Eliminate consecutive duplicates - list

Eliminate consecutive duplicates of list elements.
My solution for this is:
compress([X,X|Xs], Q) :-
compress([X|Xs], Q).
compress([X,Y|Xs], Q) :-
X \= Y,
compress([Y|Xs], QR),
append([X], QR, Q).
compress([X|[]], Q) :-
compress([], QR),
append([X], QR, Q).
compress([], []).
And, because of the fact I am beginner and I have no experience in a logic paradigm I ask you for say what I can improve and why my solution is not good as it can be.
For example, X \= Y doesn't look pretty to me.

We start with the name of the predicate.
Why do you use an imperative to denote a relation? A good Prolog program is usable in all directions, whereas an imperative always suggests a particular direction or mode of use. Therefore, choose a declarative name and aim for generality and logical-purity.
Next, what about the most general query:
?- compress(Ls, Cs).
ERROR: Out of local stack
Not very nice! We expect this to yield at least a few answers.
What if we use iterative deepening:
?- length(Ls, _), compress(Ls, Cs).
Ls = Cs, Cs = [] ;
Ls = Cs, Cs = [_G841] ;
Ls = [_G841, _G841],
Cs = [_G841] ;
Ls = [_G841, _G841, _G841],
Cs = [_G841] .
Hm! Quite a few answers are missing! What about the case where the elements are different? As you already intuitively expect, it is the use of impure predicates that leads to such effects.
Therefore, use prolog-dif, i.e., dif/2, to denote that two terms are different. It's usable in all directions!
Moreover, DCGs (dcg) are often useful when describing lists.
So, in total, what about this:
compression([]) --> [].
compression([L|Ls]) --> [L], compression_(Ls, L).
compression_([], _) --> [].
compression_([X|Xs], L) -->
( { X = L },
compression_(Xs, L)
; { dif(X, L) },
[X],
compression_(Xs, X)
).
We use the interface predicate phrase/2 to work with the DCG.
Usage examples:
?- phrase(compression(Ls), Cs).
Ls = Cs, Cs = [] ;
Ls = Cs, Cs = [_G815] ;
Ls = [_G815, _G815],
Cs = [_G815] .
?- length(Ls, _), phrase(compression(Ls), Cs).
Ls = Cs, Cs = [] ;
Ls = Cs, Cs = [_G865] ;
Ls = [_G865, _G865],
Cs = [_G865] ;
Ls = Cs, Cs = [_G1111, _G1114],
dif(_G1114, _G1111) .
Take it from here! Improve determinism, find an even better name etc.

Building on the answer by #mat (+1), why not improve determinacy for cases like this one:
?- phrase(compression([a,a,b,b,b,c,c,c,c,d]), Xs).
Xs = [a, b, c, d] ;
false.
With ; false the SWI prolog-toplevel indicates that the goal did not succeed deterministically.
We can improve compression_//2 by using if_//3—the dcg analogue of if_/3:
compression_([], _) --> [].
compression_([X|Xs], L) -->
if_(X = L, % is this item equal to previous one?
compression_(Xs, L), % yes: old "run" goes on
([X], compression_(Xs, X))). % no: new "run" starts
Sample query:
?- phrase(compression([a,a,b,b,b,c,c,c,c,d]), Xs).
Xs = [a, b, c, d]. % succeeds deterministically

Related

Get elements of arbitrary nested lists

I am looking for some predicate in SWI-Prolog to get the elements of some arbitrary nested list. Means, if I e.g. have the list:
L = [[a,b], c, [d, [e, f]]]
I get as result:
R = [a,b,c,d,e,f]
The SWI built-in predicate flatten/2 depends on the very instantiations of the first argument. It thus leads to quite non-relational behavior:
?- flatten(X,[]).
false.
?- X = [], flatten(X,[]).
X = [].
?- X = [[],[]], flatten(X,[]).
X = [[], []].
?- X = [[]|[]], flatten(X,[]).
X = [[]].
Note that there are infinitely many X to make flatten(X,[]) succeed. If you want this to be a relation, there are two choices either enumerate all such solutions, or produce an instantiation error, or just do not terminate (better than an incorrect answer), or delay goals appropriately, or produce some constraints, or produce a resource error. Oh, these have been now 6 choices... ...and lest I forget, you might also combine these options, like first producing some answer substitutions, then delayed goals, then constraints, and then loop quite some time to finally produce a resource error.
In most of such situations, the easiest way to go is to produce instantiation errors like so:
flattened(T) -->
{functor(T,_,_)}, % ensures instantiation
( {T = [E|Es]} -> flattened(E), flattened(Es)
; {T = []} -> []
; [T]
).
?- phrase(flattened([[]|[]]),Xs).
Xs = [].
?- phrase(flattened([[]|_]),Xs).
error(instantiation_error,functor/3).
