Interfacing C++ with Rust - returning CString panics - c++

I am trying to call some functions written in Rust from C++. So far I've been quite successful but I still have one little problem with a CString-related panic during runtime.
The function hello is supposed to take an input string, concatenate it with some other string and return the product.
Here's my fun.rs:
use std::ffi::CString;
#[no_mangle]
pub extern "C" fn add(a: i32, b: i32) -> i32 {
a + b
}
#[no_mangle]
pub extern "C" fn hello(cs: CString) -> CString {
let slice = cs.to_str().unwrap();
let mut s = "Hello, ".to_string();
s = s + slice;
CString::new(&s[..]).unwrap() // runtime error
// CString::new(cs).unwrap() // empty string if no borrow
// cs // works if no borrow, but this is not what I meant
}
Here's main.cpp:
#include <iostream>
using namespace std;
extern "C" {
int add(int a, int b);
const char* hello(const char*x);
}
int main()
{
int a, b;
cin >> a >> b;
cout << add(a,b) << ";" << hello("Pawel") << std::endl;
return 0;
}
And makefile:
rust:
rustc --crate-type=staticlib -C panic=abort fun.rs
cpp:
g++ -c main.cpp
link:
g++ main.o -L . libfun.a -o main -lpthread -ldl -lgcc_s -lc -lm -lrt -lutil
Commands to run executable:
$ make rust
$ make cpp
$ make link
$ ./main
1 2
Executable output:
1 2
thread '<unnamed>' panicked at 'index 18446744073709551615 out of range for slice of length 0', ../src/libcore/slice.rs:549
note: Run with `RUST_BACKTRACE=1` for a backtrace..
Backtrace:
stack backtrace:
1: 0x435d4f - std::sys::backtrace::tracing::imp::write::h46e546df6e4e4fe6
2: 0x44405b - std::panicking::default_hook::_$u7b$$u7b$closure$u7d$$u7d$::h077deeda8b799591
3: 0x443c8f - std::panicking::default_hook::heb8b6fd640571a4f
4: 0x4099fe - std::panicking::rust_panic_with_hook::hd7b83626099d3416
5: 0x4442a1 - std::panicking::begin_panic::h941ea76fc945d925
6: 0x40b74a - std::panicking::begin_panic_fmt::h30280d4dd3f149f5
7: 0x44423e - rust_begin_unwind
8: 0x451d8f - core::panicking::panic_fmt::h2d3cc8234dde51b4
9: 0x452073 - core::slice::slice_index_len_fail::ha4faf37254d75f20
10: 0x40e903 - std::ffi::c_str::CStr::to_str::ha9642252376bab15
11: 0x4048e0 - hello
12: 0x40476f - main
13: 0x7f78ff688f44 - __libc_start_main
14: 0x404678 - <unknown>
15: 0x0 - <unknown>
Any ideas why Rust is panicking?

Rust's CString is not compatible with C's const char *. Here's the definition of CString from the standard library:
pub struct CString {
inner: Box<[u8]>,
}
This Box<[u8]> type is a fat pointer, i.e. a tuple that contains a pointer to the slice's items and the length of the slice as a usize.
What you should do instead is make your Rust function take a *const c_char argument and then call CStr::from_ptr with that pointer as the argument to obtain a CStr value.
As for the return value, there's a bit of a problem: your function allocates a new string and then returns a pointer to it. Again, you should return a *const c_char, which you can do by calling CString::into_raw on your concatenated CString value. But to avoid memory leaks, you must also provide a Rust function that will take back a pointer returned by hello and call CString::from_raw on it, which will recreate the CString. The CString's destructor will then run, freeing the memory.

Related

Problem with calling C++ function that receive command line arguments from Rust

I am trying to call a C++ function from rust. The function suppose to receive the command lines arguments then print it. I used cmake to compile the C++ code to a static archive. I write a build.rs script to referee to the static library location and to make the static linking to it.
// library.cpp
#include "library.h"
#include <iostream>
extern "C"{
void print_args(int argc, char *argv[]){
std::cout << "Have " << argc << " arguments:" << std::endl;
std::cout<<argv<<std::endl;
for (int i = 0; i < argc; ++i) {
std::cout << argv[i] << std::endl;
}
}
}
//library.h
extern "C"{
void print_args(int argc, char *argv[]);
}
//build.rs
pub fn main(){
println!("cargo:rustc-link-search=.../cmake-build-debug"); //library.a directory
println!("cargo:rustc-link-lib=static=stdc++");
println!("cargo:rustc-link-lib=static=library");
}
//main.rs
#[link(name = "library", kind = "static")]
extern "C" {
pub fn print_args(args: c_int, argsv: *const c_char);
}
fn main() {
let args = std::env::args()
.map(|arg| CString::new(arg).unwrap())
.collect::<Vec<CString>>();
let args_len: c_int = args.len() as c_int;
let c_args_ptr = args.as_ptr() as *const c_char;
unsafe { print_args(args_len, c_args_ptr) };
}
When running the rust code by the command cargo run "10" "11" . it is only able to print the first argument which is the name of the program then the error
error: process didn't exit successfully: target\debug\static_library_binding_test.exe 10 11 (exit code: 0xc0000005, STATUS_ACCESS_VIOLATION) appears.
it is the output rust main.rs
Have 3 arguments:
target\debug\static_library_binding_test.exe
error: process didn't exit successfully: `target\debug\static_library_binding_test.exe 10 11` (exit code: 0xc0000005, STATUS_ACCESS_VIOLATION)
So, I need to know how can I pass the command line argument from rust to the c++ function.
The problem is in this code:
let args = std::env::args()
.map(|arg| CString::new(arg).unwrap())
.collect::<Vec<CString>>();
// ...
let c_args_ptr = args.as_ptr() as *const c_char;
That creates a vector of CString objects, which you then proceed to cast into an array of pointers. But a CString consists of two word-sized values, a pointer and a length, and cannot be reinterpreted as a single pointer. To get an actual array of pointers which print_args() expects, you need to collect them into a separate vector:
let args = std::env::args()
.map(|arg| CString::new(arg).unwrap())
.collect::<Vec<CString>>();
let arg_ptrs: Vec<*const c_char> = args.iter().map(|s| s.as_ptr()).collect();
let args_len: c_int = args.len() as c_int;
unsafe { print_args(args_len, arg_ptrs.as_ptr()) };
Note that you'll need to declare print_args as taking pointer to pointer, as it does in C++ (const char *argv[] is just sugar for const char **argv):
#[link(name = "library", kind = "static")]
extern "C" {
pub fn print_args(args: c_int, argsv: *const *const c_char);
}

Mudflap segfault on simple code

I am debugging my homework and I got to the situation where I have this simple code:
/* test.cpp */
#include <cstring>
#include <iostream>
using namespace std;
int main(){
char * x;
x = new char [6];
strcpy(x, "hello");
cout << "<" << x << ">" << endl;
delete [] x;
}
I compile it in terminal and set mudflap options:
$ g++ -fmudflap -fmudflapir -lmudflap -g test.cpp
$ export MUDFLAP_OPTIONS='-viol-segv -print-leaks'
When I run it, the output is:
<hello>
*******
mudflap violation 1 (unregister): time=1398070624.859727 ptr=0x1bcba00 size=0
pc=0x7f8de0cbde08
Nearby object 1: checked region begins 299B after and ends 299B after
mudflap dead object 0x1bcb930: name=`malloc region'
bounds=[0x1bcb8d0,0x1bcb8d5] size=6 area=heap check=0r/1w liveness=1
alloc time=1398070624.859316 pc=0x7f8de0cbd778
/usr/lib/x86_64-linux-gnu/libmudflap.so.0(__mf_register+0x18) [0x7f8de0cbd778]
/usr/lib/x86_64-linux-gnu/libmudflap.so.0(__real_malloc+0xc0) [0x7f8de0cbe280]
/usr/lib/x86_64-linux-gnu/libstdc++.so.6(_Znwm+0x1d) [0x7f8de0a0ef4d]
/usr/lib/x86_64-linux-gnu/libstdc++.so.6(_Znam+0x9) [0x7f8de0a0f049]
dealloc time=1398070624.859615 pc=0x7f8de0cbde08
/usr/lib/x86_64-linux-gnu/libmudflap.so.0(__mf_unregister+0x18) [0x7f8de0cbde08]
/usr/lib/x86_64-linux-gnu/libmudflap.so.0(free+0x8a) [0x7f8de0cbe74a]
./a.out(main+0x72) [0x400cbf]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf5) [0x7f8de0609de5]
number of nearby objects: 1
Unauthorized access to memory (SIGSEGV) (core dumped [memory image saved])
I can't find out where the problem is.

