solution to the when-obvious-errors-are-corrected exceedingly trivial question that you literally pose, namely how to do exactly this:
vector<int> ints;
vector<double> doubles;
struct Arg {
enum Type {
Int,
Double
};
Type type;
int index;
};
template <typename F>
void Call(const F& f, const vector<Arg>& args) {
// TODO:
// - First assert that count and types or arguments of <f> agree with <args>.
// - Call "f(args)"
}
// Example:
void copy(int a, double& b) {
b = a;
}
int test() {
Call(copy, {{Int, 3}, {Double, 2}}); // copy(ints[3], double[2]);
}
In C++11 and later one very direct way is this:
#include <assert.h>
#include <vector>
using std::vector;
namespace g {
vector<int> ints;
vector<double> doubles;
}
struct Arg {
enum Type {
Int,
Double
};
Type type;
int index;
};
template <typename F>
void Call(const F& f, const vector<Arg>& args)
{
// Was TODO:
// - First assert that count and types or arguments of <f> agree with <args>.
assert( args.size() == 2 );
assert( args[0].type == Arg::Int );
assert( int( g::ints.size() ) > args[0].index );
assert( args[1].type == Arg::Double );
assert( int( g::doubles.size() ) > args[1].index );
// - Call "f(args)"
f( g::ints[args[0].index], g::doubles[args[1].index] );
}
// Example:
void copy(int a, double& b)
{
b = a;
}
auto test()
{
Call(copy, {{Arg::Int, 3}, {Arg::Double, 2}}); // copy(ints[3], double[2]);
}
namespace h {}
auto main()
-> int
{
g::ints = {000, 100, 200, 300};
g::doubles = {1.62, 2.72, 3.14};
test();
assert( g::doubles[2] == 300 );
}
There are no particularly relevant new features in C++14.
I propose this answer following my comment on your question. Seeing that in the requirements, you stated:
Preferably we should not be required to create a struct that
enumerates all the types we want to support.
It could suggests you would like to get rid of the type enumerator in your Arg structure. Then, only the value would be left: then why not using plain C++ types directly, instead of wrapping them ?
It assumes you then know all your argument types at compile time
(This assumption could be very wrong, but I did not see any requirement in your question preventing it. I would be glad to rewrite my answer if you give more details).
The C++11 variadic template solution
Now to the solution, using C++11 variadic templates and perfect forwarding. In a file Call.h:
template <class F, class... T_Args>
void Call(F f, T_Args &&... args)
{
f(std::forward<T_Args>(args)...);
}
Solution properties
This approach seems to satisfy all your explicit requirements:
Works with C++11 standard
Checks that count and types or arguments of f agress with args.
It actually does that early, at compile time, instead of a possible runtime approach.
No need to manually enumerate the accepted types (actually works with any C++ type, be it native or user defined)
Not in your requirement, but nice to have:
Very compact, because it leverage a native features introduced in C++11.
Accepts any number of arguments
The type of the argument and the type of the corresponding f parameter do not have to match exactly, but have to be compatible (exactly like a plain C++ function call).
Example usage
You could test it in a simple main.cpp file:
#include "Call.h"
#include <iostream>
void copy(int a, double& b)
{
b = a;
}
void main()
{
int a = 5;
double b = 6.2;
std::cout << "b before: " << b << std::endl;
Call(copy, a, b);
std::cout << "b now: " << b << std::endl;
}
Which would print:
b before: 6.2
b now: 5

How can I iterate over a packed variadic template argument list?

I'm trying to find a method to iterate over an a pack variadic template argument list.
Now as with all iterations, you need some sort of method of knowing how many arguments are in the packed list, and more importantly how to individually get data from a packed argument list.
The general idea is to iterate over the list, store all data of type int into a vector, store all data of type char* into a vector, and store all data of type float, into a vector. During this process there also needs to be a seperate vector that stores individual chars of what order the arguments went in. As an example, when you push_back(a_float), you're also doing a push_back('f') which is simply storing an individual char to know the order of the data. I could also use a std::string here and simply use +=. The vector was just used as an example.