As #brebs mentioned in his comment, Use predefined predicate flatten/2
% ?- flatten([[a,b], c, [d, [e, f]]], R).
% R = [a, b, c, d, e, f]
This user-defined implementation is similar to the predefined one [1]
my_flatten([],[]).
my_flatten([H|T], [H|Res]) :- \+ is_list(H), my_flatten(T, Res), !.
my_flatten([H|T], Res) :- my_flatten(H, Res). % H is list.
[1] except for cases of non-termination like my_flatten(X,non_list). and like my_flatten([X],[1,2,3,4]). thanks to #false comment

Remove brackets from a list in Prolog [duplicate]

I am doing some easy exercises to get a feel for the language.
is_list([]).
is_list([_|_]).
my_flatten([],[]).
my_flatten([X|Xs],RR) :-
my_flatten(Xs,R),
(is_list(X), !, append(X,R,RR); RR = [X | R]).
Here is a version using cut, for a predicate that flattens a list one level.
my_flatten([],[]).
my_flatten([X|Xs],RR) :-
my_flatten(Xs,R),
if_(is_list(X), append(X,R,RR), RR = [X | R]).
Here is how I want to write it, but it does not work. Neither does is_list(X) = true as the if_ condition. How am I intended to use if_ here?
(Sorry, I somewhat skipped this)
Please refer to P07. It clearly states that it flattens out [a, [b, [c, d], e]], but you and #Willem produce:
?- my_flatten([a, [b, [c, d], e]], X).
X = [a,b,[c,d],e]. % not flattened!
And the solution given there succeeds for
?- my_flatten(non_list, X).
X = [non_list]. % unexpected, nothing to flatten
Your definition of is_list/1 succeeds for is_list([a|non_list]). Commonly, we want this to fail.
What you need is a safe predicate to test for lists. So let's concentrate on that first:
What is wrong with is_list/1 and if-then-else? It is as non-monotonic, as many other impure type testing predicates.
?- Xs = [], is_list([a|Xs]).
Xs = [].
?- is_list([a|Xs]). % generalization, Xs = [] removed
false. % ?!? unexpected
While the original query succeeds correctly, a generalization of it unexpectedly fails. In the monotonic part of Prolog, we expect that a generalization will succeed (or loop, produce an error, use up all resources, but never ever fail).
You have now two options to improve upon this highly undesirable situation:
Stay safe with safe inferences, _si!
Just take the definition of list_si/1 in place of is_list/1. In problematic situations, your program will now abort with an instantiation error, meaning "well sorry, I don't know how to answer this query". Be happy for that response! You are saved from being misled by incorrect answers.
In other words: There is nothing wrong with ( If_0 -> Then_0 ; Else_0 ), as long as the If_0 handles the situation of insufficient instantiations correctly (and does not refer to a user defined program since otherwise you will be again in non-monotonic behavior).
Here is such a definition:
my_flatten(Es, Fs) :-
list_si(Es),
phrase(flattenl(Es), Fs).
flattenl([]) --> [].
flattenl([E|Es]) -->
( {list_si(E)} -> flattenl(E) ; [E] ),
flattenl(Es).
?- my_flatten([a, [b, [c, d], e]], X).
X = [a,b,c,d,e].
So ( If_0 -> Then_0 ; Else_0 ) has two weaknesses: The condition If_0 might be sensible to insufficient instantiations, and the Else_0 may be the source of non-monotonicity. But otherwise it works. So why do we want more than that?
In many more general situations this definition will now bark back: "Instantiation error"! While not incorrect, this still can be improved. This exercise is not the ideal example for this, but we will give it a try.
Use a reified condition
In order to use if_/3 you need a reified condition, that is, a definition that carries it's truth value as an explicit extra argument. Let's call it list_t/2.
?- list_t([a,b,c], T).
T = true.
?- list_t([a,b,c|non_list], T).
T = false.
?- list_t(Any, T).
Any = [],
T = true
; T = false,
dif(Any,[]),
when(nonvar(Any),Any\=[_|_])
; Any = [_],
T = true
; Any = [_|_Any1],
T = false,
dif(_Any1,[]),
when(nonvar(_Any1),_Any1\=[_|_])
; ... .
So list_t can also be used to enumerate all true and false situations. Let's go through them:
T = true, Any = [] that's the empty list
T = false, dif(Any, []), Any is not [_|_] note how this inequality uses when/2
T = true, Any = [_] that's all lists with one element
T = true, Any = [_|_Any1] ... meaning: we start with an element, but then no list
list_t(Es, T) :-
if_( Es = []
, T = true
, if_(nocons_t(Es), T = false, ( Es = [_|Fs], list_t(Fs, T) ) )
).
nocons_t(NC, true) :-
when(nonvar(NC), NC \= [_|_]).
nocons_t([_|_], false).