How to access global variable from .so in executable

Please help me, How to access run time varibale's data(att) in stub.exe of att variable that is defined in proc.so,
I have created proc.so and linked with attol.exe and stub.exe and
attol.exe updates 'att' variable and stub.exe is accessing 'att' variable and prints att's value.
I have used below commands to compile the code :
g++ -Wall -c attol.cc proc.cc stub.cc
g++ -shared -dynamiclib -fPIC -o libproc.so proc.o -ldl
g++ -rdynamic -o attol.exe attol.o /users/hbharti/DLOPEN/proc/libproc.so -ldl
g++ -rdynamic -o stub.exe stub.o /users/hbharti/DLOPEN/proc/libproc.so -ldl
When i am running both .exe at different terminal then attol.exe showing 'att:4' value but stub.exe is showing incorrect value,
But stub.exe should display '4' value or updated value.
out put attol.exe:
./attol.exe
Value of att is : 4
Enter the value of att :
out put stub.exe:
./stub.exe
Att : 0
----Complete Code Details----
proc.h:
#ifndef __X_H_INCLUDED__
#define __X_H_INCLUDED__
extern int att;
int fun();
#endif
proc.cc:
#include<iostream.h>
#include "proc.h"
int att;
int fun ()
{
att=4;
return 0;
}
Above code is generating proc.o and then this proc.o will converted into proc.so with below commands:
g++ -Wall -c attol.cc proc.cc stub.cc
g++ -shared -dynamiclib -fPIC -o libproc.so proc.o -ldl
attol.cc:
#include <iostream.h>
#include "proc.h"
using namespace std;
int main ()
{
int ch=1;
fun();
cout<<"\n Value of att is : "<<att;
do{
cout<<"\n Enter the value of att : ";
cin>>att;
cout<<"\n Do you want to continue the : ";
cin>>ch;
}while(ch!=0);
return 0;
}
attol.cc file creates attol.exe by using below command
g++ -rdynamic -o attol.exe attol.o /users/hbharti/DLOPEN/proc/libproc.so -ldl
out put:
Value of att is : 4
Enter the value of att :
stub.cc:
#include <iostream.h>
#include <dlfcn.h>
int main ()
{
void *handle;
char *error;
handle = dlopen ("/users/hbharti/DLOPEN/proc/libproc.so", RTLD_LAZY);
if (!handle) {
fputs (dlerror(), stderr);
exit(1);
}
int *att =(int*) dlsym(handle, "att");
if ((error = dlerror()) != NULL) {
fputs(error, stderr);
exit(1);
}
cout<<"\n Att : " <<*att;
cout<<"\n " ;
dlclose(handle);
}
stub.cc file creates stub.exe by using below command
g++ -rdynamic -o stub.exe stub.o /users/hbharti/DLOPEN/proc/libproc.so -ldl
Judging by the code, there seems to be a fundamental issue with the core-logic.
A shared-object (*.so) is loaded into the executing process's memory address space.
However it is NOT shared across multiple processes. When 2 or more executables attempt to access the same shared-object (*.so), they both get independent copies of it mapped into their respective memory address spaces.
Data (even globals) within a shared-object (*so) are NOT shared across 2 or more executables.

Perl 5.14 source - Sample program failing

Perl 5.14 source - Sample program failing
I'm trying to execute the below program on Linux 64 with libperl.so built with 5.14 source
and i'm getting an abort in the location
Program terminated with signal 11, Segmentation fault.
#0 0x00002abdc0eb2656 in Perl_sv_2mortal () from ./libperl.so
(gdb) where
#0 0x00002abdc0eb2656 in Perl_sv_2mortal () from ./libperl.so
#1 0x00000000004010ed in PerlPower ()
#2 0x0000000000401335 in main ()
(gdb)
My program:
#include <EXTERN.h>
#include <perl.h>
#include <stdio.h>
static PerlInterpreter *my_perl;
static void PerlPower(int a, int b)
{
dSP; /* initialize stack pointer */
ENTER; /* everything created after here */
SAVETMPS; /* ...is a temporary variable. */
PUSHMARK(SP); /* remember the stack pointer */
XPUSHs(sv_2mortal(newSViv(a))); /* push the base onto the stack */
XPUSHs(sv_2mortal(newSViv(b))); /* push the exponent onto stack */
PUTBACK; /* make local stack pointer global */
call_pv("expo", G_SCALAR); /* call the function */
SPAGAIN; /* refresh stack pointer *
/* pop the return value from stack */
printf("%d to the %dth power is %d.\n", a, b, POPi);
PUTBACK;
FREETMPS; /* free that return value */
LEAVE; /* ...and the XPUSHed "mortal" args. */
}
int main(int argc, char **argv, char **env)
{
char *my_argv[] = { "", "power.pl" };
PERL_SYS_INIT3(&argc, &argv, &env);
my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, 2, my_argv, (char **)NULL);
PL_exit_flags |= PERL_EXIT_DESTRUCT_END;
perl_run(my_perl);
PerlPower(3, 4);
/*** Compute 3 ** 4 ***/
perl_destruct(my_perl);
perl_free(my_perl);
PERL_SYS_TERM();
}
power.pl contains the below statements
sub expo {
my ($a, $b) = #_;
return $a ** $b;
}
The above sample C and perl program was taken from the link http://perldoc.perl.org/perlembed.html#Evaluating-a-Perl-statement-from-your-C-program
I'm using the below compiler options
Compiler:
cc='cc', ccflags ='-D_REENTRANT -D_GNU_SOURCE -DTHREADS_HAVE_PIDS -DDEBUGGING -fno-strict-aliasing -pipe -Wdeclaration-after-statement -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64',
optimize='-O2 -fmessage-length=0 -Wall -D_FORTIFY_SOURCE=2 -g -Wall -pipe',
cppflags='-D_REENTRANT -D_GNU_SOURCE -DTHREADS_HAVE_PIDS -DDEBUGGING -fno-strict-aliasing -pipe -Wdeclaration-after-statement'
ccversion='', gccversion='4.1.2 20070115 (prerelease) (SUSE Linux)', gccosandvers=''
intsize=4, longsize=8, ptrsize=8, doublesize=8, byteorder=12345678
d_longlong=define, longlongsize=8, d_longdbl=define, longdblsize=16
ivtype='long', ivsize=8, nvtype='double', nvsize=8, Off_t='off_t', lseeksize=8
alignbytes=8, prototype=define
Can you please help me to narrow down the problem?
