Expand template class list in C++ - c++

I have a template function to do sth with type T
template <class T>
void EmplaceProcessor()
{
T* pProcessor = new T();
m_vItemProcessors.emplace_back(pProcessor);
}
If I want to implement a lot of types to emplace to the vector, just sth like:
template<class...A>
void EmplaceAllProcessor()
{
const int size = sizeof...(A);
for (int i = 0; i < size; ++i)
{
EmplaceProcessor<A[i]>(); //how to expand it?????
}
}
and I want to call EmplaceAllProcessor<P1, P2, P3>(); to emplace all types of processor
I want to call EmplaceAllProcessor<P1, P2, P3>(); to emplace all types of processor, How can it be?

In C++11, you can use a dummy array initialization trick:
template<class... A>
void EmplaceAllProcessor() {
int dummy[] = {0, (EmplaceProcessor<A>(), 0)...};
(void)dummy;
}
A comma operator expression is used to invoke EmplaceProcessor<A>() for each type in the pack A..., in order (the order of evaluation of arguments in a braced list is fixed by their order in that list per [dcl.init.list/4]). The first 0 is needed to support an empty pack and (void)dummy; suppresses an unused variable warning.
If I want to return a value, for example: bool EmplaceAllProcessor() to return whether it is succeeded and bool EmplaceAllProcessor() to tell if all the EmplaceProcessor work succeeded, how can it be?
If you don't need short circuiting, it's a simple extension of the above approach:
template<class... A>
bool EmplaceAllProcessor() {
bool res[] = {true, EmplaceProcessor<A>()...};
return std::all_of(std::begin(res), std::end(res), [](bool b) { return b; });
}
If short circuiting is needed, another small trick might be used:
template<class... A>
bool EmplaceAllProcessor() {
bool res = true;
bool dummy[] = {true, (res = res && EmplaceProcessor<A>())...};
(void)dummy;
return res;
}

Related

Acces parameters in parameter pack in c++ [duplicate]

I am a little confused about how can I read each argument from the tuple by using variadic templates.
Consider this function:
template<class...A> int func(A...args){
int size = sizeof...(A);
.... }
I call it from the main file like:
func(1,10,100,1000);
Now, I don't know how I have to extend the body of func to be able to read each argument separately so that I can, for example, store the arguments in an array.
You have to provide overrides for the functions for consuming the first N (usually one) arguments.
void foo() {
// end condition argument pack is empty
}
template <class First, class... Rest>
void foo(First first, Rest... rest) {
// Do something with first
cout << first << endl;
foo(rest...); // Unpack the arguments for further treatment
}
When you unpack the variadic parameter it finds the next overload.
Example:
foo(42, true, 'a', "hello");
// Calls foo with First = int, and Rest = { bool, char, char* }
// foo(42, Rest = {true, 'a', "hello"}); // not the real syntax
Then next level down we expand the previous Rest and get:
foo(true, Rest = { 'a', "hello"}); // First = bool
And so on until Rest contains no members in which case unpacking it calls foo() (the overload with no arguments).
Storing the pack if different types
If you want to store the entire argument pack you can use an std::tuple
template <class... Pack>
void store_pack(Pack... p) {
std::tuple<Pack...> store( p... );
// do something with store
}
However this seems less useful.
Storing the pack if it's homogeneous
If all the values in the pack are the same type you can store them all like this:
vector<int> reverse(int i) {
vector<int> ret;
ret.push_back(i);
return ret;
}
template <class... R>
vector<int> reverse(int i, R... r) {
vector<int> ret = reverse(r...);
ret.push_back(i);
return ret;
}
int main() {
auto v = reverse(1, 2, 3, 4);
for_each(v.cbegin(), v.cend(),
[](int i ) {
std::cout << i << std::endl;
}
);
}
However this seems even less useful.