So finally, the reified definition:
:- meta_predicate( if_(1, 2, 2, ?,?) ).
my_flatten(Es, Fs) :-
phrase(flattenl(Es), Fs).
flattenl([]) --> [].
flattenl([E|Es]) -->
if_(list_t(E), flattenl(E), [E] ),
flattenl(Es).
if_(C_1, Then__0, Else__0, Xs0,Xs) :-
if_(C_1, phrase(Then__0, Xs0,Xs), phrase(Else__0, Xs0,Xs) ).
?- my_flatten([a|_], [e|_]).
false.
?- my_flatten([e|_], [e|_]).
true
; true
; true
; ... .
?- my_flatten([a|Xs], [a]).
Xs = []
; Xs = [[]]
; Xs = [[],[]]
; ... .
?- my_flatten([X,a], [a]).
X = []
; X = [[]]
; X = [[[]]]
; X = [[[[]]]]
; ... .
?- my_flatten(Xs, [a]).
loops. % at least it does not fail
In Prolog, the equivalen of an if … then … else … in other languages is:
(condition -> if-true; if-false)
With condition, if-true and if-false items you need to fill in.
So in this specific case, you can implement this with:
my_flatten([],[]).
my_flatten([X|Xs],RR) :-
my_flatten(Xs,R),
( is_list(X)
-> append(X,R,RR)
; RR = [X | R] ).
or we can flatten recursively with:
my_flatten([],[]).
my_flatten([X|Xs],RR) :-
my_flatten(Xs,R),
( flatten(X, XF)
-> append(XF,R,RR)
; RR = [X | R] ).
Your if_/3 predicate is used for reified predicates.
This worked for me:
myflat([], []).
myflat([H|T], L) :-
myflat(H, L1),
myflat(T, L2),
append(L1, L2, L).
myflat(L, [L]).

Include non-unique elements only

This question was asked but there are no answers: here. I read the comments and tried to implement in both ways, but there are more problems that I don't understand.
I first tried the easy way that doesn't keep original order:
list_repeated(L, Ds) :-
msort(L, S),
sorted_repeated(S, Ds).
sorted_repeated([], []).
sorted_repeated([X|Xs], Ds) :-
first(Xs, X, Ds).
first([], _, []).
first([X|Xs], X, [X|Ds]) :-
more(Xs, X, Ds).
first([X|Xs], Y, Ds) :-
dif(X, Y),
first(Xs, X, Ds).
more([], _, []).
more([X|Xs], X, Ds) :-
more(Xs, X, Ds).
more([X|Xs], Y, Ds) :-
dif(X, Y),
first(Xs, X, Ds).
Once the list is sorted without removing duplicates, using first and more I add the element to the second argument if it occurs at least twice and skip all consecutive copies of the element.
This is not working properly because if I have:
?- list_duplicates([b,a,a,a,b,b], Ds).
I get answer [a,b] instead of [b,a] and also I get ; false after the answer.
I also tried another way, but this doesn't work because the accumulator is immutable?
list_duplicates(L, Ds) :-
ld_acc(L, [], Ds).
ld_acc([], _, []).
ld_acc([X|Xs], Acc, Ds) :-
( memberchk(X, Acc)
-> Ds = [X|Ds0],
ld_acc(Xs, Acc, Ds0)
; Acc1 = [X|Acc],
ld_acc(Xs, Acc1, Ds)
).
This cannot work because when I check that an element is member of accumulator I remove only one occurrence of each element: if I have three times the same element in the first argument, I am left with two. If I could change the element in the accumulator then I could maybe put a counter on it? In the first version I used different states, first and more, but here I have to attach state to the elements of the accumulator, is that possible?
A plea for purity
When programming in Prolog, a major attraction is the generality we enjoy from pure relations.
This lets us use our code in multiple directions, and reason declaratively over our programs and answers.
You can enjoy these benefits if you keep your programs pure.
Possible solution
As always when describing lists, also consider using DCG notation. See dcg for more information.
For example, to describe the list of duplicates in a pure way, consider:
list_duplicates([]) --> [].
list_duplicates([L|Ls]) -->
list_duplicates_(Ls, L),
list_duplicates(Ls).
list_duplicates_([], _) --> [].
list_duplicates_([L0|Ls], L) -->
if_(L0=L, [L], []),
list_duplicates_(Ls, L).
This uses if_//3 to retain generality and determinism (if applicable).
Examples
Here are a few example queries and answers. We start with simple ground cases:
?- phrase(list_duplicates([a,b,c]), Ds).
Ds = [].
?- phrase(list_duplicates([a,b,a]), Ds).
Ds = [a].
Even the most impure version will be able to handle these situations correctly. So, slightly more interesting:
?- phrase(list_duplicates([a,b,X]), Ds).
