Boost:Take seconds/milli/micro/nano of how long a function runs - c++

I basically have a school project testing the time it takes different sort algorithms and record how long they take with n amount of numbers to sort. So I decided to use Boost library with c++ to record the time. I am at the point I am not sure how to do it, I have googled it and have found people using different ways. for examples
auto start = boost::chrono::high_resolution_clock::now();
auto end = boost::chrono::high_resolution_clock::now();
auto time = (end-start).count();
or
boost::chrono::system_clock::now();
or
boost::chrono::steady_clock::now()
or even using something like this
boost::timer::cpu_timer and boost::timer::auto_cpu_time
or
boost::posix_time::ptime start = boost::posix_time::microsec_clock::local_time( );
so I want to be sure on how to do it right now this is what I have
typedef boost::chrono::duration<double, boost::nano> boost_nano;
auto start_t = boost::chrono::high_resolution_clock::now();
// call function
auto end_t = boost::chrono::high_resolution_clock::now();
boost_nano time = (end_t - start_t);
cout << t.count();
so am I on the right track?

You likely want the high resolution timer.
You can use either that of boost::chrono or std::chrono.
Boost Chrono has some support for IO builtin, so it makes it easier to report times in a human friendly way.
I usually use a wrapper similar to this:
template <typename Caption, typename F>
auto timed(Caption const& task, F&& f) {
using namespace boost::chrono;
struct _ {
high_resolution_clock::time_point s;
Caption const& task;
~_() { std::cout << " -- (" << task << " completed in " << duration_cast<milliseconds>(high_resolution_clock::now() - s) << ")\n"; }
} timing { high_resolution_clock::now(), task };
return f();
}
Which reports time taken in milliseconds.
The good part here is that you can time construction and similar:
std::vector<int> large = timed("generate data", [] {
return generate_uniform_random_data(); });
But also, general code blocks:
timed("do_step2", [] {
// step two is foo and bar:
foo();
bar();
});
And it works if e.g. foo() throws, just fine.
DEMO
Live On Coliru
int main() {
return timed("demo task", [] {
sleep(1);
return 42;
});
}
Prints
-- (demo task completed in 1000 milliseconds)
42

I typically use time(0) to control the duration of a loop. time(0) is simply one time measurement that, because of its own short duration, has the least impact on everything else going on (and you can even run a do-nothing loop to capture how much to subtract from any other loop measurement effort).
So in a loop running for 3 (or 10 seconds), how many times can the loop invoke the thing you are trying to measure?
Here is an example of how my older code measures the duration of 'getpid()'
uint32_t spinPidTillTime0SecChange(volatile int& pid)
{
uint32_t spinCount = 1; // getpid() invocation count
// no measurement, just spinning
::time_t tStart = ::time(nullptr);
::time_t tEnd = tStart;
while (0 == (tEnd - tStart)) // (tStart == tEnd)
{
pid = ::getpid();
tEnd = ::time(nullptr);
spinCount += 1;
}
return(spinCount);
}
Invoke this 3 (or 10) times, adding the return values together. To make it easy, discard the first measurement (because it probably will be a partial second).
Yes, I am sure there is a c++11 version of accessing what time(0) accesses.

Use std::chrono::steady_clock or std::chrono::high_resolution_clock (if it is steady - see below) and not std::chrono::system_clock for measuring run time in C++11 (or use its boost equivalent). The reason is (quoting system_clock's documentation):
on most systems, the system time can be adjusted at any moment
while steady_clock is monotonic and is better suited for measuring intervals:
Class std::chrono::steady_clock represents a monotonic clock. The time
points of this clock cannot decrease as physical time moves forward.
This clock is not related to wall clock time, and is best suitable for
measuring intervals.
Here's an example:
auto start = std::chrono::steady_clock::now();
// do something
auto finish = std::chrono::steady_clock::now();
double elapsed_seconds = std::chrono::duration_cast<
std::chrono::duration<double> >(finish - start).count();
A small practical tip: if you are measuring run time and want to report seconds std::chrono::duration_cast<std::chrono::seconds> is rarely what you need because it gives you whole number of seconds. To get the time in seconds as a double use the example above.
As suggested by Gregor McGregor, you can use a high_resolution_clock which may sometimes provide higher resolution (although it can be an alias of steady_clock), but beware that it may also be an alias of system_clock, so you might want to check is_steady.

