Related
I'm writing a scanner/parser combination using Flex and Bison, if possible I would like to avoid using C++ specific features of both programs but nevertheless I need to access a C++ library from the source file generated by Bison. At the moment I'm compiling the source file generated by Flex as a C program.
One thing I thought I might be able to do is to declare STL type members inside Bison's %union statement, e.g.:
%union {
std::string str;
};
I quickly realized that this cannot work because this produces a union that is included by the Flex source file. I then thought I might just compile that with a C++ compiler as well but the statement above is already rejected when running bison:
error: expected specifier-qualifier-list before ‘std’
I don't really want to go through the trouble of copying and concatenating strings with C stdlib functions throughout my parser. What can I do in order to make the scanner return STL types to the parser?
EDIT: the linked duplicate does not really answer my question, the answers to that one only show how to compile both files using a C++ compiler which is not my issue.
You can certainly compile both your generated scanner and parser with C++, even if you use the default C skeletons (and I agree that the C++ skeletons are badly documented and excessively complicated). So there is nothing stopping you from using std::string inside your parser.
However, that won't let you put a std::string inside a union, because you can't just toss a class with a non-trivial destructor into a union. It's possible to work around this limitation by explicitly declaring the semantic type and providing explicit constructors and destructors, but it's going to be a fair amount of work and it may well not be worth it.
That still leaves you with a couple of options. One is to use a pointer to a std::string, which means that your scanner action has to do something like:
[[:alpha:]][[:alnum:]_]* yylval.strval = new std::string(yytext);
Another one is to just use C strings, leading to:
[[:alpha:]][[:alnum:]_]* yylval.strval = strdup(yytext);
In both cases, you'll end up having to manually manage the allocated memory; C++'s smart pointers won't help you because they also have non-trivial destructors, so they can't be easily shoe-horned into semantic unions either.
Since it appears that you're going to eventually make the token into a std::string, you might as well do it from the start using the first option above. Since most tokens are short and most C++ libraries now implement a short string optimization, new std::string(yytext) will frequently require only one memory allocation (and if it requires two, the library will transparently handle the second one).
The format of the output of type_info::name() is implementation specific.
namespace N { struct A; }
const N::A *a;
typeid(a).name(); // returns e.g. "const struct N::A" but compiler-specific
Has anyone written a wrapper that returns dependable, predictable type information that is the same across compilers. Multiple templated functions would allow user to get specific information about a type. So I might be able to use:
MyTypeInfo::name(a); // returns "const struct N::A *"
MyTypeInfo::base(a); // returns "A"
MyTypeInfo::pointer(a); // returns "*"
MyTypeInfo::nameSpace(a); // returns "N"
MyTypeInfo::cv(a); // returns "const"
These functions are just examples, someone with better knowledge of the C++ type system could probably design a better API. The one I'm interested in in base(). All functions would raise an exception if RTTI was disabled or an unsupported compiler was detected.
This seems like the sort of thing that Boost might implement, but I can't find it in there anywhere. Is there a portable library that does this?
There are some limitations to do such things in C++, so you probably won't find exactly what you want in the near future. The meta-information about the types that the compiler inserts in the compiled code is also implementation-specific to the RTL used by the compiler, so it'd be difficult for a third-party library to do a good job without relying to undocumented features of each specific compiler that might break in later versions.
The Qt framework has, to my knowledge, the nearest thing to what you intended. But they do that completely independent from RTTI. Instead, they have their own "compiler" that parses the source code and generates additional source modules with the meta-information. Then, you compile+link these modules along with your program and use their API to get the information. Take a look at http://doc.qt.nokia.com/latest/metaobjects.html
Jeremy Pack (from Boost Extension plugin framework) appears to have written such a thing:
http://blog.redshoelace.com/2009/06/resource-management-across-dll.html
3. RTTI does not always function as expected across DLL boundaries. Check out the type_info classes to see how I deal with that.
So you could have a look there.
PS. I remembered because I once fixed a bug in that area; this might still add information so here's the link: https://stackoverflow.com/a/5838527/85371
GCC has __cxa_demangle https://gcc.gnu.org/onlinedocs/libstdc++/manual/ext_demangling.html
If there are such extensions for all compilers you target, you could use them to write a portable function with macros to detect the compiler.