If the arguments are all of the same type, you could store the arguments in an array like this (using the type of the first argument for the array):
template <class T, class ...Args>
void foo(const T& first, const Args&... args)
{
T arr[sizeof...(args) + 1] = { first, args...};
}
int main()
{
foo(1);
foo(1, 10, 100, 1000);
}
If the types are different, I suppose you could use boost::any but then I don't see how you are going to find out outside of the given template, which item is of which type (how you are going to use the stored values).
Edit:
If the arguments are all of the same type and you want to store them into a STL container, you could rather use the std::initializer_list<T>. For example, Motti's example of storing values in reverse:
#include <vector>
#include <iostream>
#include <iterator>
template <class Iter>
std::reverse_iterator<Iter> make_reverse_iterator(Iter it)
{
return std::reverse_iterator<Iter>(it);
}
template <class T>
std::vector<T> reverse(std::initializer_list<T> const & init)
{
return std::vector<T>(make_reverse_iterator(init.end()), make_reverse_iterator(init.begin()));
}
int main() {
auto v = reverse({1, 2, 3, 4});
for (auto it = v.begin(); it != v.end(); ++it) {
std::cout << *it << std::endl;
}
}
For sticking into an array if the arguments have different types, you can use also std::common_type<>
template<class ...A> void func(A ...args){
typedef typename std::common_type<A...>::type common;
std::array<common, sizeof...(A)> a = {{ args... }};
}
So for example, func(std::string("Hello"), "folks") creates an array of std::string.
If you need to store arguments in the array you could use array of boost::any as follows:
template<typename... A> int func(const A&... args)
{
boost::any arr[sizeof...(A)] = { args... };
return 0;
}

Getting compile-time constant offsetof of base class in multiple-inheritance

Look at this example:
struct s77 {
char d[77];
};
struct s1 {
char d;
};
struct Foo: s77, s1 {
};
struct Off {
static const int v = std::size_t(static_cast<s1*>(static_cast<Foo*>(nullptr)+1)) - std::size_t(static_cast<Foo*>(nullptr)+1);
};
This code tries to put the offset of s1 in Foo into Off::v. This code compiles with GCC/clang (without any warnings), but fails to compile with VS2015/VS2017 (error C2131: expression did not evaluate to a constant)
Which compiler is correct?
Can I achieve this functionality in a standard conformant way? If it is not possible, is it possible to create a working solution which works with VS2015/VS2017? I'm willing to accept any working solution, even which has undefined behavior according to the standard (but happens to work with VS2015 and VS2017). Off::v must be a compile time constant.
My original problem is this: I have an own implementation of tuple, which is implemented with multiple inheritance (like clang's tuple). I'd like to create a compile-time constant "descriptor" for the tuple, which contains all of its members' offset in the tuple. This descriptor contains a function pointer for each tuple member too. If I'd create this descriptor by hand, it would look like this (for example):
struct Entry {
int offset;
void (*function)(void *member);
};
Entry descriptor[] = {
{ 0, &SomeType1::static_function },
{ 12, &SomeType2::static_function },
{ 20, &SomeType3::static_function }
};
The intention of this is that I could have a general function (which is not a template), which can use this descriptor to call a type-specific function on each tuple member:
void call(void *tuple, const Entry *entries, int n) {
for (int i=0; i<n; i++) {
entries[i].function(static_cast<char *>(tuple)+entries[i].offset);
}
}
(The reason of this solution instead of a templated call function is that call is actually a huge function in my real code, and entry[i].function calls cannot be factored out from it. I'd like to avoid massive code duplication.)