X = a,
Ds = [a] ;
X = b,
Ds = [b] ;
Ds = [],
dif(X, b),
dif(X, a).
Pretty nice, isn't it? The last part says: Ds = [] is a solution if X is different from b and a. Note the pure relation dif/2 automatically appears in these residual goals and retains the relation's generality.
Here is an example with two variables:
?- phrase(list_duplicates([X,Y]), Ds).
X = Y,
Ds = [Y] ;
Ds = [],
dif(Y, X).
Finally, consider using iterative deepening to fairly enumerate answers for lists of arbitrary length:
?- length(Ls, _), phrase(list_duplicates(Ls), Ds).
Ls = Ds, Ds = [] ;
Ls = [_136],
Ds = [] ;
Ls = [_136, _136],
Ds = [_136] ;
Ls = [_156, _162],
Ds = [],
dif(_162, _156) ;
Ls = Ds, Ds = [_42, _42, _42] ;
Ls = [_174, _174, _186],
Ds = [_174],
dif(_186, _174) .
Multiple occurrences
Here is a version that handles arbitrary many occurrences of the same element in such a way that exactly a single occurrence is retained if (and only if) the element occurs at least twice:
list_duplicates(Ls, Ds) :-
phrase(list_duplicates(Ls, []), Ds).
list_duplicates([], _) --> [].
list_duplicates([L|Ls], Ds0) -->
list_duplicates_(Ls, L, Ds0, Ds),
list_duplicates(Ls, Ds).
list_duplicates_([], _, Ds, Ds) --> [].
list_duplicates_([L0|Ls], L, Ds0, Ds) -->
if_(L0=L, new_duplicate(L0, Ds0, Ds1), {Ds0 = Ds1}),
list_duplicates_(Ls, L, Ds1, Ds).
new_duplicate(E, Ds0, Ds) -->
new_duplicate_(Ds0, E, Ds0, Ds).
new_duplicate_([], E, Ds0, [E|Ds0]) --> [E].
new_duplicate_([L|Ls], E, Ds0, Ds) -->
if_(L=E,
{ Ds0 = Ds },
new_duplicate_(Ls, E, Ds0, Ds)).
The query shown by #fatalize in the comments now yields:
?- list_duplicates([a,a,a], Ls).
Ls = [a].
The other examples yield the same results. For instance:
?- list_duplicates([a,b,c], Ds).
Ds = [].
?- list_duplicates([a,b,a], Ds).
Ds = [a].
?- list_duplicates([a,b,X], Ds).
X = a,
Ds = [a] ;
X = b,
Ds = [b] ;
Ds = [],
dif(X, b),
dif(X, a).
?- list_duplicates([X,Y], Ds).
X = Y,
Ds = [Y] ;
Ds = [],
dif(Y, X).
I leave the case ?- list_duplicates(Ls, Ls). as an exercise.
Generality: Multiple directions
Ideally, we want to be able to use a relation in all directions.
For example, our program should be able to answer questions like:
What does a list look like if its duplicates are [a,b]?
With the version shown above, we get:
?- list_duplicates(Ls, [a,b]).
nontermination
Luckily, a very simple change allows as to answer such questions!
One such change is to simply write:
list_duplicates(Ls, Ds) :-
length(Ls, _),
phrase(list_duplicates(Ls, []), Ds).
This is obviously declaratively admissible, because Ls must be a list. Operationally, this helps us to enumerate lists in a fair way.
We now get:
?- list_duplicates(Ls, [a,b]).
Ls = [a, a, b, b] ;
Ls = [a, b, a, b] ;
Ls = [a, b, b, a] ;
Ls = [a, a, a, b, b] ;
Ls = [a, a, b, a, b] ;
Ls = [a, a, b, b, a] ;
Ls = [a, a, b, b, b] ;
Ls = [a, a, b, b, _4632],
dif(_4632, b),
dif(_4632, a) ;
etc.
Here is a simpler case, using only a single element:
?- list_duplicates(Ls, [a]).
Ls = [a, a] ;
Ls = [a, a, a] ;
Ls = [a, a, _3818],
dif(_3818, a) ;
Ls = [a, _3870, a],
dif(_3870, a) ;
Ls = [_4058, a, a],
dif(a, _4058),
dif(a, _4058) ;
Ls = [a, a, a, a] ;
etc.
Maybe even more interesting:
What does a list without duplicates look like?
Our program answers:
?- list_duplicates(Ls, []).
Ls = [] ;
Ls = [_3240] ;
Ls = [_3758, _3764],
dif(_3764, _3758) ;
Ls = [_4164, _4170, _4176],
dif(_4176, _4164),
dif(_4176, _4170),
dif(_4170, _4164) .
Thus, the special case of a list where all elements are distinct naturally exists as a special case of the more general relation we have implemented.
