Google Cloud BigTable connection setup time - google-cloud-platform

I'm testing out some BigTable queries on a 3-node cluster using the Go client, like:
r, err = tbl.ReadRow(ctx, "key1")
I'm getting results back within a few ms:
query 1: 129.748451ms
query 2: 3.256158ms
query 3: 2.474257ms
query 4: 2.814601ms
query 5: 2.850737ms
As you can see there's a significant setup connection delay on the first query.
Can anyone provide feedback whether this would be an acceptable value?
The queries originate from a GCE VM in the same zone (europe-west1-c) as the BigTable cluster.
Furthermore, is there any support planned to pool the BigTable connections when running on App Engine?

Bigtable Connections in Go are initialized asynchronously from when bigtable.NewClient() is called.
Connections are expensive objects that have significant initialization time.
The first ReadRow() call will block on waiting for that connection to finish set up. If you were to wait some amount of time between making the NewClient() call and the first ReadRow() you should not see higher latency in the first read.

Related

Google Cloud Pub/Sub and multiple receivers

My usecase is this:
I have X instances of App Engine NodeJS backend.
I use Redis Cloud Memorystore as caching layer.
To minimize Redis use, and add performance, each backend instance also has its own local caching.
Rules are like this, when a request comes in to a backend instance:
first check local cache
if found, use that.
if not found, look in Redis cache
update local cache with data from Redis
The local cache times out much quicker than the Redis cache, but I would still like to be able to send a "clear cache" message to all instances.
The entire thing works extremely well, but I'd like to be able to update the local caches by sending a pub/sub message which in turn would be received by all backend instances, clearing the local caches.
Yes, I could just opt not to use local caching and just Redis MemoryStore, but that would mean network traffic for every Redis lookup, slower responses, and more Redis resource use.
Is this possible at all, or is there only 1 receiver for each pushed message?
I know the receiver can opt not to ack a message, but how to make sure all instances have received, and how to know that has happened, so ack can be sent by the last instance? Seems impossible
Your use case is uncommon, but IMO, you have 2 solutions:
Use Redis
Put a clear cache datetime in redis. For each request, the App Engine instance call for the clear cache datetime. If the local value (the previous clear cache value, or null if there is no precedent call (new instance case)) is behind the Redis value, clear the local cache. Else continue
Use PubSub
(Not my preferred) When an instance start, create a pull subscription on a PubSub topic. Pull the messages. When you receive one, clear the cache.
With PubSub, when you publish a message in a topic, it is duplicated in all subscription. With that pattern, all the instances will have a subscription and can receive the message.
However, you could reach the number of subscription quotas. To limit that, set the expiration value to 1 day, to clean automatically the subscription after 1 day without any subscriber.
Not sure there is a tear down notice on App Engine instance to let you the time to delete the subscription nicely.

Spring Data Neo4J - Unable to acquire connection from pool within configured maximum time

We have a Reactive REST API using Spring Data Neo4j (SpringBoot v2.7.5) deployed to Kubernetes. When running a stress test to determine the breaking point, once the volume of requests that the service can handle has been breached, the service does not auto-recover, even after the load has dropped to a level at which the service can handle.
After the service has fallen over the Neo4J health indicator shows:
“org.neo4j.driver.exceptions.ClientException: Unable to acquire connection from the pool within configured maximum time of 60000ms”
With respect to connection/configuration settings we are using defaults configured by SDN.
Observations:
Up until the point at which the service breaks only a small number of connections are utilised, at the point at which it breaks the connections in use jumps up to the max pool size and the above mentioned error is observed. No matter how much time passes (even well beyond the max connection lifetime) the service is unable to acquire a connection from the pool. Upon manually shutting down and restarting the service/pod the service returns to a healthy state.
As an interim solution we now check the Neo4J health indicator, if the mentioned error is present the liveness state is set to down which triggers Kubernetes to restart the service automatically. However, I’m wondering if there is an underlying issue with the connections in the pool not getting ‘cleaned up’?
You can take a look at this discussion https://github.com/spring-projects/spring-data-neo4j/issues/2632
I had the same issue. The problem is that either Spring Framework or Neo4j reactive transaction manager doesn't close connections in a complex reactive flow e.g. when there are a lot of inner calls/mappings and somewhere inside an exception is thrown.
So as a workaround you can add #Transactional in such places to avoid multiple transactions to be created.

Running background processes in Google Cloud Run

I have a lightweight server that runs cron jobs at a given time. As I understand Google Cloud Run only processes incoming requests and then becomes idle after a short time if there is no other request to process. Hence, it is not advisable to deploy that cron service to Cloud Run.
Out of curiosity, I deployed the following server that starts up and then prints a log every hour.
const express = require('express');
const app = express();
setInterval(() => console.log('ping!'), 1000 * 60 * 60);
app.listen(process.env.PORT, () => {
console.log('server listening');
})
I deployed it with a minimum and maximum instance count of 1. It has not received any request and when I checked back the next day, it was precisely printing the log every hour. Was this coincidence or can I use this setup for production?
If you set the min instance to 1 and the CPU always on to true, yes, you can perform background compute intensive processing without CPU Throttling (in your hello world case, you can use the few CPU % allowed to the idle instance without the CPU always on option).
BUT, and the but is very important, you will pay for 1 Cloud Run instance always up. In addition, is you receive request, you can scale up and have more than 1 instance up and running. Does it make sense to have several instances with the same CRON scheduling? (except if you set the max instance to 1).
At the end, the best pattern is to host the scheduling outside, on Cloud Scheduler, and then to query your instance to perform the task. It's serverless, you can handle several task in parallel, it's scalable.
From my understanding no.
From the documentation here, Google indicates that the CPU of idle instances is throttled to nearly zero. I suppose this means that very simple operation can still be performed (e.g. logging a string every hour). I guess you could test it more extensively by doing some more complex operations and evaluate the processing time of these operations.
Either way, I would not count on it in a production environment. There is no guarantee that the CPU "throttled to nearly zero" will be able to complete the operations you need in a reasonable time delay.