How about something like:
struct Entry {
void* (*data_member_getter)(void*);
void (*function)(void *member);
};
namespace details
{
template <std::size_t I, typename Tuple>
constexpr void* voidPGetter(void* tuple)
{
return &std::get<I>(*reinterpret_cast<Tuple*>(tuple));
}
template <typename Tuple, std::size_t I>
constexpr MakeEntry()
{
using type = std::tuple_element_t<I, Tuple>;
return { &voidPGetter<I, Tuple>, &type::static_function };
}
template <typename Tuple, std::size_t ... Is>
constexpr std::array<Entry, sizeof...(Is)>
ComputeEntryHelper(std::index_sequence<Is...>)
{
return {{MakeEntry<Is, Tuple>()...}};
}
}
template <typename Tuple>
constexpt auto ComputeEntry()
{
constexpr auto size = std::tuple_size<Tuple>::value;
return details::ComputeEntryHelper(std::make_index_sequence<size>());
}
And then
void call(void* tuple, const Entry* entries, int n) {
for (int i = 0; i != n; ++i) {
entries[i].function(entries[i].data_member_getter(tuple));
}
}
So instead of offset, having a function to get the data.

expansion parameters pack (values) from template arguments

there is a trying to expand the pack using usual way with recursion:
template<bool first> int func1(int value = 0) {
return some_func(first, value);
}
template<bool first, bool... args> int func1(int value = 0) {
return func1<args...>(some_func(first, value) );
}
at the last step of compile time recursion, the call of func1 is ambiguous,
first candidate is a first function , it's clear , some concrete specialization in my case:
int func1(int) [with bool first = false]
but second one is
int func1(int) [with bool first = false; bool ...args = {}]
you see that is also correct - empty set of the arguments after first one.
any idea to prevent this ?
thank you
Disambiguate the base case from the recursive case by adding an explicit second parameter:
template<bool first> int func1(int value = 0) {
return some_func(first, value);
}
template<bool first, bool second, bool... args> int func1(int value = 0) {
return func1<second, args...>(some_func(first, value) );
}
Wandbox example
so the finally, I didn't use the recursion, but the only code below.
(actually std::array is not required but more useful from my perspective ,
the expanding can be archived by using C-like array too)
template <bool... args> unsigned long func1() {
std::array<bool, sizeof...(args)> ar{args...};
// the piece specific for my task
std::bitset<sizeof...(args)> bs;
for(std::size_t i = 0; i < ar.size(); ++i) {
bs[i] = ar[i];
}
// ... processing ...
return bs.to_ulong();
}

How can implement dynamic function call with C++11 and C++14?

Here is code that I hope explains what I want to achieve.
vector<int> ints;
vector<double> doubles;
struct Arg {
enum Type {
Int,
Double
};
Type type;
int index;
};
template <typename F>
void Call(const F& f, const vector<Arg>& args) {
// TODO:
// - First assert that count and types or arguments of <f> agree with <args>.
// - Call "f(args)"
}
// Example:
void copy(int a, double& b) {
b = a;
}
int test() {
Call(copy, {{Int, 3}, {Double, 2}}); // copy(ints[3], double[2]);
}
Can this be done in C++11 ?
If yes, can the solution be simplified in C++14 ?
I'd do this in two steps.
First, I'd wrap f in an object able to understand Arg-like parameters, and generate errors on failure. For simplicity, suppose we throw.
This is a bit simpler than your Arg to be understood at this layer, so I might translate Arg into MyArg:
struct MyArg {
MyArg(MyArg const&)=default;
MyArg(int* p):i(p){}
MyArg(double* p):d(p){}
MyArg(Arg a):MyArg(
(a.type==Arg::Int)?
MyArg(&ints.at(a.index)):
MyArg(&doubles.at(a.index))
) {}
int * i = nullptr;
double* d = nullptr;
operator int&(){ if (!i) throw std::invalid_argument(""); return *i; }
operator double&(){ if (!d) throw std::invalid_argument(""); return *d; }
};
We map void(*)(Ts...) to std::function<void(MyArg, MyArg, MyArg)> like this:
template<class T0, class T1>using second_type = T1;
template<class...Ts>
std::function<void( second_type<Ts,MyArg>... )> // auto in C++14
my_wrap( void(*f)(Ts...) ) {
return [f](second_type<Ts,MyArg>...args){
f(args...);
};
}
now all that is left is counting function parameter count vs vector size count, and unpacking the std::vector into a function call.