The task
I am trying to work out how best to add C++0x's override identifier to all existing methods that are already overrides in a large body of C++ code, without doing it manually.
(We have many, many hundreds of thousands of lines of code, and doing it manually would be a complete non-starter.)
Current idea
Our coding standards say that we should add the virtual keyword against all implicitly virtual methods in derived classes, even though strictly unnecessary (to aid comprehension).
So if I were to script the addition myself, I'd write a script that read all our headers, found all functions beginning with virtual, and insert override before the following semi-colon. Then compile it on a compiler that supports override, and fix all the errors in base classes.
But I'd really much rather not use this home-grown way, as:
it's obviously going to be tedious and error-prone.
not everyone has remembered, every time, to add the virtual keyword, so this method would miss out some existing overrides
Is there an existing tool?
So, is there already a tool that parses C++ code, detects existing methods that overrides, and appends override to their declarations?
(I am aware of static analysis tools such as PC-lint that warn about functions that look like they should be overrides. What I'm after is something that would actually munge our code, so that future errors in overrides will be detected at compiler-time, rather than later on in static analysis)
(In case anyone is tempted to point out that C++03 doesn't support 'override'... In practice, I'd be adding a macro, rather than the actual "override" identifier, to use our code on older compilers that don't support this feature. So after the identifier was added, I'd run a separate script to replace it with whatever macro we're going to use...)
Thanks in advance...
There is a tool under development by the LLVM project called "cpp11-migrate" which currently has the following features:
convert loops to range-based for loops
convert null pointer constants (like NULL or 0) to C++11 nullptr
replace the type specifier in variable declarations with the auto type specifier
add the override specifier to applicable member functions
This tool is documented here and should be released as part of clang 3.3.
However, you can download the source and build it yourself today.
Edit
Some more info:
Status of the C++11 Migrator - a blog post, dated 2013-04-15
cpp11-migrate User’s Manual
Edit 2: 2013-09-07
"cpp11-migrate" has been renamed to "clang-modernize". For windows users, it is now included in the new LLVM Snapshot Builds.
Edit 3: 2020-10-07
"clang-modernize" has bee renamed to "Clang-Tidy".
Our DMS Software Reengineering Toolkit with its C++11-capable C++ Front End can do this.
DMS is a general purpose program transformation system for arbitrary programming languages; the C++ front end allows it to process C++. DMS parses, builds ASTs and symbol tables that are accurate (this is hard to do for C++), provides support for querying properties of the AST nodes and trees, allows procedural and source-to-source transformations on the tree. After all changes are made, the modified tree can be regenerated with comments retained.
Your problem requires that you find derived virtual methods and change them. A DMS source-to-source transformation rule to do that would look something like:
source domain Cpp. -- tells DMS the following rules are for C++
rule insert_virtual_keyword (n:identifier, a: arguments, s: statements):
method_declaration -> method_declaration " =
" void \n(\a) { \s } " -> " virtual void \n(\a) { \s }"
if is_implicitly_virtual(n).
Such rules match against the syntax trees, so they can't mismatch to a comment, string, or whatever. The funny quotes are not C++ string quotes; they are meta-quotes to allow the rule language to know that what is inside them has to be treated as target language ("Cpp") syntax. The backslashes are escapes from the target language text, allowing matches to arbitrary structures e.g., \a indicates a need for an "a", which is defined to be the syntactic category "arguments".
You'd need more rules to handle cases where the function returns a non-void result, etc. but you shouldn't need a lot of them.
The fun part is implementing the predicate (returning TRUE or FALSE) controlling application of the transformation: is_implicitly_virtual. This predicate takes (an abstract syntax tree for) the method name n.
This predicate would consult the full C++ symbol table to determine what n really is. We already know it is a method from just its syntactic setting, but we want to know in what class context.
The symbol table provides the linkage between the method and class, and the symbol table information for the class tells us what the class inherits from, and for those classes, which methods they contain and how they are declared, eventually leading to the discovery (or not) that the parent class method is virtual. The code to do this has to be implemented as procedural code going against the C++ symbol table API. However, all the hard work is done; the symbol table is correct and contains references to all the other data needed. (If you don't have this information, you can't possibly decide algorithmically, and any code changes will likely be erroneous).
DMS has been used to carry out massive changes on C++ code in the past using program transformations.(Check the Papers page at the web site for C++ rearchitecting topics).