We can use this relation to generate answers (as shown above), and also to test whether a list consists of distinct elements:
?- list_duplicates([a,b,c], []).
true.
?- list_duplicates([b,b], []).
false.
Unfortunately, the following even more general query still yields:
?- list_duplicates([b,b|_], []).
nontermination
On the plus side, if the length of the list is fixed, we get in such cases:
?- length(Ls, L), maplist(=(b), Ls),
( true ; list_duplicates(Ls, []) ).
Ls = [],
L = 0 ;
Ls = [],
L = 0 ;
Ls = [b],
L = 1 ;
Ls = [b],
L = 1 ;
Ls = [b, b],
L = 2 ;
Ls = [b, b, b],
L = 3 ;
Ls = [b, b, b, b],
L = 4 .
This is some indication that the program indeed terminates in such cases. Note that the answers are of course now too general.
Efficiency
It is well known in high-performance computing circles that as long as your program is fast enough, its correctness is barely worth considering.
So, the key question is of course: How can we make this faster?
I leave this is a very easy exercise. One way to make this faster in specific cases is to first check whether the given list is sufficiently instantiated. In that case, you can apply an ad hoc solution that fails terribly in more general cases, but has the extreme benefit that it is fast!
So as far as I can tell, you were on the right track with the accumulator, but this implementation definitely works as you want (assuming you want the duplicates in the order they first appear in the list).
list_duplicates(Input,Output) is just used to wrap and initialise the accumulator.
list_duplicates(Accumulator,[],Accumulator) unifies the accumulator with the output when we have finished processing the input list.
list_duplicates(Accumulator,[H|T],Output) says "if the head (H) of the input list is in the rest of the list (T), and is not in the Accumulator already, put it at the end of the Accumulator (using append), then recurse on the tail of the list".
list_duplicates(Accumulator,[_|T],Output) (which we only get to if either the head is not a duplicate, or is already in the Accumulator) just recurses on the tail of the list.
list_duplicates(Input,Output) :-
once(list_duplicates([],Input,Output)).
list_duplicates(Accumulator,[],Accumulator).
list_duplicates(Accumulator,[H|T],Output) :-
member(H,T),
\+member(H,Accumulator),
append(Accumulator,[H],NewAccumulator),
list_duplicates(NewAccumulator,T,Output).
list_duplicates(Accumulator,[_|T],Output) :-
list_duplicates(Accumulator,T,Output).
You could also recurse in list_duplicates(Accumulator,[H|T],Output) with list_duplicates([H|Accumulator],T,Output) and reverse in the wrapper, looking like this:
list_duplicates(Input,Output) :-
once(list_duplicates([],Input,ReverseOutput)),
reverse(ReverseOutput,Output).
list_duplicates(Accumulator,[],Accumulator).
list_duplicates(Accumulator,[H|T],Output) :-
member(H,T),
\+member(H,Accumulator),
list_duplicates([H|Accumulator],T,Output).
list_duplicates(Accumulator,[_|T],Output) :-
list_duplicates(Accumulator,T,Output).
The once call in the wrapper prevents the false output (or in this case, partial duplicate lists due to a lack of guards on the second rule).

Add two more occurrences using prolog

I have a list [a, b, a, a, a, c, c]
and I need to add two more occurrences of each element.
The end result should look like this:
[a, a, a, b, b, b, a, a, a, a, a, c, c, c, c]
If I have an item on the list that is the same as the next item, then it keeps going until there is a new item, when it finds the new item, it adds two occurrences of the previous item then moves on.
This is my code so far, but I can't figure out how to add two...
dbl([], []).
dbl([X], [X,X]).
dbl([H|T], [H,H|T], [H,H|R]) :- dbl(T, R).
Your code looks a bit strange because the last rule takes three parameters. You only call the binary version, so no recursion will ever try to derive it.
You already had a good idea to look at the parts of the list, where elements change. So there are 4 cases:
1) Your list is empty.
2) You have exactly one element.
3) Your list starts with two equal elements.
4) Your list starts with two different elements.
Case 1 is not specified, so you might need to find a sensible choice for that. Case 2 is somehow similar to case 4, since the end of the list can be seen as a change in elements, where you need to append two copies, but then you are done. Case 3 is quite simple, we can just keep the element and recurse on the rest. Case 4 is where you need to insert the two copies again.
This means your code will look something like this:
% Case 1
dbl([],[]).
% Case 2
dbl([X],[X,X,X]).
% Case 3
dbl([X,X|Xs], [X|Ys]) :-
% [...] recursion skipping the leading X
% Case 4
dbl([X,Y|Xs], [X,X,X|Ys]) :-
dif(X,Y),
% [...] we inserted the copies, so recursion on [Y|Xs] and Ys
Case 3 should be easy to finish, we just drop the first X from both lists and recurse on dbl([X|Xs],Ys). Note that we implicitly made the first two elements equal (i.e. we unified them) by writing the same variable twice.