Related

How to call a function in a certain frequency, C++

I am a beginner to C++, trying to improve my skills by working on a project.
I am trying to have my program call a certain function 100 times a second for 30 seconds.
I thought that this would be a common, well documented problem but so far I did not manage to find a solution.
Could anyone provide me with an implementation example or point me towards one?
Notes: my program is intended to be single-threaded and to use only the standard library.
There are two reasons you couldn't find a trivial answer:
This statement "I am trying to have my program call a certain function 100 times a second for 30 seconds" is not well-defined.
Timing and scheduling is a very complication problem.
In a practical sense, if you just want something to run approximately 100 times a second for 30 seconds, assuming the function doesn't take long to run, you can say something like:
for (int i=0;i<3000;i++) {
do_something();
this_thread::sleep_for(std::chrono::milliseconds(10));
}
This is an approximate solution.
Problems with this solution:
If do_something() takes longer than around 0.01 milliseconds your timing will eventually be way off.
Most operating systems do not have very accurate sleep timing. There is no guarantee that asking to sleep for 10 milliseconds will wait for exactly 10 milliseconds. It will usually be approximately accurate.
You can use std::this_thread::sleep_until and calculate the end time of the sleep according to desired frequency:
void f()
{
static int counter = 0;
std::cout << counter << '\n';
++counter;
}
int main() {
using namespace std::chrono_literals;
using Clock = std::chrono::steady_clock;
constexpr auto period = std::chrono::duration_cast<std::chrono::milliseconds>(1s) / 100; // conversion to ms needed to prevent truncation in integral division
constexpr auto repetitions = 30s / period;
auto const start = Clock::now();
for (std::remove_const_t<decltype(repetitions)> i = 1; i <= repetitions; ++i)
{
f();
std::this_thread::sleep_until(start + period * i);
}
}
Note that this code will not work, if f() takes more than 10ms to complete.
Note: The exact duration of the sleep_until calls may be off, but the fact that the sleep duration is calculated based on the current time by sleep_until should result in any errors being kept to a minimum.
You can't time it perfectly, but you can try like this:
using std::chrono::steady_clock;
using namespace std::this_thread;
auto running{ true };
auto frameTime{ std::chrono::duration_cast<steady_clock::duration>(std::chrono::duration<float>{1.0F / 100.0F}) }
auto delta{ steady_clock::duration::zero() };
while (running) {
auto t0{ steady_clock::now() };
while (delta >= frameTime) {
call_your_function(frameTime);
delta -= frameTime;
}
if (const auto dt{ delta + steady_clock::now() - t0 }; dt < frameTime) {
sleep_for(frameTime - dt);
delta += steady_clock::now() - t0;
}
else {
delta += dt;
}
}