The last looks like:
template<class...Ts, size_t...Is>
void call( std::function<void(Ts...)> f, std::index_sequence<Is...>, std::vector<Arg> const& v ) {
f( v[Is]... );
}
template<class...Ts>
void call( std::function<void(Ts...)> f, std::vector<Arg> const& v ) {
call( std::move(f), std::index_sequence_for<Ts...>{}, v );
}
where index_sequence and index_sequence_for are C++14, but equivalents can be implemented in C++11 (there are many implementations on stack overflow).
So we end up with something like:
template<class...Ts>
void Call( void(*pf)(Ts...), std::vector<Arg> const& v ) {
if (sizeof...(Ts)>v.size())
throw std::invalid_argument("");
auto f = my_wrap(pf);
call( std::move(f), v );
}
Dealing with the throws is left as an exercise, as is handling return values.
This code has not been compiled or tested, but the design should be sound. It only supports calling function pointers -- calling generalized callable objects is tricky, because counting how many arguments they want (of type int or double) is tricky. If you passed in how many arguments they want as a compile-time constant, it is easy. You could also build a magic switch that handles counts up to some constant (10, 20, 1000, whatever), and dispatch the runtime length of the vector into a compile time constant that throws on a argument length mismatch.
This is trickier.
The hard coded pointers sort of suck.
template<class...Ts>struct types{using type=types;};
template<size_t I> using index=std::integral_constant<size_t, I>;
template<class T, class types> struct index_in;
template<class T, class...Ts>
struct index_in<T, types<T,Ts...>>:
index<0>
{};
template<class T, class T0, class...Ts>
struct index_in<T, types<T0,Ts...>>:
index<1+index_in<T, types<Ts...>>{}>
{};
is a package of types.
Here is how we can store buffers:
template<class types>
struct buffers;
template<class...Ts>
struct buffers<types<Ts...>> {
struct raw_view {
void* start = 0;
size_t length = 0;
};
template<class T>
struct view {
T* start = 0;
T* finish = 0;
view(T* s, T* f):start(s), finish(f) {}
size_t size() const { return finish-start; }
T& operator[](size_t i)const{
if (i > size()) throw std::invalid_argument("");
return start[i];
}
}
std::array< raw_view, sizeof...(Ts) > views;
template<size_t I>
using T = std::tuple_element_t< std::tuple<Ts...>, I >;
template<class T>
using I = index_of<T, types<Ts...> >;
template<size_t I>
view<T<I>> get_view() const {
raw_view raw = views[I];
if (raw.length==0) { return {0,0}; }
return { static_cast<T<I>*>(raw.start), raw.length/sizeof(T) };
}
template<class T>
view<T> get_view() const {
return get_view< I<T>{} >();
}
template<class T>
void set_view( view<T> v ) {
raw_view raw{ v.start, v.finish-v.start };
buffers[ I<T>{} ] = raw;
}
};
now we modify Call:
template<class R, class...Args, size_t...Is, class types>
R internal_call( R(*f)(Args...), std::vector<size_t> const& indexes, buffers<types> const& views, std::index_sequence<Is...> ) {
if (sizeof...(Args) != indexes.size()) throw std::invalid_argument("");
return f( views.get_view<Args>()[indexes[Is]]... );
}
template<class R, class...Args, size_t...Is, class types>
R Call( R(*f)(Args...), std::vector<size_t> const& indexes, buffers<types> const& views ) {
return internal_call( f, indexes, views, std::index_sequence_for<Args...>{} );
}
which is C++14, but most components can be translated to C++11.