If you look at the head of case 4, you can directly imitate the pattern you described: supposed the list starts with X, then Y and they are different (dif(X,Y)), the X is repeated 3 times instead of just copied and we then continue with the recursion on the rest starting with Y: dbl([Y|Xs],Ys).
So let's try out the predicate:
?- dbl([a,b,a,a,a,c,c],[a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]).
true ;
false.
Our test case is accepted (true) and we don't find more than one solution (false).
Let's see if we find a wrong solution:
?- dif(Xs,[a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]), dbl([a,b,a,a,a,c,c],Xs).
false.
No, that's also good. What happens, if we have variables in our list?
?- dbl([a,X,a],Ys).
X = a,
Ys = [a, a, a, a, a] ;
Ys = [a, a, a, X, X, X, a, a, a],
dif(X, a),
dif(X, a) ;
false.
Either X = a, then Ys is single run of 5 as; or X is not equal to a, then we need to append the copies in all three runs. Looks also fine. (*)
Now lets see, what happens if we only specify the solution:
?- dbl(X,[a,a,a,b,b]).
false.
Right, a list with a run of only two bs can not be a result of our specification. So lets try to add one:
?- dbl(X,[a,a,a,b,b,b]).
X = [a, b] ;
false.
Hooray, it worked! So lets as a last test look what happens, if we just call our predicate with two variables:
?- dbl(Xs,Ys).
Xs = Ys, Ys = [] ;
Xs = [_G15],
Ys = [_G15, _G15, _G15] ;
Xs = [_G15, _G15],
Ys = [_G15, _G15, _G15, _G15] ;
Xs = [_G15, _G15, _G15],
Ys = [_G15, _G15, _G15, _G15, _G15] ;
Xs = [_G15, _G15, _G15, _G15],
Ys = [_G15, _G15, _G15, _G15, _G15, _G15] ;
[...]
It seems we get the correct answers, but we see only cases for a single run. This is a result of prolog's search strategy(which i will not explain in here). But if we look at shorter lists before we generate longer ones, we can see all the solutions:
?- length(Xs,_), dbl(Xs,Ys).
Xs = Ys, Ys = [] ;
Xs = [_G16],
Ys = [_G16, _G16, _G16] ;
Xs = [_G16, _G16],
Ys = [_G16, _G16, _G16, _G16] ;
Xs = [_G86, _G89],
Ys = [_G86, _G86, _G86, _G89, _G89, _G89],
dif(_G86, _G89) ;
Xs = [_G16, _G16, _G16],
Ys = [_G16, _G16, _G16, _G16, _G16] ;
Xs = [_G188, _G188, _G194],
Ys = [_G188, _G188, _G188, _G188, _G194, _G194, _G194],
dif(_G188, _G194) ;
[...]
So it seems we have a working predicate (**), supposed you filled in the missing goals from the text :)
(*) A remark here: this case only works because we are using dif. The first predicates with equality, one usually encounters are =, == and their respective negations \= and \==. The = stands for unifyability (substituting variables in the arguments s.t. they become equal) and the == stands for syntactic equality (terms being exactly equal). E.g.:
?- f(X) = f(a).
X = a.
?- f(X) \= f(a).
false.
?- f(X) == f(a).
false.
?- f(X) \== f(a).
true.
This means, we can make f(X) equal to f(a), if we substitute X by a. This means if we ask if they can not be made equal (\=), we get the answer false. On the other hand, the two terms are not equal, so == returns false, and its negation \== answers true.
What this also means is that X \== Y is always true, so we can not use \== in our code. In contrast to that, dif waits until it can decide wether its arguments are equal or not. If this is still undecided after finding an answer, the "dif(X,a)" statements are printed.
(**) One last remark here: There is also a solution with the if-then-else construct (test -> goals_if_true; goals_if_false, which merges cases 3 and 4. Since i prefer this solution, you might need to look into the other version yourself.
TL;DR:
From a declarative point of view, the code sketched by #lambda.xy.x is perfect.
Its determinacy can be improved without sacrificing logical-purity.
Code variant #0: #lambda.xy.x's code
Here's the code we want to improve:
dbl0([], []).
dbl0([X], [X,X,X]).
dbl0([X,X|Xs], [X|Ys]) :-
dbl0([X|Xs], Ys).
dbl0([X,Y|Xs], [X,X,X|Ys]) :-
dif(X, Y),
dbl0([Y|Xs], Ys).
Consider the following query and the answer SWI-Prolog gives us:
?- dbl0([a],Xs).
Xs = [a,a,a] ;
false.
With ; false the SWI prolog-toplevel
indicates a choicepoint was left when proving the goal.
For the first answer, Prolog did not search the entire proof tree.