Best way to implement a high resolution timer

What is the best way in C++11 to implement a high-resolution timer that continuously checks for time in a loop, and executes some code after it passes a certain point in time? e.g. check what time it is in a loop from 9am onwards and execute some code exactly at 11am. I require the timing to be precise (i.e. no more than 1 microsecond after 9am).
I will be implementing this program on Linux CentOS 7.3, and have no issues with dedicating CPU resources to execute this task.
Instead of implementing this manually, you could use e.g. a systemd.timer. Make sure to specify the desired accuracy which can apparently be as precise as 1us.
a high-resolution timer that continuously checks for time in a loop,
First of all, you do not want to continuously check the time in a loop; that's extremely inefficient and simply unnecessary.
...executes some code after it passes a certain point in time?
Ok so you want to run some code at a given time in the future, as accurately as possible.
The simplest way is to simply start a background thread, compute how long until the target time (in the desired resolution) and then put the thread to sleep for that time period. When your thread wakes up, it executes the actual task. This should be accurate enough for the vast majority of needs.
The std::chrono library provides calls which make this easy:
System clock in std::chrono
High resolution clock in std::chrono
Here's a snippet of code which does what you want using the system clock (which makes it easier to set a wall clock time):
// c++ --std=c++11 ans.cpp -o ans
#include <thread>
#include <iostream>
#include <iomanip>
// do some busy work
int work(int count)
{
int sum = 0;
for (unsigned i = 0; i < count; i++)
{
sum += i;
}
return sum;
}
std::chrono::system_clock::time_point make_scheduled_time (int yyyy, int mm, int dd, int HH, int MM, int SS)
{
tm datetime = tm{};
datetime.tm_year = yyyy - 1900; // Year since 1900
datetime.tm_mon = mm - 1; // Month since January
datetime.tm_mday = dd; // Day of the month [1-31]
datetime.tm_hour = HH; // Hour of the day [00-23]
datetime.tm_min = MM;
datetime.tm_sec = SS;
time_t ttime_t = mktime(&datetime);
std::chrono::system_clock::time_point scheduled = std::chrono::system_clock::from_time_t(ttime_t);
return scheduled;
}
void do_work_at_scheduled_time()
{
using period = std::chrono::system_clock::period;
auto sched_start = make_scheduled_time(2019, 9, 17, // date
00, 14, 00); // time
// Wait until the scheduled time to actually do the work
std::this_thread::sleep_until(sched_start);
// Figoure out how close to scheduled time we actually awoke
auto actual_start = std::chrono::system_clock::now();
auto start_delta = actual_start - sched_start;
float delta_ms = float(start_delta.count())*period::num/period::den * 1e3f;
std::cout << "worker: awoken within " << delta_ms << " ms" << std::endl;
// Now do some actual work!
int sum = work(12345);
}
int main()
{
std::thread worker(do_work_at_scheduled_time);
worker.join();
return 0;
}
On my laptop, the typical latency is about 2-3ms. If you use the high_resolution_clock you should be able to get even better results.
There are other APIs you could use too, such as Boost where you could use ASIO to implement high res timeout.
I require the timing to be precise (i.e. no more than 1 microsecond after 9am).
Do you really need it to be accurate to the microsecond? Consider that at this resolution, you will also need to take into account all sorts of other factors, including system load, latency, clock jitter, and so on. Your code can start to execute at close to that time, but that's only part of the problem.
My suggestion would be to use timer_create(). This allows you to get notified by a signal at a given time. You can then implement your action in the signal handler.
In any case you should be aware that the accuracy of course depends on the system clock accuracy.

c++ while loop timer varying wildly in accuracy

I am trying to use a while loop to create a timer that consistently measures out 3000μs (3 ms) and while it works most of the time, other times the timer can be late by as much as 500μs. Why does this happen and is there a more precise way to make a timer like this?
int getTime() {
chrono::microseconds μs = chrono::duration_cast< chrono::microseconds >(
chrono::system_clock::now().time_since_epoch() //Get time since last epoch in μs
);
return μs.count(); //Return as integer
}
int main()
{
int target = 3000, difference = 0;
while (true) {
int start = getTime(), time = start;
while ((time-start) < target) {
time = getTime();
}
difference = time - start;
if (difference - target > 1) { //If the timer wasn't accurate to within 1μs
cout << "Timer missed the mark by " + to_string(difference - target) + " microseconds" << endl; //Log the delay
}
}
return 0;
}
I would expect this code to log delays that are consistently within 5 or so μs, but the console output looks like this.
Edit to clarify: I'm running on Windows 10 Enterprise Build 16299, but the behavior persists on a Debian virtual machine.
You need to also take into account other running processes. The operating system is likely preempting your process to give CPU time to those other processes/threads, and will non-deterministically return control to your process/thread running this timer.
Granted, this is not 100% true when we consider real-time operating systems or flat-schedulers. But this is likely the case in your code if you're running on a general purpose machine.
Since you are running on Windows, that RTOS is responsible for keeping time through NTP, as C++ has no built-in functions for it. Check out this Windows API for the SetTimer() function: http://msdn.microsoft.com/en-us/library/ms644906(v=vs.85).aspx.
If you want the best and most high-resolution clock through C++, check out the chrono library:
#include <iostream>
#include <chrono>
#include "chrono_io"
int main()
{
typedef std::chrono::high_resolution_clock Clock;
auto t1 = Clock::now();
auto t2 = Clock::now();
std::cout << t2-t1 << '\n';
}

