GLSL shader: occlusion order and culling - opengl

I have a GLSL shader that draws a 3D curve given a set of Bezier curves (3d coordinates of points). The drawing itself is done as I want except the occlusion does not work correctly, i.e., under certain viewpoints, the curve that is supposed to be in the very front appears to be still occluded, and reverse: the part of a curve that is supposed to be occluded is still visible.
To illustrate, here are couple examples of screenshots:
Colored curve is closer to the camera, so it is rendered correctly here.
Colored curve is supposed to be behind the gray curve, yet it is rendered on top.
I'm new to GLSL and might not know the right term for this kind of effect, but I assume it is occlusion culling (update: it actually indicates the problem with depth buffer, terminology confusion!).
My question is: How do I deal with occlusions when using GLSL shaders?
Do I have to treat them inside the shader program, or somewhere else?
Regarding my code, it's a bit long (plus I use OpenGL wrapper library), but the main steps are:
In the vertex shader, I calculate gl_Position = ModelViewProjectionMatrix * Vertex; and pass further the color info to the geometry shader.
In the geometry shader, I take 4 control points (lines_adjacency) and their corresponding colors and produce a triangle strip that follows a Bezier curve (I use some basic color interpolation between the Bezier segments).
The fragment shader is also simple: gl_FragColor = VertexIn.mColor;.
Regarding the OpenGL settings, I enable GL_DEPTH_TEST, but it does not seem to have anything of what I need. Also if I put any other non-shader geometry on the scene (e.g. quad), the curves are always rendered on the top of it regardless the viewpoint.
Any insights and tips on how to resolve it and why it is happening are appreciated.
Update solution
So, the initial problem, as I learned, was not about finding the culling algorithm, but that I do not handle the calculation of the z-values correctly (see the accepted answer). I also learned that given the right depth buffer set-up, OpenGL handles the occlusions correctly by itself, so I do not need to re-invent the wheel.
I searched through my GLSL program and found that I basically set the z-values as zeros in my geometry shader when translating the vertex coordinates to screen coordinates (vec2( vertex.xy / vertex.w ) * Viewport;). I had fixed it by calculating the z-values (vertex.z/vertex.w) separately and assigned them to the emitted points (gl_Position = vec4( screenCoords[i], zValues[i], 1.0 );). That solved my problem.
Regarding the depth buffer settings, I didn't have to explicitly specify them since the library I use set them up by default correctly as I need.

If you don't use the depth buffer, then the most recently rendered object will be on top always.
You should enable it with glEnable(GL_DEPTH_TEST), set the function to your liking (glDepthFunc(GL_LEQUAL)), and make sure you clear it every frame with everything else (glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)).
Then make sure your vertex shader is properly setting the Z value of the final vertex. It looks like the simplest way for you is to set the "Model" portion of ModelViewProjectionMatrix on the CPU side to have a depth value before it gets passed into the shader.
As long as you're using an orthographic projection matrix, rendering should not be affected (besides making the draw order correct).

Related

OpenGL beam spotlight

After reading up on OpenGL and GLSL I was wondering if there were examples out there to make something like this http://i.stack.imgur.com/FtoBj.png
I am particular interesting in the beam and intensity of light (god ray ?) .
Does anybody have a good start point ?
OpenGL just draws points, lines and triangles to the screen. It doesn't maintain a scene and the "lights" of OpenGL are actually just a position, direction and color used in the drawing calculations of points, lines or triangles.
That being said, it's actually possible to implement an effect like yours using a fragment shader, that implements a variant of the shadow mapping method. The difference would be, that instead of determining if a surface element of a primitive (point, line or triangle) lies in the shadow or not, you'd cast rays into a volume and for every sampling position along the ray test if that volume element (voxel) lies in the shadow or not and if it's illuminated add to the ray accumulator.