Now the way the thing is designed is the function itself is constructed using a macro, despite the evil intentions, it's required, as this is an experiment. So it's literally impossible to use a recursive call, since the actual implementation that will house all this will be expanded at compile time; and you cannot recruse a macro.
Despite all possible attempts, I'm still stuck at figuring out how to actually do this. So instead I'm using a more convoluted method that involves constructing a type, and passing that type into the varadic template, expanding it inside a vector and then simply iterating that. However I do not want to have to call the function like:
foo(arg(1), arg(2.0f), arg("three");
So the real question is how can I do without such? To give you guys a better understanding of what the code is actually doing, I've pasted the optimistic approach that I'm currently using.
struct any {
void do_i(int e) { INT = e; }
void do_f(float e) { FLOAT = e; }
void do_s(char* e) { STRING = e; }
int INT;
float FLOAT;
char *STRING;
};
template<typename T> struct get { T operator()(const any& t) { return T(); } };
template<> struct get<int> { int operator()(const any& t) { return t.INT; } };
template<> struct get<float> { float operator()(const any& t) { return t.FLOAT; } };
template<> struct get<char*> { char* operator()(const any& t) { return t.STRING; } };
#define def(name) \
template<typename... T> \
auto name (T... argv) -> any { \
std::initializer_list<any> argin = { argv... }; \
std::vector<any> args = argin;
#define get(name,T) get<T>()(args[name])
#define end }
any arg(int a) { any arg; arg.INT = a; return arg; }
any arg(float f) { any arg; arg.FLOAT = f; return arg; }
any arg(char* s) { any arg; arg.STRING = s; return arg; }
I know this is nasty, however it's a pure experiment, and will not be used in production code. It's purely an idea. It could probably be done a better way. But an example of how you would use this system:
def(foo)
int data = get(0, int);
std::cout << data << std::endl;
end
looks a lot like python. it works too, but the only problem is how you call this function.
Heres a quick example:
foo(arg(1000));
I'm required to construct a new any type, which is highly aesthetic, but thats not to say those macros are not either. Aside the point, I just want to the option of doing:
foo(1000);
I know it can be done, I just need some sort of iteration method, or more importantly some std::get method for packed variadic template argument lists. Which I'm sure can be done.
Also to note, I'm well aware that this is not exactly type friendly, as I'm only supporting int,float,char* and thats okay with me. I'm not requiring anything else, and I'll add checks to use type_traits to validate that the arguments passed are indeed the correct ones to produce a compile time error if data is incorrect. This is purely not an issue. I also don't need support for anything other then these POD types.
It would be highly apprecaited if I could get some constructive help, opposed to arguments about my purely illogical and stupid use of macros and POD only types. I'm well aware of how fragile and broken the code is. This is merley an experiment, and I can later rectify issues with non-POD data, and make it more type-safe and useable.
Thanks for your undertstanding, and I'm looking forward to help.
If your inputs are all of the same type, see OMGtechy's great answer.
For mixed-types we can use fold expressions (introduced in c++17) with a callable (in this case, a lambda):
#include <iostream>
template <class ... Ts>
void Foo (Ts && ... inputs)
{
int i = 0;
([&]
{
// Do things in your "loop" lambda
++i;
std::cout << "input " << i << " = " << inputs << std::endl;
} (), ...);
}
int main ()
{
Foo(2, 3, 4u, (int64_t) 9, 'a', 2.3);
}
Live demo
(Thanks to glades for pointing out in the comments that I didn't need to explicitly pass inputs to the lambda. This made it a lot neater.)
If you need return/breaks in your loop, here are some workarounds:
Demo using try/throw. Note that throws can cause tremendous slow down of this function; so only use this option if speed isn't important, or the break/returns are genuinely exceptional.
Demo using variable/if switches.
These latter answers are honestly a code smell, but shows it's general-purpose.
If you want to wrap arguments to any, you can use the following setup. I also made the any class a bit more usable, although it isn't technically an any class.