I got one too, I got the win32 equivalent Faulting application power.exe, version 0.0.0.0, faulting module perl514.dll, version 0.0.0.0, fault address 0x000c155f.
but I also got an error message :)
$ power.exe
Can't open perl script "power.pl": No such file or directory
After copying power.pl from embed it works as expected
$ cat power.pl
sub expo {
my ($a, $b) = #_;
return $a ** $b;
}
$ power.exe
3 to the 4th power is 81.
The problem was while compiling the source i hadn't specified the new 5.14.2 header files location. I copied both the c and perl file to the folder containing new header file of 5.14.2 and compiling with below options resolved the problem
g++ -o test_perl test_perl.c -I . -L . -g perl -MExtUtils::Embed -e ccopts -e ldopts
LD_LIBRARY_PATH=.:LD_LIBRARY_PATH;export LD_LIBRARY_PATH

print call stack in C or C++

Is there any way to dump the call stack in a running process in C or C++ every time a certain function is called? What I have in mind is something like this:
void foo()
{
print_stack_trace();
// foo's body
return
}
Where print_stack_trace works similarly to caller in Perl.
Or something like this:
int main (void)
{
// will print out debug info every time foo() is called
register_stack_trace_function(foo);
// etc...
}
where register_stack_trace_function puts some sort of internal breakpoint that will cause a stack trace to be printed whenever foo is called.
Does anything like this exist in some standard C library?
I am working on Linux, using GCC.
Background
I have a test run that behaves differently based on some commandline switches that shouldn't affect this behavior. My code has a pseudo-random number generator that I assume is being called differently based on these switches. I want to be able to run the test with each set of switches and see if the random number generator is called differently for each one.
Survey of C/C++ backtrace methods
In this answer I will try to run a single benchmark for a bunch of solutions to see which one runs faster, while also considering other points such as features and portability.
Tool
Time / call
Line number
Function name
C++ demangling
Recompile
Signal safe
As string
C
C++23 <stacktrace> GCC 12.1
7 us
y
y
y
y
n
y
n
Boost 1.74 stacktrace()
5 us
y
y
y
y
n
y
n
Boost 1.74 stacktrace::safe_dump_to
y
n
n
glibc backtrace_symbols_fd
25 us
n
-rdynamic
hacks
y
y
n
y
glibc backtrace_symbols
21 us
n
-rdynamic
hacks
y
n
y
y
GDB scripting
600 us
y
y
y
n
y
n
y
GDB code injection
n
n
y
libunwind
y
libdwfl
4 ms
n
y
libbacktrace
y
Empty cells mean "TODO", not "no".
us: microsecond
Line number: shows actual line number, not just function name + a memory address.
It is usually possible to recover the line number from an address manually after the fact with addr2line. But it is a pain.
Recompile: requires recompiling the program to get your traces. Not recompiling is better!
Signal safe: crucial for the important uses case of "getting a stack trace in case of segfault": How to automatically generate a stacktrace when my program crashes
As string: you get the stack trace as a string in the program itself, as opposed to e.g. just printing to stdout. Usually implies not signal safe, as we don't know the size of the stack trace string size in advance, and therefore requires malloc which is not async signal safe.
C: does it work on a plain-C project (yes, there are still poor souls out there), or is C++ required?
Test setup
All benchmarks will run the following
main.cpp
#include <cstdlib> // strtoul
#include <mystacktrace.h>
void my_func_2(void) {
print_stacktrace(); // line 6
}
void my_func_1(double f) {
(void)f;
my_func_2();
}
void my_func_1(int i) {
(void)i;
my_func_2(); // line 16
}
int main(int argc, char **argv) {
long long unsigned int n;
if (argc > 1) {
n = std::strtoul(argv[1], NULL, 0);
} else {
n = 1;
}
for (long long unsigned int i = 0; i < n; ++i) {
my_func_1(1); // line 27
}
}
This input is designed to test C++ name demangling since my_func_1(int) and my_func_1(float) are necessarily mangled as a way to implement C++ function overload.
We differentiate between the benchmarks by using different -I includes to point to different implementations of print_stacktrace().
Each benchmark is done with a command of form:
time ./stacktrace.out 100000 &>/dev/null
The number of iterations is adjusted for each implementation to produce a total runtime of the order of 1s for that benchmark.
-O0 is used on all tests below unless noted. Stack traces may be irreparably mutilated by certain optimizations. Tail call optimization is a notable example of that: What is tail call optimization? There's nothing we can do about it.
C++23 <stacktrace>
This method was previously mentioned at: https://stackoverflow.com/a/69384663/895245 please consider upvoting that answer.
This is the best solution... it's portable, fast, shows line numbers and demangles C++ symbols. This option will displace every other alternative as soon as it becomes more widely available, with the exception perhaps only of GDB for one-offs without the need or recompilation.
cpp20_stacktrace/mystacktrace.h
#include <iostream>
#include <stacktrace>
void print_stacktrace() {
std::cout << std::stacktrace::current();
}
GCC 12.1.0 from Ubuntu 22.04 does not have support compiled in, so for now I built it from source as per: How to edit and re-build the GCC libstdc++ C++ standard library source? and set --enable-libstdcxx-backtrace=yes, and it worked!
Compile with:
g++ -O0 -ggdb3 -Wall -Wextra -pedantic -std=c++23 -o cpp20_stacktrace.out main.cpp -lstdc++_libbacktrace
Sample output:
0# print_stacktrace() at cpp20_stacktrace/mystacktrace.h:5
1# my_func_2() at /home/ciro/main.cpp:6
2# my_func_1(int) at /home/ciro/main.cpp:16
3# at /home/ciro/main.cpp:27
4# at :0
5# at :0
6# at :0
7#
If we try to use GCC 12.1.0 from Ubuntu 22.04:
sudo apt install g++-12
g++-12 -ggdb3 -O2 -std=c++23 -Wall -Wextra -pedantic -o stacktrace.out stacktrace.cpp -lstdc++_libbacktrace
It fails with:
stacktrace.cpp: In function ‘void my_func_2()’:
stacktrace.cpp:6:23: error: ‘std::stacktrace’ has not been declared
6 | std::cout << std::stacktrace::current();
| ^~~~~~~~~~
Checking build options with:
g++-12 -v
does not show:
--enable-libstdcxx-backtrace=yes
so it wasn't compiled in. Bibliography:
How to use <stacktrace> in GCC trunk?
How can I generate a C++23 stacktrace with GCC 12.1?
It does not fail on the include because the header file:
/usr/include/c++/12
has a feature check:
#if __cplusplus > 202002L && _GLIBCXX_HAVE_STACKTRACE
Boost stacktrace
The library has changed quite a lot around Ubuntu 22.04, so make sure your version matches: Boost stack-trace not showing function names and line numbers
The library is pretty much superseded by the more portable C++23 implementation, but remains a very good option for those that are not at that standard version yet, but already have a "Boost clearance".