Questions Deferred Shading

I just have some questions about deferred shading. I have gotten to the point where I have the Color, Position ,Normal and textures from the Multiple Render Targets. My questions pertain to what I do next. To make sure that I have gotten the correct data from the textures I have put a plane on the screen and rendered the textures onto that plane. What I don't understand is how to manipulate those textures so that the final output is shaded with lighting. Do I need to render a plane or a quad that takes up the screen and apply all the calculations onto that plane? If I do that I am kind of confused how I would be able to get multiple lights to work this way since the "plane" would be a renderable object so for each light I would need to re-render the plane. Am I thinking of this incorrectly?
You need to render some geometry to represent the area covered by the light(s). The lighting term for each pixel of the light is accumulated into a destination render target. This gives you your lit result.
There are various ways to do this. To get up and running, a simple / easy (and hellishly slow) method is to render a full-screen quad for each light.
Basically:
Setup: Render all objects into the g-buffer, storing the various object properties (albedo, specular, normals,
depth, whatever you need)
Lighting: For each light:
Render some geometry to represent the area the light is going to cover on screen
Sample the g-buffer for the data you need to calculate the lighting contribution (you can use the vpos register to find the uv)
Accumulate the lighting term into a destination render target (the backbuffer will do nicely for simple cases)
Once you've got this working, there's loads of different ways to speed it up (scissor rect, meshes that tightly bound the light, stencil tests to avoid shading 'floating' regions, multiple lights drawn at once and higher level techniques such as tiling).
There's a lot of different slants on Deferred Shading these days, but the original technique is covered thoroughly here : http://http.download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf

Outline effects in OpenGL

In OpenGL, I can outline objects by drawing the object normally, then drawing it again as a wireframe, using the stencil buffer so the original object is not drawn over. However, this results in outlines with one solid color.
In this image, the pixels of the creature's outline seem to get more transparent the further they are from the creature they outline. How can I achieve a similar effect with OpenGL?
They did not use wireframe for this. I guess it is heavily shader related and requires this:
Rendering object to a stencil buffer
Rendering stencil buffer with color of choice while applying blur
Rendering model on top of it
I'm late for an answer but I was trying to achieve the same thing and thought I'd share the solution I'm using.
A similar effect can be achieved in a single draw operation with a not so complex shader.
In the fragment shader, you will calculate the color of the fragment based on lightning and texture giving you the un-highlighted color 'colorA'.
Your second color is the outline color, 'colorB'.
You should obtain the fragment to camera vector, normalize it, then get the dot product of this vector with the fragment's normal.
The fragment to camera vector is simply the inverse of the fragment's position in eye-space.
The colour of the fragment is then:
float CameraFacingPercentage = dot(v_fragmentToCamera, v_Normal);
gl_FragColor = ColorA * CameraFacingPercentage + ColorB * (1 - FacingCameraPercentage);
This is the basic idea but you'll have to play around to have more or less of the outline color. Also, the concave parts of your model will also be highlighted but that is also the case in the image posted in the question.
Detect edges in GLSL shader using dotprod(view,normal)
http://en.wikibooks.org/wiki/GLSL_Programming/Unity/Toon_Shading#Outlines
As far as I see it the effect on the screen short and many "edge" effects are not pure edges, as in comic outline. What mostly is done, you have one pass were you render the object normally then a pass with only the geometry (no textures) and a GLSL shader. In the fragment shader the normal is taken and that normal is perpendicular to the camera vector you color the object. The effect is then smoothed by including area close to perfect perpendicular.
I would have to look up the exact math but I think if you take the dot product of the camera vector and the normal you get the amount of "perpendicularness". That you can then run through a function like exp to get a bias towards 1.
So (without guarantee that it is correct):
exp(dot(vec3(0, 0, 1), normal));
(Note: everything is in screenspace.)