This uses O(1) array lookups, no maps. You are responsible for populating buffers<types> with the buffers, sort of like this:
buffers<types<double, int>> bufs;
std::vector<double> d = {1.0, 3.14};
std::vector<int> i = {1,2,3};
bufs.set_view<int>( { i.data(), i.data()+i.size() } );
bufs.set_view<double>( { d.data(), d.data()+d.size() } );
parameter mismatch counts and index out of range generate thrown errors. It only works with raw function pointers -- making it work with anything with a fixed (non-template) signature is easy (like a std::function).
Making it work with an object with no signature is harder. Basically instead of relying on the function called for the arguments, you instead build the cross product of the types<Ts...> up to some fixed size. You build a (large) table of which of these are valid calls to the passed in call target (at compile time), then at run time walk that table and determine if the arguments passed in are valid to call the object with.
It gets messy.
This is why my above version simply asks for indexes, and deduces the types from the object being called.
I have a partial solution, using C++11 grammar.
First I make a function overloader accepting arbitrator kinds of arguments
template< typename Function >
struct overloader : Function
{
overloader( Function const& func ) : Function{ func } {}
void operator()(...) const {}
};
template< typename Function >
overloader<Function> make_overloader( Function const& func )
{
return overloader<Function>{ func };
}
then, using the overloader to deceive the compiler into believing the following code ( in switch-case block )is legal:
template <typename F>
void Call( F const& f, const vector<Arg>& args )
{
struct converter
{
Arg const& arg;
operator double&() const
{
assert( arg.type == Double );
return doubles[arg.index];
}
operator int() const
{
assert( arg.type == Int );
return ints[arg.index];
}
converter( Arg const& arg_ ): arg( arg_ ) {}
};
auto function_overloader = make_overloader( f );
unsigned long const arg_length = args.size();
switch (arg_length)
{
case 0 :
function_overloader();
break;
case 1 :
function_overloader( converter{args[0]} );
break;
case 2 :
function_overloader( converter{args[0]}, converter{args[1]} );
break;
case 3 :
function_overloader( converter{args[0]}, converter{args[1]}, converter{args[2]} );
break;
/*
case 4 :
.
.
.
case 127 :
*/
}
}
and test it this way:
void test_1()
{
Call( []( int a, double& b ){ b = a; }, vector<Arg>{ Arg{Int, 3}, Arg{Double, 2} } );
}
void test_2()
{
Call( []( double& b ){ b = 3.14; }, vector<Arg>{ Arg{Double, 0} } );
}
void my_copy( int a, double& b, double& c )
{
b = a;
c = a+a;
}
void test_3()
{
//Call( my_copy, vector<Arg>{ Arg{Int, 4}, Arg{Double, 3}, Arg{Double, 1} } ); // -- this one does not work
Call( []( int a, double& b, double& c ){ my_copy(a, b, c); }, vector<Arg>{ Arg{Int, 4}, Arg{Double, 3}, Arg{Double, 1} } );
}
the problems with this solution is:
g++5.2 accept it, clang++6.1 doesn's
when the argument(s) of function Call is/are not legal, it remains silent
the first argument of function Call cannot be a C-style function, one must wrap that into a lambda object to make it work.
the code is available here - http://melpon.org/wandbox/permlink/CHZxVfLM92h1LACf -- for you to play with.