(I'm not a C++ expert, merely the DMS architect, so if I have minor detail wrong, please forgive.)
I did something like this a few months ago with about 3 MB worth of code and while you say that "doing it manually would be a complete non-starter," I think it is the only way. The reason is that you should be applying the override keyword to the prototypes that are intended to override base class methods. Any tool that adds it will put it on the prototypes that actually override base class methods. The compiler already knows which methods those are so adding the keyword doesn't change anything. (Please note that I am not terribly familiar with the new standard and I am assuming the override keyword is optional. Visual Studio has supported override since at least VS2005.)
I used a search for "virtual" in the header files to find most of them and I still occasionally find another prototype that is missing the override keyword.
I found two bugs by going through that.
Eclipse CDT has a working C++ parser and semantic utilities. The latest version IIRC also has markers for overriding methods.
It wouldn't require much code to write a plug-in which would base on that and rewrite the code to contain the override tags where appropriate.
one option is to
Enable suggest-override compiler warning And then write a script
which can insert override keyword to location pointed by the emitted warnings
I want to use C with templates on a embedded environment and I wanted to know what is the cost of compiling a C program with a C++ compiler?
I'm interested in knowing if there will be more code than the one the C compiler will generate.
Note that as the program is a C program, is expect to call the C++ compiler without exception and RTTI support.
Thanks,
Vicente
The C++ compiler may take longer to compile the code (since it has to build data structures for overload resolution, it can't know ahead of time that the program doesn't use overloads), but the resulting binary should be quite similar.
Actually, one important optimization difference is that C++ follows strict aliasing rules by default, while C requires the restrict keyword to enable aliasing optimizations. This isn't likely to affect code size much, but it could affect correctness and performance significantly.
There's probably no 'cost', assuming that the two compilers are of equivalent quality. The traditional objection to this is that C++ is much more complex and so it's more likely that a C++ compiler will have bugs in it.
Realistically, this is much less of a problem that it used to be, and I tend to do most of my embedded stuff now as a sort of horrible C/C++ hybrid - taking advantage of stronger typing and easier variable declaration rules, without incurring RTTI or exception handling overheads. If you're taking a given compiler (GCC, etc) and switching it from C to C++ mode, then much of what you have to worry about is common to the two languages anyway.
The only way to really know is for you to try it with the compilers you care about. A quick experiment here on a trivial program shows that the output is the same.
Your program will be linked to the C++ runtime library, not the C one. The C++ is larger as well.
Also, there are a couple of differences between C and C++ (aliases were already pointed out) so it may happen that your C code just does not compile in C++.
If it's C, then you can expect it will be exactly the same.
To elaborate: both C and C++ will forward their parse tree into the same backend that generates code (possibly via another intermediate representation), which means that if the code is functionally identical, the output will look the same (or nearly so).
Templates do "inflate" code, but you would otherwise have to write the same code or use macros to the same effect, so this is no "extra cost". Contrarily, the compiler may be able to optimize templates better in some cases.
A C++ compiler cannot compile C code. It can only compile C++, including a very ugly language which is the intersection of C and C++ and the worst of both worlds. Some C code will fail to compile at all on a C++ compiler, for example:
char *s = malloc(len+1);
While other C code will be compiled to the wrong thing, for example:
sizeof 'a'
I have found this extra-ordinary document Technical Report on C++ Performance. I have found there all the answers i was looking for.
Thanks to all that have answered this question.
There will be more code because that is what templates do. They are a stencil for generating (more) code.
Otherwise, you should see no differences between compiling a C program with a C compiler versus compiling with a C++ compiler.
If you don't use any of the extra "features" there should be no difference in size or behavior of the end result.
Although the C code will likely compile to something very similar (assuming there's no exception support enabled), using templates can very rapidly result in large binaries - you have to be careful, because every template instantiation can recursively result in other templates being implicitly instantiated as well.
There was a time when the C++ compiler linked in a bunch of C++ stuff even if the program didnt use it and you would see binaries that were 10 to 100 times larger than the C compiler would produce. I think a lot of that has gone away.
Since this is tagged "embedded", I assume its for embedded systems?
In that case, the major difference between C and C++ is the way C++ treats structs. All structs will be treated like classes, meaning they will have constructors.