Multi-pass shading using render-to-texture

I'm trying to implement a multi-pass rendering method using OpenSceneGraph. However, I'm not entirely certain my problem is theoretical or due to a lack of applied knowledge of OSG. Thus far, I've successfully implemented multi-pass shading by rendering to a texture using an orthogonal projection, but I cannot seem to make a perspective projection work.
It may be that I don't quite understand how to implement multi-pass shading. Of course, I have to pre-render the entire scene with the multi-pass shaders to a texture, then use the texture in the final render. However, I'm not talking about creating a separate texture for each object in the scene, but effectively capturing a screenshot of the entire prerendered scene. Then, from that texture alone, applying the rendered effects to the individual geometries.
I assume this means I would have to do an extra conversion of the vertex coordinates for each geometry in the vertex shader. That is, after computing:
gl_Position = ModelViewProjectionMatrix * Vertex;
I would need to go a step further and calculate the vertex's screen coordinates in order to map the vertices correctly (again, given that the texture consists of an entire screen shot of the scene).
If I am correct, then I must be able to pre-render the scene in a perspective view identical to the view used in the final render, rather than an orthogonal view. This is where I have troubles. I can make an orthogonal view do what I want, but not the perspective view.
Am I correct in my approach? The only other approach I can imagine is to render everything to a screen-filling quad (in effect, the same thing as converting to screen coordinates), but that doesn't alleviate the need to use a perspective projection in the pre-render stage.
Thoughts? Links??
edit: I should also point out that in my successful attempts, I used a fragment shader only. The perspective projection worked, but, of course, the screen aligned quad I was using was offset rather than centered. I added a pass-through vertex shader and everything went blank.
As it turns out, my approach was correct. It's especially nice as it avoids having to add another camera to my scene graph to render the final output - I can simply use the main camera. Unfortunately, it means that all of my output textures are rendered at the screen resolution, rather than a resolution appropriate to the size of the object. That is, if my screen is 1024 x 1024, then so is the output texture, one for each pre-render camera in the graph. Not exactly efficient, but it'll do for now.

OpenGL: Using shaders to create vertex lighting by using pre-calculated colormap?

First of all, I have very little knowledge of what shaders can do, and i am very interested in making vertex lighting. I am attempting to use a 3d colormap which would be used to calculate the vertex color at that position of the world, and also interpolate the color by using the nearby colors from the colormap.
I cant use typical OpenGL lighting because its probably too slow and theres a lot of lights i need to render. I am going to "render" the lights at the colormap first, and then i could either manually map every vertex drawn with the corresponding color from the colormap.
...Or i could somehow automate this process, so i wouldnt have to change the color values of vertexes myself, but a shader could perhaps do this for me?
Questions is... is this possible, and if it is: what i need to know to make it possible?
Edit: Note that i also need to update the lightmap efficiently, without caring about the size of the lightmap, so the update should be done only at that specific part of the lightmap i want to update.
It almost sounds like what you want to do is render the lights to your color map, then use your color map as a texture, but instead of decal mode set it to modulate mode, so it's multiplied with the existing color instead of just replacing it.
That is different in one way though: instead of just affecting the vertexes, it'll map to the individual fragments (pixels, in essence).
Edit: What I had in mind wasn't a 3D texture -- it was a cube map. Basically, create a virtual cube surrounding everything in your "world". Create a 2D texture for each face of that cube. Render your coloring to the cube map. Then, to color a vertex you (virtually) extend a ray outward from the center, through the vertex, to the cube. The pixel you hit on the cube map gives you the color of lighting for that vertex.
Updating should be relatively efficient -- you have normal 2D textures for the top, bottom, front, etc., and you update them as needed.
If you cant use the fixed function pipeline functionality the best way to do per vertex lighting should be to do all the lighting calculations per vertex in the vertex-shader, when you then pass it on the the fragment shader it will be correctly interpolated across the face.
Another way to deal with performances issues when using a lot of light sources is to use deferred rendering as it will only do lighting calculation on the geometry that is actually visible.
That is possible, but will not be effective on the current hardware.
You want to render light volumes into 3d texture. The rasterizer works on a 2D surface, so your volumes have to be split along one of the axises. The split can be done in one of the following ways:
Different draw calls for each split
Instanced draw, with layer selection based on glInstanceID (will require geometry shader)
Branch in geometry shader directly from a single draw call
In order to implement it, I would suggest reading GL-3 specification and examples. It's not going to be easy, nor it will be fast enough in the result for complex scenes.