First of all, you need some mechanism to register your argument values that are later referenced by some type and an index:
class argument_registry
{
public:
// register a range of arguments of type T
template <class T, class Iterator>
void register_range(Iterator begin, Iterator end)
{
// enclose the range in a argument_range object and put it in our map
m_registry.emplace(typeid(T), std::make_unique<argument_range<T, Iterator>>(begin, end));
}
template <class T>
const T& get_argument(size_t idx) const
{
// check if we have a registered range for this type
auto itr = m_registry.find(typeid(T));
if (itr == m_registry.end())
{
throw std::invalid_argument("no arguments registered for this type");
}
// we are certain about the type, so downcast the argument_range object and query the argument
auto range = static_cast<const argument_range_base1<T>*>(itr->second.get());
return range->get(idx);
}
private:
// base class so we can delete the range objects properly
struct argument_range_base0
{
virtual ~argument_range_base0(){};
};
// interface for querying arguments
template <class T>
struct argument_range_base1 : argument_range_base0
{
virtual const T& get(size_t idx) const = 0;
};
// implements get by querying a registered range of arguments
template <class T, class Iterator>
struct argument_range : argument_range_base1<T>
{
argument_range(Iterator begin, Iterator end)
: m_begin{ begin }, m_count{ size_t(std::distance(begin, end)) } {}
const T& get(size_t idx) const override
{
if (idx >= m_count)
throw std::invalid_argument("argument index out of bounds");
auto it = m_begin;
std::advance(it, idx);
return *it;
}
Iterator m_begin;
size_t m_count;
};
std::map<std::type_index, std::unique_ptr<argument_range_base0>> m_registry;
};
Than we define a small type to combine a type and a numerical index for referencing arguments:
typedef std::pair<std::type_index, size_t> argument_index;
// helper function for creating an argument_index
template <class T>
argument_index arg(size_t idx)
{
return{ typeid(T), idx };
}
Finally, we need some template recursion to go through all expected arguments of a function, check if the user passed an argument of matching type and query it from the registry:
// helper trait for call function; called when there are unhandled arguments left
template <bool Done>
struct call_helper
{
template <class FuncRet, class ArgTuple, size_t N, class F, class... ExpandedArgs>
static FuncRet call(F func, const argument_registry& registry, const std::vector<argument_index>& args, ExpandedArgs&&... expanded_args)
{
// check if there are any arguments left in the passed vector
if (N == args.size())
{
throw std::invalid_argument("not enough arguments");
}
// get the type of the Nth argument
typedef typename std::tuple_element<N, ArgTuple>::type arg_type;
// check if the type matches the argument_index from our vector
if (std::type_index{ typeid(arg_type) } != args[N].first)
{
throw std::invalid_argument("argument of wrong type");
}
// query the argument from the registry
auto& arg = registry.get_argument<arg_type>(args[N].second);
// add the argument to the ExpandedArgs pack and continue the recursion with the next argument N + 1
return call_helper<std::tuple_size<ArgTuple>::value == N + 1>::template call<FuncRet, ArgTuple, N + 1>(func, registry, args, std::forward<ExpandedArgs>(expanded_args)..., arg);
}
};
// helper trait for call function; called when there are no arguments left
template <>
struct call_helper<true>
{
template <class FuncRet, class ArgTuple, size_t N, class F, class... ExpandedArgs>
static FuncRet call(F func, const argument_registry&, const std::vector<argument_index>& args, ExpandedArgs&&... expanded_args)
{
if (N != args.size())
{
// unexpected arguments in the vector
throw std::invalid_argument("too many arguments");
}
// call the function with all the expanded arguments
return func(std::forward<ExpandedArgs>(expanded_args)...);
}
};
// call function can only work on "real", plain functions
// as you could never do dynamic overload resolution in C++
template <class Ret, class... Args>
Ret call(Ret(*func)(Args...), const argument_registry& registry, const std::vector<argument_index>& args)
{
// put the argument types into a tuple for easier handling
typedef std::tuple<Args...> arg_tuple;
// start the call_helper recursion
return call_helper<sizeof...(Args) == 0>::template call<Ret, arg_tuple, 0>(func, registry, args);
}
Now you can use it like this:
int foo(int i, const double& d, const char* str)
{
printf("called foo with %d, %f, %s", i, d, str);
// return something
return 0;
}
int main()
{
// prepare some arguments
std::vector<int> ints = { 1, 2, 3 };
std::vector<double> doubles = { 10., 20., 30. };
std::vector<const char*> str = { "alpha", "bravo", "charlie" };
// register them
argument_registry registry;
registry.register_range<int>(ints.begin(), ints.end());
registry.register_range<double>(doubles.begin(), doubles.end());
registry.register_range<const char*>(str.begin(), str.end());
// call function foo with arguments from the registry
return call(foo, registry, {arg<int>(2), arg<double>(0), arg<const char*>(1)});
}
Live example: http://coliru.stacked-crooked.com/a/7350319f88d86c53
This design should be open for any argument type without the need to list all the supported types somewhere.