#include <vector>
#include <iostream>
struct any {
enum type {Int, Float, String};
any(int e) { m_data.INT = e; m_type = Int;}
any(float e) { m_data.FLOAT = e; m_type = Float;}
any(char* e) { m_data.STRING = e; m_type = String;}
type get_type() const { return m_type; }
int get_int() const { return m_data.INT; }
float get_float() const { return m_data.FLOAT; }
char* get_string() const { return m_data.STRING; }
private:
type m_type;
union {
int INT;
float FLOAT;
char *STRING;
} m_data;
};
template <class ...Args>
void foo_imp(const Args&... args)
{
std::vector<any> vec = {args...};
for (unsigned i = 0; i < vec.size(); ++i) {
switch (vec[i].get_type()) {
case any::Int: std::cout << vec[i].get_int() << '\n'; break;
case any::Float: std::cout << vec[i].get_float() << '\n'; break;
case any::String: std::cout << vec[i].get_string() << '\n'; break;
}
}
}
template <class ...Args>
void foo(Args... args)
{
foo_imp(any(args)...); //pass each arg to any constructor, and call foo_imp with resulting any objects
}
int main()
{
char s[] = "Hello";
foo(1, 3.4f, s);
}
It is however possible to write functions to access the nth argument in a variadic template function and to apply a function to each argument, which might be a better way of doing whatever you want to achieve.
Range based for loops are wonderful:
#include <iostream>
#include <any>
template <typename... Things>
void printVariadic(Things... things) {
for(const auto p : {things...}) {
std::cout << p.type().name() << std::endl;
}
}
int main() {
printVariadic(std::any(42), std::any('?'), std::any("C++"));
}
For me, this produces the output:
i
c
PKc
Here's an example without std::any, which might be easier to understand for those not familiar with std::type_info:
#include <iostream>
template <typename... Things>
void printVariadic(Things... things) {
for(const auto p : {things...}) {
std::cout << p << std::endl;
}
}
int main() {
printVariadic(1, 2, 3);
}
As you might expect, this produces:
1
2
3
You can create a container of it by initializing it with your parameter pack between {}. As long as the type of params... is homogeneous or at least convertable to the element type of your container, it will work. (tested with g++ 4.6.1)
#include <array>
template <class... Params>
void f(Params... params) {
std::array<int, sizeof...(params)> list = {params...};
}
This is not how one would typically use Variadic templates, not at all.
Iterations over a variadic pack is not possible, as per the language rules, so you need to turn toward recursion.
class Stock
{
public:
bool isInt(size_t i) { return _indexes.at(i).first == Int; }
int getInt(size_t i) { assert(isInt(i)); return _ints.at(_indexes.at(i).second); }
// push (a)
template <typename... Args>
void push(int i, Args... args) {
_indexes.push_back(std::make_pair(Int, _ints.size()));
_ints.push_back(i);
this->push(args...);
}
// push (b)
template <typename... Args>
void push(float f, Args... args) {
_indexes.push_back(std::make_pair(Float, _floats.size()));
_floats.push_back(f);
this->push(args...);
}
private:
// push (c)
void push() {}
enum Type { Int, Float; };
typedef size_t Index;
std::vector<std::pair<Type,Index>> _indexes;
std::vector<int> _ints;
std::vector<float> _floats;
};
Example (in action), suppose we have Stock stock;:
stock.push(1, 3.2f, 4, 5, 4.2f); is resolved to (a) as the first argument is an int
this->push(args...) is expanded to this->push(3.2f, 4, 5, 4.2f);, which is resolved to (b) as the first argument is a float
this->push(args...) is expanded to this->push(4, 5, 4.2f);, which is resolved to (a) as the first argument is an int
this->push(args...) is expanded to this->push(5, 4.2f);, which is resolved to (a) as the first argument is an int
this->push(args...) is expanded to this->push(4.2f);, which is resolved to (b) as the first argument is a float
this->push(args...) is expanded to this->push();, which is resolved to (c) as there is no argument, thus ending the recursion
Thus:
Adding another type to handle is as simple as adding another overload, changing the first type (for example, std::string const&)
If a completely different type is passed (say Foo), then no overload can be selected, resulting in a compile-time error.