Instead, it replied "here's an answer, there may be more".
Then, when asked for more solutions, Prolog traversed the remaining branches of the proof tree but finds no more answers.
In other words: Prolog needs to think twice to prove something we knew all along!
So, how can we give determinacy hints to Prolog?
By utilizing:
control constructs !/0 and / or (->)/2 (potentially impure)
first argument indexing on the principal functor (never impure)
The code presented in the earlier answer by #CapelliC—which is based on !/0, (->)/2, and the meta-logical predicate (\=)/2—runs well if all arguments are sufficiently instantiated. If not, erratic answers may result—as #lambda.xy.x's comment shows.
Code variant #1: indexing
Indexing can improve determinacy without ever rendering the code non-monotonic. While different Prolog processors have distinct advanced indexing capabilities, the "first-argument principal-functor" indexing variant is widely available.
Principal? This is why executing the goal dbl0([a],Xs) leaves a choicepoint behind: Yes, the goal only matches one clause—dbl0([X],[X,X,X]).—but looking no deeper than the principal functor Prolog assumes that any of the last three clauses could eventually get used. Of course, we know better...
To tell Prolog we utilize principal-functor first-argument indexing:
dbl1([], []).
dbl1([E|Es], Xs) :-
dbl1_(Es, Xs, E).
dbl1_([], [E,E,E], E).
dbl1_([E|Es], [E|Xs], E) :-
dbl1_(Es, Xs, E).
dbl1_([E|Es], [E0,E0,E0|Xs], E0) :-
dif(E0, E),
dbl1_(Es, Xs, E).
Better? Somewhat, but determinacy could be better still...
Code variant #2: indexing on reified term equality
To make Prolog see that the two recursive clauses of dbl1_/3 are mutually exclusive (in certain cases), we reify the truth value of
term equality and then index on that value:
This is where reified term equality (=)/3 comes into play:
dbl2([], []).
dbl2([E|Es], Xs) :-
dbl2_(Es, Xs, E).
dbl2_([], [E,E,E], E).
dbl2_([E|Es], Xs, E0) :-
=(E0, E, T),
t_dbl2_(T, Xs, E0, E, Es).
t_dbl2_(true, [E|Xs], _, E, Es) :-
dbl2_(Es, Xs, E).
t_dbl2_(false, [E0,E0,E0|Xs], E0, E, Es) :-
dbl2_(Es, Xs, E).
Sample queries using SWI-Prolog:
?- dbl0([a],Xs).
Xs = [a, a, a] ;
false.
?- dbl1([a],Xs).
Xs = [a, a, a].
?- dbl2([a],Xs).
Xs = [a, a, a].
?- dbl0([a,b,b],Xs).
Xs = [a, a, a, b, b, b, b] ;
false.
?- dbl1([a,b,b],Xs).
Xs = [a, a, a, b, b, b, b] ;
false.
?- dbl2([a,b,b],Xs).
Xs = [a, a, a, b, b, b, b].
To make above code more compact, use control construct if_/3 .
I was just about to throw this version with if_/3 and (=)/3 in the hat when I saw #repeat already suggested it. So this is essentially the more compact version as outlined by #repeat:
list_dbl([],[]).
list_dbl([X],[X,X,X]).
list_dbl([A,B|Xs],DBL) :-
if_(A=B,DBL=[A,B|Ys],DBL=[A,A,A,B|Ys]),
list_dbl([B|Xs],[B|Ys]).
It yields the same results as dbl2/2 by #repeat:
?- list_dbl([a],DBL).
DBL = [a,a,a]
?- list_dbl([a,b,b],DBL).
DBL = [a,a,a,b,b,b,b]
The example query by the OP works as expected:
?- list_dbl([a,b,a,a,a,c,c],DBL).
DBL = [a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]
Plus here are some of the example queries provided by #lambda.xy.x. They yield the same results as #repeat's dbl/2 and #lambda.xy.x's dbl/2:
?- dif(Xs,[a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]), list_dbl([a,b,a,a,a,c,c],Xs).
no
?- list_dbl(X,[a,a,a,b,b]).
no
?- list_dbl(L,[a,a,a,b,b,b]).
L = [a,b] ? ;
no
?- list_dbl(L,DBL).
DBL = L = [] ? ;
DBL = [_A,_A,_A],
L = [_A] ? ;
DBL = [_A,_A,_A,_A],
L = [_A,_A] ? ;
DBL = [_A,_A,_A,_A,_A],
L = [_A,_A,_A] ? ;
...
?- list_dbl([a,X,a],DBL).
DBL = [a,a,a,a,a],
X = a ? ;
DBL = [a,a,a,X,X,X,a,a,a],
dif(X,a),
dif(a,X)
?- length(L,_), list_dbl(L,DBL).