Measure the time of a child process

I want to measure the time of a child process
#include <time.h>
int main() {
...
time t begin, end, diff;
...
//fork etc in here
time(&begin);
...
//some things
...
time(&end);
return 0;
}
I have 2 Time stamps now, is there a way to format it to the run-time of the child process to hours:minutes:seconds?
I have tried
diff = end - begin;
But I get a huge number then.
(Sorry for only a part of the code but it's on another PC.)
You can compute the difference with difftime:
double diff_in_seconds = difftime(end, begin);
or, for better precision, use one of C++11 chrono monotonic clocks such as std::steady_clock:
auto start = std::chrono::steady_clock::now();
// some things
auto end = std::chrono::steady_clock::now();
double time_in_seconds = std::chrono::duration_cast<double>(end - start).count();
See also this answer for details why you should use a monotonic clock.
You should probably compute the difference using difftime instead of subtraction, in case your system uses some other format for time_t besides "integer number of seconds".
difftime returns the number of seconds between the two times, as a double. It's then a simple matter of arithmetic to convert to hours, minutes and seconds.
The attempt in the question is a C way, not C++. In C++11 (assuming you have one), you can get 2 time points and then cast the difference between them to the units you need, as in the example here: http://en.cppreference.com/w/cpp/chrono/duration/duration_cast
Nearly copying the code:
auto t1 = std::chrono::high_resolution_clock::now();
// Call your child process here
auto t2 = std::chrono::high_resolution_clock::now();
std::cout << "Child process took "
<< std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1).count()
<< " milliseconds\n";