One caveat: Automatic conversion means a double would select overload (b) and a short would select overload (a). If this is not desired, then SFINAE need be introduced which makes the method slightly more complicated (well, their signatures at least), example:
template <typename T, typename... Args>
typename std::enable_if<is_int<T>::value>::type push(T i, Args... args);
Where is_int would be something like:
template <typename T> struct is_int { static bool constexpr value = false; };
template <> struct is_int<int> { static bool constexpr value = true; };
Another alternative, though, would be to consider a variant type. For example:
typedef boost::variant<int, float, std::string> Variant;
It exists already, with all utilities, it can be stored in a vector, copied, etc... and seems really much like what you need, even though it does not use Variadic Templates.
There is no specific feature for it right now but there are some workarounds you can use.
Using initialization list
One workaround uses the fact, that subexpressions of initialization lists are evaluated in order. int a[] = {get1(), get2()} will execute get1 before executing get2. Maybe fold expressions will come handy for similar techniques in the future. To call do() on every argument, you can do something like this:
template <class... Args>
void doSomething(Args... args) {
int x[] = {args.do()...};
}
However, this will only work when do() is returning an int. You can use the comma operator to support operations which do not return a proper value.
template <class... Args>
void doSomething(Args... args) {
int x[] = {(args.do(), 0)...};
}
To do more complex things, you can put them in another function:
template <class Arg>
void process(Arg arg, int &someOtherData) {
// You can do something with arg here.
}
template <class... Args>
void doSomething(Args... args) {
int someOtherData;
int x[] = {(process(args, someOtherData), 0)...};
}
Note that with generic lambdas (C++14), you can define a function to do this boilerplate for you.
template <class F, class... Args>
void do_for(F f, Args... args) {
int x[] = {(f(args), 0)...};
}
template <class... Args>
void doSomething(Args... args) {
do_for([&](auto arg) {
// You can do something with arg here.
}, args...);
}
Using recursion
Another possibility is to use recursion. Here is a small example that defines a similar function do_for as above.
template <class F, class First, class... Rest>
void do_for(F f, First first, Rest... rest) {
f(first);
do_for(f, rest...);
}
template <class F>
void do_for(F f) {
// Parameter pack is empty.
}
template <class... Args>
void doSomething(Args... args) {
do_for([&](auto arg) {
// You can do something with arg here.
}, args...);
}
You can't iterate, but you can recurse over the list. Check the printf() example on wikipedia: http://en.wikipedia.org/wiki/C++0x#Variadic_templates
You can use multiple variadic templates, this is a bit messy, but it works and is easy to understand.
You simply have a function with the variadic template like so:
template <typename ...ArgsType >
void function(ArgsType... Args){
helperFunction(Args...);
}
And a helper function like so:
void helperFunction() {}
template <typename T, typename ...ArgsType >
void helperFunction(T t, ArgsType... Args) {
//do what you want with t
function(Args...);
}
Now when you call "function" the "helperFunction" will be called and isolate the first passed parameter from the rest, this variable can b used to call another function (or something). Then "function" will be called again and again until there are no more variables left. Note you might have to declare helperClass before "function".
The final code will look like this:
void helperFunction();
template <typename T, typename ...ArgsType >
void helperFunction(T t, ArgsType... Args);
template <typename ...ArgsType >
void function(ArgsType... Args){
helperFunction(Args...);
}
void helperFunction() {}
template <typename T, typename ...ArgsType >
void helperFunction(T t, ArgsType... Args) {
//do what you want with t
function(Args...);
}
The code is not tested.
#include <iostream>
template <typename Fun>
void iteratePack(const Fun&) {}
template <typename Fun, typename Arg, typename ... Args>
void iteratePack(const Fun &fun, Arg &&arg, Args&& ... args)
{
fun(std::forward<Arg>(arg));
iteratePack(fun, std::forward<Args>(args)...);
}
template <typename ... Args>
void test(const Args& ... args)
{
iteratePack([&](auto &arg)
{
std::cout << arg << std::endl;
},
args...);
}
int main()
{
test(20, "hello", 40);
return 0;
}
Output:
20
hello
40