Documented at: https://www.boost.org/doc/libs/1_66_0/doc/html/stacktrace/getting_started.html#stacktrace.getting_started.how_to_print_current_call_stack
Tested on Ubuntu 22.04, boost 1.74.0, you should do:
boost_stacktrace/mystacktrace.h
#include <iostream>
#define BOOST_STACKTRACE_LINK
#include <boost/stacktrace.hpp>
void print_stacktrace(void) {
std::cout << boost::stacktrace::stacktrace();
}
On Ubuntu 19.10 boost 1.67.0 to get the line numbers we had to instead:
#include <iostream>
#define BOOST_STACKTRACE_USE_ADDR2LINE
#include <boost/stacktrace.hpp>
void print_stacktrace(void) {
std::cout << boost::stacktrace::stacktrace();
}
which would call out to the addr2line executable and be 1000x slower than the newer Boost version.
The package libboost-stacktrace-dev did not exist at all on Ubuntu 16.04.
The rest of this section considers only the Ubuntu 22.04, boost 1.74 behaviour.
Compile:
sudo apt-get install libboost-stacktrace-dev
g++ -O0 -ggdb3 -Wall -Wextra -pedantic -std=c++11 -o boost_stacktrace.out main.cpp -lboost_stacktrace_backtrace
Sample output:
0# print_stacktrace() at boost_stacktrace/mystacktrace.h:7
1# my_func_2() at /home/ciro/main.cpp:7
2# my_func_1(int) at /home/ciro/main.cpp:17
3# main at /home/ciro/main.cpp:26
4# __libc_start_call_main at ../sysdeps/nptl/libc_start_call_main.h:58
5# __libc_start_main at ../csu/libc-start.c:379
6# _start in ./boost_stacktrace.out
Note that the lines are off by one line. It was suggested in the comments that this is because the following instruction address is being considered.
Boost stacktrace header only
What the BOOST_STACKTRACE_LINK does is to require -lboost_stacktrace_backtrace at link time, so we imagine without that it will just work. This would be a good option for devs who don't have the "Boost clearance" to just add as one offs to debug.
TODO unfortunately it didn't so well for me:
#include <iostream>
#include <boost/stacktrace.hpp>
void print_stacktrace(void) {
std::cout << boost::stacktrace::stacktrace();
}
then:
g++ -O0 -ggdb3 -Wall -Wextra -pedantic -std=c++11 -o boost_stacktrace_header_only.out main.cpp
contains the overly short output:
0# 0x000055FF74AFB601 in ./boost_stacktrace_header_only.out
1# 0x000055FF74AFB66C in ./boost_stacktrace_header_only.out
2# 0x000055FF74AFB69C in ./boost_stacktrace_header_only.out
3# 0x000055FF74AFB6F7 in ./boost_stacktrace_header_only.out
4# 0x00007F0176E7BD90 in /lib/x86_64-linux-gnu/libc.so.6
5# __libc_start_main in /lib/x86_64-linux-gnu/libc.so.6
6# 0x000055FF74AFB4E5 in ./boost_stacktrace_header_only.out
which we can't even use with addr2line. Maybe we have to pass some other define from: https://www.boost.org/doc/libs/1_80_0/doc/html/stacktrace/configuration_and_build.html ?
Tested on Ubuntu 22.04. boost 1.74.
Boost boost::stacktrace::safe_dump_to
This is an interesting alternative to boost::stacktrace::stacktrace as it writes the stack trace in a async signal safe manner to a file, which makes it a good option for automatically dumping stack traces on segfaults which is a super common use case: How to automatically generate a stacktrace when my program crashes
Documented at: https://www.boost.org/doc/libs/1_70_0/doc/html/boost/stacktrace/safe_dump_1_3_38_7_6_2_1_6.html
TODO get it to work. All I see each time is a bunch of random bytes. My attempt:
boost_stacktrace_safe/mystacktrace.h
#include <unistd.h>
#define BOOST_STACKTRACE_LINK
#include <boost/stacktrace.hpp>
void print_stacktrace(void) {
boost::stacktrace::safe_dump_to(0, 1024, STDOUT_FILENO);
}
Sample output:
1[FU1[FU"2[FU}2[FUm1#n10[FU
Changes drastically each time, suggesting it is random memory addresses.
Tested on Ubuntu 22.04, boost 1.74.0.
glibc backtrace
This method is quite portable as it comes with glibc itself. Documented at: https://www.gnu.org/software/libc/manual/html_node/Backtraces.html
Tested on Ubuntu 22.04, glibc 2.35.
glibc_backtrace_symbols_fd/mystacktrace.h
#include <execinfo.h> /* backtrace, backtrace_symbols_fd */
#include <unistd.h> /* STDOUT_FILENO */
void print_stacktrace(void) {
size_t size;
enum Constexpr { MAX_SIZE = 1024 };
void *array[MAX_SIZE];
size = backtrace(array, MAX_SIZE);
backtrace_symbols_fd(array, size, STDOUT_FILENO);
}
Compile with:
g++ -O0 -ggdb3 -Wall -Wextra -pedantic -rdynamic -std=c++11 -o glibc_backtrace_symbols_fd.out main.cpp
Sample output with -rdynamic:
./glibc_backtrace_symbols.out(_Z16print_stacktracev+0x47) [0x556e6a131230]
./glibc_backtrace_symbols.out(_Z9my_func_2v+0xd) [0x556e6a1312d6]
./glibc_backtrace_symbols.out(_Z9my_func_1i+0x14) [0x556e6a131306]
./glibc_backtrace_symbols.out(main+0x58) [0x556e6a131361]
/lib/x86_64-linux-gnu/libc.so.6(+0x29d90) [0x7f175e7bdd90]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80) [0x7f175e7bde40]
./glibc_backtrace_symbols.out(_start+0x25) [0x556e6a131125]
Sample output without -rdynamic:
./glibc_backtrace_symbols_fd_no_rdynamic.out(+0x11f0)[0x556bd40461f0]
./glibc_backtrace_symbols_fd_no_rdynamic.out(+0x123c)[0x556bd404623c]
./glibc_backtrace_symbols_fd_no_rdynamic.out(+0x126c)[0x556bd404626c]
./glibc_backtrace_symbols_fd_no_rdynamic.out(+0x12c7)[0x556bd40462c7]
/lib/x86_64-linux-gnu/libc.so.6(+0x29d90)[0x7f0da2b70d90]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80)[0x7f0da2b70e40]
./glibc_backtrace_symbols_fd_no_rdynamic.out(+0x10e5)[0x556bd40460e5]
To get the line numbers without -rdynamic we can use addr2line:
addr2line -C -e glibc_backtrace_symbols_fd_no_rdynamic.out 0x11f0 0x123c 0x126c 0x12c7
addr2line cannot unfortunately handle the function name + offset in function format of when we are not using -rdynamic, e.g. _Z9my_func_2v+0xd.
GDB can however:
gdb -nh -batch -ex 'info line *(_Z9my_func_2v+0xd)' -ex 'info line *(_Z9my_func_1i+0x14)' glibc_backtrace_symbols.out
Line 7 of "main.cpp" starts at address 0x12d6 <_Z9my_func_2v+13> and ends at 0x12d9 <_Z9my_func_1d>.
Line 17 of "main.cpp" starts at address 0x1306 <_Z9my_func_1i+20> and ends at 0x1309 <main(int, char**)>.