As noted in the code comments, you cannot call any callable object like this in general, because overload resolution could never be done at runtime in C++.
Instead of clarifying the question, as I requested, you have put it up for bounty. Except if that really is the question, i.e. a homework assignment with no use case, just exercising you on general basic programming, except for that only sheer luck will then give you an answer to your real question: people have to guess about what the problem to be solved, is. That's the reason why nobody's bothered, even with the bounty, to present a solution to the when-obvious-errors-are-corrected exceedingly trivial question that you literally pose, namely how to do exactly this:
vector<int> ints;
vector<double> doubles;
struct Arg {
enum Type {
Int,
Double
};
Type type;
int index;
};
template <typename F>
void Call(const F& f, const vector<Arg>& args) {
// TODO:
// - First assert that count and types or arguments of <f> agree with <args>.
// - Call "f(args)"
}
// Example:
void copy(int a, double& b) {
b = a;
}
int test() {
Call(copy, {{Int, 3}, {Double, 2}}); // copy(ints[3], double[2]);
}
In C++11 and later one very direct way is this:
#include <assert.h>
#include <vector>
using std::vector;
namespace g {
vector<int> ints;
vector<double> doubles;
}
struct Arg {
enum Type {
Int,
Double
};
Type type;
int index;
};
template <typename F>
void Call(const F& f, const vector<Arg>& args)
{
// Was TODO:
// - First assert that count and types or arguments of <f> agree with <args>.
assert( args.size() == 2 );
assert( args[0].type == Arg::Int );
assert( int( g::ints.size() ) > args[0].index );
assert( args[1].type == Arg::Double );
assert( int( g::doubles.size() ) > args[1].index );
// - Call "f(args)"
f( g::ints[args[0].index], g::doubles[args[1].index] );
}
// Example:
void copy(int a, double& b)
{
b = a;
}
auto test()
{
Call(copy, {{Arg::Int, 3}, {Arg::Double, 2}}); // copy(ints[3], double[2]);
}
namespace h {}
auto main()
-> int
{
g::ints = {000, 100, 200, 300};
g::doubles = {1.62, 2.72, 3.14};
test();
assert( g::doubles[2] == 300 );
}
There are no particularly relevant new features in C++14.
I propose this answer following my comment on your question. Seeing that in the requirements, you stated:
Preferably we should not be required to create a struct that
enumerates all the types we want to support.
It could suggests you would like to get rid of the type enumerator in your Arg structure. Then, only the value would be left: then why not using plain C++ types directly, instead of wrapping them ?
It assumes you then know all your argument types at compile time
(This assumption could be very wrong, but I did not see any requirement in your question preventing it. I would be glad to rewrite my answer if you give more details).
The C++11 variadic template solution
Now to the solution, using C++11 variadic templates and perfect forwarding. In a file Call.h:
template <class F, class... T_Args>
void Call(F f, T_Args &&... args)
{
f(std::forward<T_Args>(args)...);
}
Solution properties
This approach seems to satisfy all your explicit requirements:
Works with C++11 standard
Checks that count and types or arguments of f agress with args.
It actually does that early, at compile time, instead of a possible runtime approach.
No need to manually enumerate the accepted types (actually works with any C++ type, be it native or user defined)
Not in your requirement, but nice to have:
Very compact, because it leverage a native features introduced in C++11.
Accepts any number of arguments
The type of the argument and the type of the corresponding f parameter do not have to match exactly, but have to be compatible (exactly like a plain C++ function call).