DBL = L = [] ? ;
DBL = [_A,_A,_A],
L = [_A] ? ;
DBL = [_A,_A,_A,_A],
L = [_A,_A] ? ;
DBL = [_A,_A,_A,_B,_B,_B],
L = [_A,_B],
dif(_A,_B) ? ;
DBL = [_A,_A,_A,_A,_A],
L = [_A,_A,_A] ?
dbl([X,Y|T], [X,X,X|R]) :- X \= Y, !, dbl([Y|T], R).
dbl([H|T], R) :-
T = []
-> R = [H,H,H]
; R = [H|Q], dbl(T, Q).
The first clause handles the basic requirement, adding two elements on sequence change.
The second one handles list termination as a sequence change, otherwise, does a plain copy.

Prolog element in lists replacement

Hi i was wondering if you could help me out with this
From programming in Prolog: write Prolog script for replacement any given element in lists by an another given element. For example:
replace( 3, a,[1,2,3,4,3,5], [1,2,a,4,a,5])=true
Many Thanks in advance
In Prolog, most list processing is done by processing the head and then recursively processing the rest of the list. Of course, you can't forget about the base case, which is an empty list.
Replacing anything with anything in an empty list results again in an empty list. If the head of the list is the same as the element to replace, replace it, otherwise, keep it as it is. In both cases, process recursively the rest of the list. Translated from English into Prolog:
replace(_, _, [], []).
replace(O, R, [O|T], [R|T2]) :- replace(O, R, T, T2).
replace(O, R, [H|T], [H|T2]) :- H \= O, replace(O, R, T, T2).
All implementations presented so far in other answers are logically unsound when being used with non-ground terms. Consider the original query and a slight variant:
?- replace(3,three,[1,2,3],Xs).
Xs = [1,2,three] ; % OK: correct
false
?- A=3, replace(A,B,[1,2,3],Xs). % OK: correct
Xs = [1,2,B], A = 3 ;
false
It works! Let's ask some very similar queries:
?- replace(A,B,[1,2,3],Xs). % FAIL: should succeed more than once...
Xs = [B,2,3], A = 1 ; % ... but the other solutions are missing
false
?- replace(A,B,[1,2,3],Xs), A=3. % FAIL: this query _should_ succeed ...
false % ... it does not!
What's going on? Put the blame on meta-logical builtins (!)/0 and (\=)/2, which are very hard to use right and often make code brittle, impure, and logically unsound.
To preserve logical soundness, stick to logical purity and abstain from meta-logical "features" whenever possible! Luckily, most Prolog implementations support dif/2 as a logical alternative to (\=)/2. Let's use it:
% code by #svick, modified to use dif/2 instead of (\=)/2
replaceP(_, _, [], []).
replaceP(O, R, [O|T], [R|T2]) :- replaceP(O, R, T, T2).
replaceP(O, R, [H|T], [H|T2]) :- dif(H,O), replaceP(O, R, T, T2).
Let's run above queries again, this time with the improved replaceP/4:
?- replaceP(3,three,[1,2,3],Xs).
Xs = [1,2,three] ; % OK: correct, like before
false
?- replaceP(A,B,[1,2,3],Xs). % OK: four solutions, not just one
Xs = [B,2,3], A = 1 ;
Xs = [1,B,3], A = 2 ;
Xs = [1,2,B], A = 3 ;
Xs = [1,2,3], dif(A,1),dif(A,2),dif(A,3) ;
false
?- replaceP(A,B,[1,2,3],Xs), A=3. % OK (succeeds now)
Xs = [1,2,B], A = 3 ;
false
?- A=3, replaceP(A,B,[1,2,3],Xs). % OK (same as before)
Xs = [1,2,B], A = 3 ;
false
replace(_, _ , [], []).
replace(X, Y, [ X | Z ], [ Y | ZZ]):- ! , replace( X, Y, Z, ZZ).
replace(X, Y, [ W | Z], [ W | ZZ] :- replace(X, Y, Z, ZZ).
Though, one would usually arrange the 3. arg to be the first one. And strictly speaking above does not replace anything in the list, it just anwsers if 4th arg is like the one in the 3rd but with Y' instead of X'.
replace(E,S,[],[]).
replace(E,S,[E|T1],[S|T2]):-replace(E,S,T1,T2).
replace(E,S,[H|T1],[H|T2]):-E\=H, replace(E,S,T1,T2).
the idea is simple, if the elements match, change it, if not, go forward until empty.
domains
I=integer*
K=integer*
Z=integer
A=integer
predicates
nondeterm rep(I,Z,A,K)
clauses
rep([],_,_,[]).
rep([Z|T1],Z,A,[A|T2]):- rep(T1,Z,A,T2).
rep([H|T1],Z,A,[H|T2]) :- rep(T1,Z,A,T2).
goal
rep([1,2,3],2,4,X).