A helper to make it more bearable:
addr2lines() (
perl -ne '$m = s/(.*).*\(([^)]*)\).*/gdb -nh -q -batch -ex "info line *\2" \1/;print $_ if $m' | bash
)
Usage:
xsel -b | addr2lines
glibc backtrace_symbols
A version of backtrace_symbols_fd that returns a string rather than printing to a file handle.
glibc_backtrace_symbols/mystacktrace.h
#include <execinfo.h> /* backtrace, backtrace_symbols */
#include <stdio.h> /* printf */
void print_stacktrace(void) {
char **strings;
size_t i, size;
enum Constexpr { MAX_SIZE = 1024 };
void *array[MAX_SIZE];
size = backtrace(array, MAX_SIZE);
strings = backtrace_symbols(array, size);
for (i = 0; i < size; i++)
printf("%s\n", strings[i]);
free(strings);
}
glibc backtrace with C++ demangling hack 1: -export-dynamic + dladdr
I couldn't find a simple way to automatically demangle C++ symbols with glibc backtrace.
https://panthema.net/2008/0901-stacktrace-demangled/
https://gist.github.com/fmela/591333/c64f4eb86037bb237862a8283df70cdfc25f01d3
Adapted from: https://gist.github.com/fmela/591333/c64f4eb86037bb237862a8283df70cdfc25f01d3
This is a "hack" because it requires changing the ELF with -export-dynamic.
glibc_ldl.cpp
#include <dlfcn.h> // for dladdr
#include <cxxabi.h> // for __cxa_demangle
#include <cstdio>
#include <string>
#include <sstream>
#include <iostream>
// This function produces a stack backtrace with demangled function & method names.
std::string backtrace(int skip = 1)
{
void *callstack[128];
const int nMaxFrames = sizeof(callstack) / sizeof(callstack[0]);
char buf[1024];
int nFrames = backtrace(callstack, nMaxFrames);
char **symbols = backtrace_symbols(callstack, nFrames);
std::ostringstream trace_buf;
for (int i = skip; i < nFrames; i++) {
Dl_info info;
if (dladdr(callstack[i], &info)) {
char *demangled = NULL;
int status;
demangled = abi::__cxa_demangle(info.dli_sname, NULL, 0, &status);
std::snprintf(
buf,
sizeof(buf),
"%-3d %*p %s + %zd\n",
i,
(int)(2 + sizeof(void*) * 2),
callstack[i],
status == 0 ? demangled : info.dli_sname,
(char *)callstack[i] - (char *)info.dli_saddr
);
free(demangled);
} else {
std::snprintf(buf, sizeof(buf), "%-3d %*p\n",
i, (int)(2 + sizeof(void*) * 2), callstack[i]);
}
trace_buf << buf;
std::snprintf(buf, sizeof(buf), "%s\n", symbols[i]);
trace_buf << buf;
}
free(symbols);
if (nFrames == nMaxFrames)
trace_buf << "[truncated]\n";
return trace_buf.str();
}
void my_func_2(void) {
std::cout << backtrace() << std::endl;
}
void my_func_1(double f) {
(void)f;
my_func_2();
}
void my_func_1(int i) {
(void)i;
my_func_2();
}
int main() {
my_func_1(1);
my_func_1(2.0);
}
Compile and run:
g++ -fno-pie -ggdb3 -O0 -no-pie -o glibc_ldl.out -std=c++11 -Wall -Wextra \
-pedantic-errors -fpic glibc_ldl.cpp -export-dynamic -ldl
./glibc_ldl.out
output:
1 0x40130a my_func_2() + 41
./glibc_ldl.out(_Z9my_func_2v+0x29) [0x40130a]
2 0x40139e my_func_1(int) + 16
./glibc_ldl.out(_Z9my_func_1i+0x10) [0x40139e]
3 0x4013b3 main + 18
./glibc_ldl.out(main+0x12) [0x4013b3]
4 0x7f7594552b97 __libc_start_main + 231
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xe7) [0x7f7594552b97]
5 0x400f3a _start + 42
./glibc_ldl.out(_start+0x2a) [0x400f3a]
1 0x40130a my_func_2() + 41
./glibc_ldl.out(_Z9my_func_2v+0x29) [0x40130a]
2 0x40138b my_func_1(double) + 18
./glibc_ldl.out(_Z9my_func_1d+0x12) [0x40138b]
3 0x4013c8 main + 39
./glibc_ldl.out(main+0x27) [0x4013c8]
4 0x7f7594552b97 __libc_start_main + 231
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xe7) [0x7f7594552b97]
5 0x400f3a _start + 42
./glibc_ldl.out(_start+0x2a) [0x400f3a]
Tested on Ubuntu 18.04.
glibc backtrace with C++ demangling hack 2: parse backtrace output
Shown at: https://panthema.net/2008/0901-stacktrace-demangled/
This is a hack because it requires parsing.
TODO get it to compile and show it here.
GDB scripting
We can also do this with GDB without recompiling by using: How to do an specific action when a certain breakpoint is hit in GDB?
We setup an empty backtrace function for our testing:
gdb/mystacktrace.h
void print_stacktrace(void) {}
and then with:
main.gdb
start
break print_stacktrace
commands
silent
backtrace
printf "\n"
continue
end
continue
we can run:
gdb -nh -batch -x main.gdb --args gdb.out
Sample output:
Temporary breakpoint 1 at 0x11a7: file main.cpp, line 21.
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Temporary breakpoint 1, main (argc=1, argv=0x7fffffffc3e8) at main.cpp:21
warning: Source file is more recent than executable.
21 if (argc > 1) {
Breakpoint 2 at 0x555555555151: file gdb/mystacktrace.h, line 1.
#0 print_stacktrace () at gdb/mystacktrace.h:1
#1 0x0000555555555161 in my_func_2 () at main.cpp:6
#2 0x0000555555555191 in my_func_1 (i=1) at main.cpp:16
#3 0x00005555555551ec in main (argc=1, argv=0x7fffffffc3e8) at main.cpp:27
[Inferior 1 (process 165453) exited normally]
The above can be made more usable with the following Bash function:
gdbbt() (
tmpfile=$(mktemp /tmp/gdbbt.XXXXXX)
fn="$1"
shift
printf '%s' "
start
break $fn
commands
silent
backtrace
printf \"\n\"
continue
end
continue
" > "$tmpfile"
gdb -nh -batch -x "$tmpfile" -args "$#"
rm -f "$tmpfile"
)
Usage:
gdbbt print_stacktrace gdb.out 2
I don't know how to make commands with -ex without the temporary file: Problems adding a breakpoint with commands from command line with ex command
Tested in Ubuntu 22.04, GDB 12.0.90.
GDB code injection
TODO this is the dream! It might allow for both compiled-liked speeds, but without the need to recompile! Either:
with compile code + one of the other options, ideally C++23 <stacktrace>: How to call assembly in gdb? Might already be possible. But compile code is mega-quirky so I'm lazy to even try
a built-in dbt command analogous to dprintf dynamic printf: How to do an specific action when a certain breakpoint is hit in GDB?
libunwind
TODO does this have any advantage over glibc backtrace? Very similar output, also requires modifying the build command, but not part of glibc so requires an extra package installation.