Example usage
You could test it in a simple main.cpp file:
#include "Call.h"
#include <iostream>
void copy(int a, double& b)
{
b = a;
}
void main()
{
int a = 5;
double b = 6.2;
std::cout << "b before: " << b << std::endl;
Call(copy, a, b);
std::cout << "b now: " << b << std::endl;
}
Which would print:
b before: 6.2
b now: 5

read arguments from variadic template

I am a little confused about how can I read each argument from the tuple by using variadic templates.
Consider this function:
template<class...A> int func(A...args){
int size = sizeof...(A);
.... }
I call it from the main file like:
func(1,10,100,1000);
Now, I don't know how I have to extend the body of func to be able to read each argument separately so that I can, for example, store the arguments in an array.
You have to provide overrides for the functions for consuming the first N (usually one) arguments.
void foo() {
// end condition argument pack is empty
}
template <class First, class... Rest>
void foo(First first, Rest... rest) {
// Do something with first
cout << first << endl;
foo(rest...); // Unpack the arguments for further treatment
}
When you unpack the variadic parameter it finds the next overload.
Example:
foo(42, true, 'a', "hello");
// Calls foo with First = int, and Rest = { bool, char, char* }
// foo(42, Rest = {true, 'a', "hello"}); // not the real syntax
Then next level down we expand the previous Rest and get:
foo(true, Rest = { 'a', "hello"}); // First = bool
And so on until Rest contains no members in which case unpacking it calls foo() (the overload with no arguments).
Storing the pack if different types
If you want to store the entire argument pack you can use an std::tuple
template <class... Pack>
void store_pack(Pack... p) {
std::tuple<Pack...> store( p... );
// do something with store
}
However this seems less useful.
Storing the pack if it's homogeneous
If all the values in the pack are the same type you can store them all like this:
vector<int> reverse(int i) {
vector<int> ret;
ret.push_back(i);
return ret;
}
template <class... R>
vector<int> reverse(int i, R... r) {
vector<int> ret = reverse(r...);
ret.push_back(i);
return ret;
}
int main() {
auto v = reverse(1, 2, 3, 4);
for_each(v.cbegin(), v.cend(),
[](int i ) {
std::cout << i << std::endl;
}
);
}
However this seems even less useful.
If the arguments are all of the same type, you could store the arguments in an array like this (using the type of the first argument for the array):
template <class T, class ...Args>
void foo(const T& first, const Args&... args)
{
T arr[sizeof...(args) + 1] = { first, args...};
}
int main()
{
foo(1);
foo(1, 10, 100, 1000);
}
If the types are different, I suppose you could use boost::any but then I don't see how you are going to find out outside of the given template, which item is of which type (how you are going to use the stored values).
Edit:
If the arguments are all of the same type and you want to store them into a STL container, you could rather use the std::initializer_list<T>. For example, Motti's example of storing values in reverse:
#include <vector>
#include <iostream>
#include <iterator>
template <class Iter>
std::reverse_iterator<Iter> make_reverse_iterator(Iter it)
{
return std::reverse_iterator<Iter>(it);
}
template <class T>
std::vector<T> reverse(std::initializer_list<T> const & init)
{
return std::vector<T>(make_reverse_iterator(init.end()), make_reverse_iterator(init.begin()));
}
int main() {
auto v = reverse({1, 2, 3, 4});
for (auto it = v.begin(); it != v.end(); ++it) {
std::cout << *it << std::endl;
}
}
For sticking into an array if the arguments have different types, you can use also std::common_type<>
template<class ...A> void func(A ...args){
typedef typename std::common_type<A...>::type common;
std::array<common, sizeof...(A)> a = {{ args... }};
}
So for example, func(std::string("Hello"), "folks") creates an array of std::string.
If you need to store arguments in the array you could use array of boost::any as follows:
template<typename... A> int func(const A&... args)
{
boost::any arr[sizeof...(A)] = { args... };
return 0;
}