How to do "live request batching" in gcloud

Here is my situation:
I have a rather slow tensorflow model that runs on GPU (2 to 3 seconds per prediction)
A prediction for a single 'entity' vs a prediction for 8 'entities' takes about the same time
This means I could be 8 times as efficient by simply combining multiple predictions in the same request
I have a service on AI platform serving requests to that model
The service works for slow request rates but has trouble scaling up (anything over 4 QPS is too much to handle)
My question then is:
Is there a standard way / best practice for batching live client requests:
When receiving a request, wait a little bit for other requests
After a while, or when the number of requests reaches a set number, forward the requests in a single "batch" to another service.
If traffic is low, the delay will expire before the batch is full, but since traffic is low, that's not an issue
If traffic is high, the batch will be full before the delay, and the client will have to wait less
I have an almost-working solution with app-engine + firebase (for hosting the shared 'queue') but implementing the delay is giving me trouble (app engine doesn't seem to like python's threading.Timer
I'd appreciate something that could work with app engine, but at this point I'm open to any suggestions (as long as it is applicable on google cloud).
Thanks!
The perfect (but not the cheapest) is to use Dataflow.
When a prediction request comes in, publish it in PubSub
Deploy a dataflow in streaming mode, with fixed windows of X minutes, and another trigger, not accumulated, after Y event in the window.
When a window trigger is performed (either on the number of messages or on the timer) do the batch processing
You can imagine other designs, simpler/cheaper.
Still publish the prediction requests in PubSub
You can schedule a Cloud Functions, or a Cloud Run every X minutes to pull the pubsub subscription and then to trigger the batch job. But, it's a fixed time.
When you publish the message in PubSub, you can also store, in firestore for example, and increase a counter and the date of the 1st message published in PubSub.
If the number of message is above your threshold, perform a request to your other process that pull the PubSub subscription and run the batch processing (as before #1). Reset the counter value and the message date value
Set up a cloud scheduler which check, every minute, the value of the 1st message date in Firestore. If it's above your time limit, perform a request to your other process that pull the PubSub subscription and run the batch processing (as before #1). Reset the counter value and the message date value
The #2 will generate a lot of Firestore read/write, but will be cheaper than dataflow.

Amazon Elasticache Failover

We have been using AWS Elasticache for about 6 months now without any issues. Every night we have a Java app that runs which will flush DB 0 of our redis cache and then repopulate it with updated data. However we had 3 instances between July 31 and August 5 where our DB was successfully flushed and then we were not able to write the new data to the database.
We were getting the following exception in our application:
redis.clients.jedis.exceptions.JedisDataException:
redis.clients.jedis.exceptions.JedisDataException: READONLY You can't
write against a read only slave.
When we look at the cache events in Elasticache we can see
Failover from master node prod-redis-001 to replica node
prod-redis-002 completed
We have not been able to diagnose the issue and since the app was running fine for the past 6 months I am wondering if it is something related to a recent Elasticache release that was done on the 30th of June.
https://aws.amazon.com/releasenotes/Amazon-ElastiCache
We have always been writing to our master node and we only have 1 replica node.
If someone could offer any insight it would be much appreciated.
EDIT: This seems to be an intermittent problem. Some days it will fail other days it runs fine.
We have been in contact with AWS support for the past few weeks and this is what we have found.
Most Redis requests are synchronous including the flush so it will block all other requests. In our case we are actually flushing 19m keys and it takes more then 30 seconds.
Elasticache performs a health check periodically and since the flush is running the health check will be blocked, thus causing a failover.
We have been asking the support team how often the health check is performed so we can get an idea of why our flush is only causing a failover 3-4 times a week. The best answer we can get is "We think its every 30 seconds". However our flush consistently takes more then 30 seconds and doesn't consistently fail.
They said that they may implement the ability to configure the timing of the health check however they said this would not be done anytime soon.
The best advice they could give us is:
1) Create a completely new cluster for loading the new data on, and
instead of flushing the previous cluster, re-point your application(s)
to the new cluster, and remove the old one.
2) If the data that you are flushing is an update version of the data,
consider not flushing, but updating and overwriting new keys?
3) Instead of flushing the data, set the expiry of the items to be
when you would normally flush, and let the keys be reclaimed (possibly
with a random time to avoid thundering herd issues), and then reload
the data.
Hope this helps :)
Currently for Redis versions from 6.2 AWS ElastiCache has a new feature of thread monitoring. So the health check doesn't happen in the same thread as all other actions of Redis. Redis can continue to proceed a long command / lua script, but will still considered healthy. Because of this new feature failovers should happen less.