Code adapted from: https://eli.thegreenplace.net/2015/programmatic-access-to-the-call-stack-in-c/
main.c
/* This must be on top. */
#define _XOPEN_SOURCE 700
#include <stdio.h>
#include <stdlib.h>
/* Paste this on the file you want to debug. */
#define UNW_LOCAL_ONLY
#include <libunwind.h>
#include <stdio.h>
void print_trace() {
char sym[256];
unw_context_t context;
unw_cursor_t cursor;
unw_getcontext(&context);
unw_init_local(&cursor, &context);
while (unw_step(&cursor) > 0) {
unw_word_t offset, pc;
unw_get_reg(&cursor, UNW_REG_IP, &pc);
if (pc == 0) {
break;
}
printf("0x%lx:", pc);
if (unw_get_proc_name(&cursor, sym, sizeof(sym), &offset) == 0) {
printf(" (%s+0x%lx)\n", sym, offset);
} else {
printf(" -- error: unable to obtain symbol name for this frame\n");
}
}
puts("");
}
void my_func_3(void) {
print_trace();
}
void my_func_2(void) {
my_func_3();
}
void my_func_1(void) {
my_func_3();
}
int main(void) {
my_func_1(); /* line 46 */
my_func_2(); /* line 47 */
return 0;
}
Compile and run:
sudo apt-get install libunwind-dev
gcc -fno-pie -ggdb3 -O3 -no-pie -o main.out -std=c99 \
-Wall -Wextra -pedantic-errors main.c -lunwind
Either #define _XOPEN_SOURCE 700 must be on top, or we must use -std=gnu99:
Is the type `stack_t` no longer defined on linux?
Glibc - error in ucontext.h, but only with -std=c11
Run:
./main.out
Output:
0x4007db: (main+0xb)
0x7f4ff50aa830: (__libc_start_main+0xf0)
0x400819: (_start+0x29)
0x4007e2: (main+0x12)
0x7f4ff50aa830: (__libc_start_main+0xf0)
0x400819: (_start+0x29)
and:
addr2line -e main.out 0x4007db 0x4007e2
gives:
/home/ciro/main.c:34
/home/ciro/main.c:49
With -O0:
0x4009cf: (my_func_3+0xe)
0x4009e7: (my_func_1+0x9)
0x4009f3: (main+0x9)
0x7f7b84ad7830: (__libc_start_main+0xf0)
0x4007d9: (_start+0x29)
0x4009cf: (my_func_3+0xe)
0x4009db: (my_func_2+0x9)
0x4009f8: (main+0xe)
0x7f7b84ad7830: (__libc_start_main+0xf0)
0x4007d9: (_start+0x29)
and:
addr2line -e main.out 0x4009f3 0x4009f8
gives:
/home/ciro/main.c:47
/home/ciro/main.c:48
Tested on Ubuntu 16.04, GCC 6.4.0, libunwind 1.1.
libunwind with C++ name demangling
Code adapted from: https://eli.thegreenplace.net/2015/programmatic-access-to-the-call-stack-in-c/
unwind.cpp
#define UNW_LOCAL_ONLY
#include <cxxabi.h>
#include <libunwind.h>
#include <cstdio>
#include <cstdlib>
#include <iostream>
void backtrace() {
unw_cursor_t cursor;
unw_context_t context;
// Initialize cursor to current frame for local unwinding.
unw_getcontext(&context);
unw_init_local(&cursor, &context);
// Unwind frames one by one, going up the frame stack.
while (unw_step(&cursor) > 0) {
unw_word_t offset, pc;
unw_get_reg(&cursor, UNW_REG_IP, &pc);
if (pc == 0) {
break;
}
std::printf("0x%lx:", pc);
char sym[256];
if (unw_get_proc_name(&cursor, sym, sizeof(sym), &offset) == 0) {
char* nameptr = sym;
int status;
char* demangled = abi::__cxa_demangle(sym, nullptr, nullptr, &status);
if (status == 0) {
nameptr = demangled;
}
std::printf(" (%s+0x%lx)\n", nameptr, offset);
std::free(demangled);
} else {
std::printf(" -- error: unable to obtain symbol name for this frame\n");
}
}
}
void my_func_2(void) {
backtrace();
std::cout << std::endl; // line 43
}
void my_func_1(double f) {
(void)f;
my_func_2();
}
void my_func_1(int i) {
(void)i;
my_func_2();
} // line 54
int main() {
my_func_1(1);
my_func_1(2.0);
}
Compile and run:
sudo apt-get install libunwind-dev
g++ -fno-pie -ggdb3 -O0 -no-pie -o unwind.out -std=c++11 \
-Wall -Wextra -pedantic-errors unwind.cpp -lunwind -pthread
./unwind.out
Output:
0x400c80: (my_func_2()+0x9)
0x400cb7: (my_func_1(int)+0x10)
0x400ccc: (main+0x12)
0x7f4c68926b97: (__libc_start_main+0xe7)
0x400a3a: (_start+0x2a)
0x400c80: (my_func_2()+0x9)
0x400ca4: (my_func_1(double)+0x12)
0x400ce1: (main+0x27)
0x7f4c68926b97: (__libc_start_main+0xe7)
0x400a3a: (_start+0x2a)
and then we can find the lines of my_func_2 and my_func_1(int) with:
addr2line -e unwind.out 0x400c80 0x400cb7
which gives:
/home/ciro/test/unwind.cpp:43
/home/ciro/test/unwind.cpp:54
TODO: why are the lines off by one?
Tested on Ubuntu 18.04, GCC 7.4.0, libunwind 1.2.1.
Linux kernel
How to print the current thread stack trace inside the Linux kernel?
libdwfl
This was originally mentioned at: https://stackoverflow.com/a/60713161/895245 and it might be the best method, but I have to benchmark a bit more, but please go upvote that answer.
TODO: I tried to minimize the code in that answer, which was working, to a single function, but it is segfaulting, let me know if anyone can find why.
dwfl.cpp: answer reached 30k chars and this was the easiest cut: https://gist.github.com/cirosantilli/f1dd3ee5d324b9d24e40f855723544ac
Compile and run:
sudo apt install libdw-dev libunwind-dev
g++ -fno-pie -ggdb3 -O0 -no-pie -o dwfl.out -std=c++11 -Wall -Wextra -pedantic-errors dwfl.cpp -ldw -lunwind
./dwfl.out
We also need libunwind as that makes results more correct. If you do without it, it runs, but you will see that some of the lines are a bit wrong.
Output:
0: 0x402b72 stacktrace[abi:cxx11]() at /home/ciro/test/dwfl.cpp:65
1: 0x402cda my_func_2() at /home/ciro/test/dwfl.cpp:100
2: 0x402d76 my_func_1(int) at /home/ciro/test/dwfl.cpp:111
3: 0x402dd1 main at /home/ciro/test/dwfl.cpp:122
4: 0x7ff227ea0d8f __libc_start_call_main at ../sysdeps/nptl/libc_start_call_main.h:58
5: 0x7ff227ea0e3f __libc_start_main##GLIBC_2.34 at ../csu/libc-start.c:392
6: 0x402534 _start at ../csu/libc-start.c:-1
0: 0x402b72 stacktrace[abi:cxx11]() at /home/ciro/test/dwfl.cpp:65
1: 0x402cda my_func_2() at /home/ciro/test/dwfl.cpp:100
2: 0x402d5f my_func_1(double) at /home/ciro/test/dwfl.cpp:106
3: 0x402de2 main at /home/ciro/test/dwfl.cpp:123
4: 0x7ff227ea0d8f __libc_start_call_main at ../sysdeps/nptl/libc_start_call_main.h:58
5: 0x7ff227ea0e3f __libc_start_main##GLIBC_2.34 at ../csu/libc-start.c:392
6: 0x402534 _start at ../csu/libc-start.c:-1
Benchmark run:
g++ -fno-pie -ggdb3 -O3 -no-pie -o dwfl.out -std=c++11 -Wall -Wextra -pedantic-errors dwfl.cpp -ldw
time ./dwfl.out 1000 >/dev/null
Output:
real 0m3.751s
user 0m2.822s
sys 0m0.928s
So we see that this method is 10x faster than Boost's stacktrace, and might therefore be applicable to more use cases.