c++ get milliseconds since some date

I need some way in c++ to keep track of the number of milliseconds since program execution. And I need the precision to be in milliseconds. (In my googling, I've found lots of folks that said to include time.h and then multiply the output of time() by 1000 ... this won't work.)
clock has been suggested a number of times. This has two problems. First of all, it often doesn't have a resolution even close to a millisecond (10-20 ms is probably more common). Second, some implementations of it (e.g., Unix and similar) return CPU time, while others (E.g., Windows) return wall time.
You haven't really said whether you want wall time or CPU time, which makes it hard to give a really good answer. On Windows, you could use GetProcessTimes. That will give you the kernel and user CPU times directly. It will also tell you when the process was created, so if you want milliseconds of wall time since process creation, you can subtract the process creation time from the current time (GetSystemTime). QueryPerformanceCounter has also been mentioned. This has a few oddities of its own -- for example, in some implementations it retrieves time from the CPUs cycle counter, so its frequency varies when/if the CPU speed changes. Other implementations read from the motherboard's 1.024 MHz timer, which does not vary with the CPU speed (and the conditions under which each are used aren't entirely obvious).
On Unix, you can use GetTimeOfDay to just get the wall time with (at least the possibility of) relatively high precision. If you want time for a process, you can use times or getrusage (the latter is newer and gives more complete information that may also be more precise).
Bottom line: as I said in my comment, there's no way to get what you want portably. Since you haven't said whether you want CPU time or wall time, even for a specific system, there's not one right answer. The one you've "accepted" (clock()) has the virtue of being available on essentially any system, but what it returns also varies just about the most widely.
See std::clock()
Include time.h, and then use the clock() function. It returns the number of clock ticks elapsed since the program was launched. Just divide it by "CLOCKS_PER_SEC" to obtain the number of seconds, you can then multiply by 1000 to obtain the number of milliseconds.
Some cross platform solution. This code was used for some kind of benchmarking:
#ifdef WIN32
LARGE_INTEGER g_llFrequency = {0};
BOOL g_bQueryResult = QueryPerformanceFrequency(&g_llFrequency);
#endif
//...
long long osQueryPerfomance()
{
#ifdef WIN32
LARGE_INTEGER llPerf = {0};
QueryPerformanceCounter(&llPerf);
return llPerf.QuadPart * 1000ll / ( g_llFrequency.QuadPart / 1000ll);
#else
struct timeval stTimeVal;
gettimeofday(&stTimeVal, NULL);
return stTimeVal.tv_sec * 1000000ll + stTimeVal.tv_usec;
#endif
}
The most portable way is using the clock function.It usually reports the time that your program has been using the processor, or an approximation thereof. Note however the following:
The resolution is not very good for GNU systems. That's really a pity.
Take care of casting everything to double before doing divisions and assignations.
The counter is held as a 32 bit number in GNU 32 bits, which can be pretty annoying for long-running programs.
There are alternatives using "wall time" which give better resolution, both in Windows and Linux. But as the libc manual states: If you're trying to optimize your program or measure its efficiency, it's very useful to know how much processor time it uses. For that, calendar time and elapsed times are useless because a process may spend time waiting for I/O or for other processes to use the CPU.
Here is a C++0x solution and an example why clock() might not do what you think it does.
#include <chrono>
#include <iostream>
#include <cstdlib>
#include <ctime>
int main()
{
auto start1 = std::chrono::monotonic_clock::now();
auto start2 = std::clock();
sleep(1);
for( int i=0; i<100000000; ++i);
auto end1 = std::chrono::monotonic_clock::now();
auto end2 = std::clock();
auto delta1 = end1-start1;
auto delta2 = end2-start2;
std::cout << "chrono: " << std::chrono::duration_cast<std::chrono::duration<float>>(delta1).count() << std::endl;
std::cout << "clock: " << static_cast<float>(delta2)/CLOCKS_PER_SEC << std::endl;
}
On my system this outputs:
chrono: 1.36839
clock: 0.36
You'll notice the clock() method is missing a second. An astute observer might also notice that clock() looks to have less resolution. On my system it's ticking by in 12 millisecond increments, terrible resolution.
If you are unable or unwilling to use C++0x, take a look at Boost.DateTime's ptime microsec_clock::universal_time().
This isn't C++ specific (nor portable), but you can do:
SYSTEMTIME systemDT;
In Windows.
From there, you can access each member of the systemDT struct.
You can record the time when the program started and compare the current time to the recorded time (systemDT versus systemDTtemp, for instance).
To refresh, you can call GetLocalTime(&systemDT);
To access each member, you would do systemDT.wHour, systemDT.wMinute, systemDT.wMilliseconds.
To get more information on SYSTEMTIME.
Do you want wall clock time, CPU time, or some other measurement? Also, what platform is this? There is no universally portable way to get more precision than time() and clock() give you, but...
on most Unix systems, you can use gettimeofday() and/or clock_gettime(), which give at least microsecond precision and access to a variety of timers;
I'm not nearly as familiar with Windows, but one of these functions probably does what you want.
You can try this code (get from StockFish chess engine source code (GPL)):
#include <iostream>
#include <stdio>
#if !defined(_WIN32) && !defined(_WIN64) // Linux - Unix
# include <sys/time.h>
typedef timeval sys_time_t;
inline void system_time(sys_time_t* t) {
gettimeofday(t, NULL);
}
inline long long time_to_msec(const sys_time_t& t) {
return t.tv_sec * 1000LL + t.tv_usec / 1000;
}
#else // Windows and MinGW
# include <sys/timeb.h>
typedef _timeb sys_time_t;
inline void system_time(sys_time_t* t) { _ftime(t); }
inline long long time_to_msec(const sys_time_t& t) {
return t.time * 1000LL + t.millitm;
}
#endif
struct Time {
void restart() { system_time(&t); }
uint64_t msec() const { return time_to_msec(t); }
long long elapsed() const {
return long long(current_time().msec() - time_to_msec(t));
}
static Time current_time() { Time t; t.restart(); return t; }
private:
sys_time_t t;
};
int main() {
sys_time_t t;
system_time(&t);
long long currentTimeMs = time_to_msec(t);
std::cout << "currentTimeMs:" << currentTimeMs << std::endl;
Time time = Time::current_time();
for (int i = 0; i < 1000000; i++) {
//Do something
}
long long e = time.elapsed();
std::cout << "time elapsed:" << e << std::endl;
getchar(); // wait for keyboard input
}