Tested in Ubuntu 22.04 amd64, libdw-dev 0.186, libunwind 1.3.2.
libbacktrace
https://github.com/ianlancetaylor/libbacktrace
Considering the harcore library author, it is worth trying this out, maybe it is The One. TODO check it out.
A C library that may be linked into a C/C++ program to produce symbolic backtraces
As of October 2020, libbacktrace supports ELF, PE/COFF, Mach-O, and XCOFF executables with DWARF debugging information. In other words, it supports GNU/Linux, *BSD, macOS, Windows, and AIX. The library is written to make it straightforward to add support for other object file and debugging formats.
The library relies on the C++ unwind API defined at https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html This API is provided by GCC and clang.
See also
How can one grab a stack trace in C?
How to make backtrace()/backtrace_symbols() print the function names?
Is there a portable/standard-compliant way to get filenames and linenumbers in a stack trace?
Best way to invoke gdb from inside program to print its stacktrace?
automatic stack trace on failure:
on C++ exception: C++ display stack trace on exception
generic: How to automatically generate a stacktrace when my program crashes
For a linux-only solution you can use backtrace(3) that simply returns an array of void * (in fact each of these point to the return address from the corresponding stack frame). To translate these to something of use, there's backtrace_symbols(3).
Pay attention to the notes section in backtrace(3):
The symbol names may be unavailable
without the use of special linker
options.
For systems using the GNU linker, it is necessary to use the
-rdynamic linker
option. Note that names of "static" functions are not exposed,
and won't be
available in the backtrace.
In C++23, there will be <stacktrace>, and then you can do:
#include <stacktrace>
/* ... */
std::cout << std::stacktrace::current();
Further details:
  • https://en.cppreference.com/w/cpp/header/stacktrace
  • https://en.cppreference.com/w/cpp/utility/basic_stacktrace/operator_ltlt
Is there any way to dump the call stack in a running process in C or C++ every time a certain function is called?
You can use a macro function instead of return statement in the specific function.
For example, instead of using return,
int foo(...)
{
if (error happened)
return -1;
... do something ...
return 0
}
You can use a macro function.
#include "c-callstack.h"
int foo(...)
{
if (error happened)
NL_RETURN(-1);
... do something ...
NL_RETURN(0);
}
Whenever an error happens in a function, you will see Java-style call stack as shown below.
Error(code:-1) at : so_topless_ranking_server (sample.c:23)
Error(code:-1) at : nanolat_database (sample.c:31)
Error(code:-1) at : nanolat_message_queue (sample.c:39)
Error(code:-1) at : main (sample.c:47)
Full source code is available here.
c-callstack at https://github.com/Nanolat
Linux specific, TLDR:
backtrace in glibc produces accurate stacktraces only when -lunwind is linked (undocumented platform-specific feature).
To output function name, source file and line number use #include <elfutils/libdwfl.h> (this library is documented only in its header file). backtrace_symbols and backtrace_symbolsd_fd are least informative.
On modern Linux your can get the stacktrace addresses using function backtrace. The undocumented way to make backtrace produce more accurate addresses on popular platforms is to link with -lunwind (libunwind-dev on Ubuntu 18.04) (see the example output below). backtrace uses function _Unwind_Backtrace and by default the latter comes from libgcc_s.so.1 and that implementation is most portable. When -lunwind is linked it provides a more accurate version of _Unwind_Backtrace but this library is less portable (see supported architectures in libunwind/src).
Unfortunately, the companion backtrace_symbolsd and backtrace_symbols_fd functions have not been able to resolve the stacktrace addresses to function names with source file name and line number for probably a decade now (see the example output below).
However, there is another method to resolve addresses to symbols and it produces the most useful traces with function name, source file and line number. The method is to #include <elfutils/libdwfl.h>and link with -ldw (libdw-dev on Ubuntu 18.04).
Working C++ example (test.cc):
#include <stdexcept>
#include <iostream>
#include <cassert>
#include <cstdlib>
#include <string>
#include <boost/core/demangle.hpp>
#include <execinfo.h>
#include <elfutils/libdwfl.h>
struct DebugInfoSession {
Dwfl_Callbacks callbacks = {};
char* debuginfo_path = nullptr;
Dwfl* dwfl = nullptr;
DebugInfoSession() {
callbacks.find_elf = dwfl_linux_proc_find_elf;
callbacks.find_debuginfo = dwfl_standard_find_debuginfo;
callbacks.debuginfo_path = &debuginfo_path;
dwfl = dwfl_begin(&callbacks);
assert(dwfl);
int r;
r = dwfl_linux_proc_report(dwfl, getpid());
assert(!r);
r = dwfl_report_end(dwfl, nullptr, nullptr);
assert(!r);
static_cast<void>(r);
}
~DebugInfoSession() {
dwfl_end(dwfl);
}
DebugInfoSession(DebugInfoSession const&) = delete;
DebugInfoSession& operator=(DebugInfoSession const&) = delete;
};
struct DebugInfo {
void* ip;
std::string function;
char const* file;
int line;
DebugInfo(DebugInfoSession const& dis, void* ip)
: ip(ip)
, file()
, line(-1)
{
// Get function name.
uintptr_t ip2 = reinterpret_cast<uintptr_t>(ip);
Dwfl_Module* module = dwfl_addrmodule(dis.dwfl, ip2);
char const* name = dwfl_module_addrname(module, ip2);
function = name ? boost::core::demangle(name) : "<unknown>";
// Get source filename and line number.
if(Dwfl_Line* dwfl_line = dwfl_module_getsrc(module, ip2)) {
Dwarf_Addr addr;
file = dwfl_lineinfo(dwfl_line, &addr, &line, nullptr, nullptr, nullptr);
}
}
};
std::ostream& operator<<(std::ostream& s, DebugInfo const& di) {
s << di.ip << ' ' << di.function;
if(di.file)
s << " at " << di.file << ':' << di.line;
return s;
}
void terminate_with_stacktrace() {
void* stack[512];
int stack_size = ::backtrace(stack, sizeof stack / sizeof *stack);
// Print the exception info, if any.
if(auto ex = std::current_exception()) {
try {
std::rethrow_exception(ex);
}
catch(std::exception& e) {
std::cerr << "Fatal exception " << boost::core::demangle(typeid(e).name()) << ": " << e.what() << ".\n";
}
catch(...) {
std::cerr << "Fatal unknown exception.\n";
}
}
DebugInfoSession dis;
std::cerr << "Stacktrace of " << stack_size << " frames:\n";
for(int i = 0; i < stack_size; ++i) {
std::cerr << i << ": " << DebugInfo(dis, stack[i]) << '\n';
}
std::cerr.flush();
std::_Exit(EXIT_FAILURE);
}
int main() {
std::set_terminate(terminate_with_stacktrace);
throw std::runtime_error("test exception");
}
Compiled on Ubuntu 18.04.4 LTS with gcc-8.3:
g++ -o test.o -c -m{arch,tune}=native -std=gnu++17 -W{all,extra,error} -g -Og -fstack-protector-all test.cc
g++ -o test -g test.o -ldw -lunwind
Outputs:
Fatal exception std::runtime_error: test exception.
Stacktrace of 7 frames:
0: 0x55f3837c1a8c terminate_with_stacktrace() at /home/max/src/test/test.cc:76
1: 0x7fbc1c845ae5 <unknown>
2: 0x7fbc1c845b20 std::terminate()
3: 0x7fbc1c845d53 __cxa_throw
4: 0x55f3837c1a43 main at /home/max/src/test/test.cc:103
5: 0x7fbc1c3e3b96 __libc_start_main at ../csu/libc-start.c:310
6: 0x55f3837c17e9 _start
When no -lunwind is linked, it produces a less accurate stacktrace:
0: 0x5591dd9d1a4d terminate_with_stacktrace() at /home/max/src/test/test.cc:76
1: 0x7f3c18ad6ae6 <unknown>
2: 0x7f3c18ad6b21 <unknown>
3: 0x7f3c18ad6d54 <unknown>
4: 0x5591dd9d1a04 main at /home/max/src/test/test.cc:103
5: 0x7f3c1845cb97 __libc_start_main at ../csu/libc-start.c:344
6: 0x5591dd9d17aa _start
For comparison, backtrace_symbols_fd output for the same stacktrace is least informative:
/home/max/src/test/debug/gcc/test(+0x192f)[0x5601c5a2092f]
/usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0x92ae5)[0x7f95184f5ae5]
/usr/lib/x86_64-linux-gnu/libstdc++.so.6(_ZSt9terminatev+0x10)[0x7f95184f5b20]
/usr/lib/x86_64-linux-gnu/libstdc++.so.6(__cxa_throw+0x43)[0x7f95184f5d53]
/home/max/src/test/debug/gcc/test(+0x1ae7)[0x5601c5a20ae7]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xe6)[0x7f9518093b96]
/home/max/src/test/debug/gcc/test(+0x1849)[0x5601c5a20849]
In a production version (as well as C language version) you may like to make this code extra robust by replacing boost::core::demangle, std::string and std::cout with their underlying calls.
You can also override __cxa_throw to capture the stacktrace when an exception is thrown and print it when the exception is caught. By the time it enters catch block the stack has been unwound, so it is too late to call backtrace, and this is why the stack must be captured on throw which is implemented by function __cxa_throw. Note that in a multi-threaded program __cxa_throw can be called simultaneously by multiple threads, so that if it captures the stacktrace into a global array that must be thread_local.
You can also make the stack trace printing function async-signal safe, so that you can invoke it directly from your SIGSEGV, SIGBUS signal handlers (which should use their own stacks for robustness). Obtaining function name, source file and line number using libdwfl from a signal handler may fail because it is not async-signal safe or if the address space of the process has been substantially corrupted, but in practice it succeeds 99% of the time (I haven't seen it fail).
To summarize, a complete production-ready library for automatic stacktrace output should:
Capture the stacktrace on throw into thread-specific storage.
Automatically print the stacktrace on unhandled exceptions.
Print the stacktrace in async-signal-safe manner.
Provide a robust signal handler function which uses its own stack that prints the stacktrace in a async-signal-safe manner. The user can install this function as a signal handler for SIGSEGV, SIGBUS, SIGFPE, etc..
The signal handler may as well print the values of all CPU registers at the point of the fault from ucontext_t signal function argument (may be excluding vector registers), a-la Linux kernel oops log messages.
Another answer to an old thread.
When I need to do this, I usually just use system() and pstack
So something like this:
#include <sys/types.h>
#include <unistd.h>
#include <string>
#include <sstream>
#include <cstdlib>
void f()
{
pid_t myPid = getpid();
std::string pstackCommand = "pstack ";
std::stringstream ss;
ss << myPid;
pstackCommand += ss.str();
system(pstackCommand.c_str());
}
void g()
{
f();
}
void h()
{
g();
}
int main()
{
h();
}
This outputs
#0 0x00002aaaab62d61e in waitpid () from /lib64/libc.so.6
#1 0x00002aaaab5bf609 in do_system () from /lib64/libc.so.6
#2 0x0000000000400c3c in f() ()
#3 0x0000000000400cc5 in g() ()
#4 0x0000000000400cd1 in h() ()
#5 0x0000000000400cdd in main ()
This should work on Linux, FreeBSD and Solaris. I don't think that macOS has pstack or a simple equivalent, but this thread seems to have an alternative.
If you are using C, then you will need to use C string functions.
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
void f()
{
pid_t myPid = getpid();
/*
length of command 7 for 'pstack ', 7 for the PID, 1 for nul
*/
char pstackCommand[7+7+1];
sprintf(pstackCommand, "pstack %d", (int)myPid);
system(pstackCommand);
}
I've used 7 for the max number of digits in the PID, based on this post.
There is no standardized way to do that. For windows the functionality is provided in the DbgHelp library
You can use the Boost libraries to print the current callstack.
#include <boost/stacktrace.hpp>
// ... somewhere inside the `bar(int)` function that is called recursively:
std::cout << boost::stacktrace::stacktrace();
Man here: https://www.boost.org/doc/libs/1_65_1/doc/html/stacktrace.html
I know this thread is old, but I think it can be useful for other people. If you are using gcc, you can use its instrument features (-finstrument-functions option) to log any function call (entry and exit). Have a look at this for more information: http://hacktalks.blogspot.fr/2013/08/gcc-instrument-functions.html
You can thus for instance push and pop every calls into a stack, and when you want to print it, you just look at what you have in your stack.
I've tested it, it works perfectly and is very handy
UPDATE: you can also find information about the -finstrument-functions compile option in the GCC doc concerning the Instrumentation options: https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
You can implement the functionality yourself:
Use a global (string)stack and at start of each function push the function name and such other values (eg parameters) onto this stack; at exit of function pop it again.
Write a function that will printout the stack content when it is called, and use this in the function where you want to see the callstack.
This may sound like a lot of work but is quite useful.
Of course the next question is: will this be enough ?
The main disadvantage of stack-traces is that why you have the precise function being called you do not have anything else, like the value of its arguments, which is very useful for debugging.
If you have access to gcc and gdb, I would suggest using assert to check for a specific condition, and produce a memory dump if it is not met. Of course this means the process will stop, but you'll have a full fledged report instead of a mere stack-trace.
If you wish for a less obtrusive way, you can always use logging. There are very efficient logging facilities out there, like Pantheios for example. Which once again could give you a much more accurate image of what is going on.
You can use Poppy for this. It is normally used to gather the stack trace during a crash but it can also output it for a running program as well.
Now here's the good part: it can output the actual parameter values for each function on the stack, and even local variables, loop counters, etc.
You can use the GNU profiler. It shows the call-graph as well! the command is gprof and you need to compile your code with some option.
Is there any way to dump the call stack in a running process in C or C++ every time a certain function is called?
No there is not, although platform-dependent solutions might exist.