All instances of structs/classes declared at file scope or as static will then have their constructors called before main() is executed, in a similar manner to static initialization, which you already have there no matter C or C++.
All these constructor calls at bootup is a major disadvantage in efficiency for embedded systems, where the code resides in NVM and not in RAM. Just like static initialization, it will create an ugly, undesired workload peak at the start of the program, where values from NVM are copied into the RAM.
There are ways around the static initialization in C/C++: most embedded compilers have an option to disable it. But since that is a non-standard setup, all code using statics would then have to be written so that it never uses any initialization values, but instead sets all static variables in runtime.
But as far as I know, there is no way around calling constructors, without violating the standard.
EDIT:
Here is source code executed in one such C++ system, Freescale HCS08 Codewarrior 6.3. This code is injected in the user program after static initialization, but before main() is executed:
static void Call_Constructors(void) {
int i;
...
i = (int)(_startupData.nofInitBodies - 1);
while (i >= 0) {
(&_startupData.initBodies->initFunc)[i](); /* call C++ constructors */
i--;
}
...
At the very least, this overhead code must be executed at program startup, no matter how efficient the compiler is at converting constructors into static initializtion.
C++ runtime start-up differs slightly from C start-up because it must invoke the constructors for global static objects before main() is called. This call loop is trivial and should not add much.
In the case of C++ code that is also entirely C compilable no static constructors will be present so the loop will not iterate.
In most cases apart from that, you will normally see no significant difference, in C++ you only pay for what you use.
After a few years coding in C++, I was recently offered a job coding in C, in the embedded field.
Putting aside the question of whether it's right or wrong to dismiss C++ in the embedded field, there are some features/idioms in C++ I would miss a lot. Just to name a few:
Generic, type-safe data structures (using templates).
RAII. Especially in functions with multiple return points, e.g. not having to remember to release the mutex on each return point.
Destructors in general. I.e. you write a d'tor once for MyClass, then if a MyClass instance is a member of MyOtherClass, MyOtherClass doesn't have to explicitly deinitialize the MyClass instance - its d'tor is called automatically.
Namespaces.
What are your experiences moving from C++ to C?
What C substitutes did you find for your favorite C++ features/idioms? Did you discover any C features you wish C++ had?
Working on an embedded project, I tried working in all C once, and just couldn't stand it. It was just so verbose that it made it hard to read anything. Also, I liked the optimized-for-embedded containers I had written, which had to turn into much less safe and harder to fix #define blocks.
Code that in C++ looked like:
if(uart[0]->Send(pktQueue.Top(), sizeof(Packet)))
pktQueue.Dequeue(1);
turns into:
if(UART_uchar_SendBlock(uart[0], Queue_Packet_Top(pktQueue), sizeof(Packet)))
Queue_Packet_Dequeue(pktQueue, 1);
which many people will probably say is fine but gets ridiculous if you have to do more than a couple "method" calls in a line. Two lines of C++ would turn into five of C (due to 80-char line length limits). Both would generate the same code, so it's not like the target processor cared!
One time (back in 1995), I tried writing a lot of C for a multiprocessor data-processing program. The kind where each processor has its own memory and program. The vendor-supplied compiler was a C compiler (some kind of HighC derivative), their libraries were closed source so I couldn't use GCC to build, and their APIs were designed with the mindset that your programs would primarily be the initialize/process/terminate variety, so inter-processor communication was rudimentary at best.
I got about a month in before I gave up, found a copy of cfront, and hacked it into the makefiles so I could use C++. Cfront didn't even support templates, but the C++ code was much, much clearer.
Generic, type-safe data structures (using templates).
The closest thing C has to templates is to declare a header file with a lot of code that looks like:
TYPE * Queue_##TYPE##_Top(Queue_##TYPE##* const this)
{ /* ... */ }
then pull it in with something like:
#define TYPE Packet
#include "Queue.h"
#undef TYPE
Note that this won't work for compound types (e.g. no queues of unsigned char) unless you make a typedef first.
Oh, and remember, if this code isn't actually used anywhere, then you don't even know if it's syntactically correct.
EDIT: One more thing: you'll need to manually manage instantiation of code. If your "template" code isn't all inline functions, then you'll have to put in some control to make sure that things get instantiated only once so your linker doesn't spit out a pile of "multiple instances of Foo" errors.
To do this, you'll have to put the non-inlined stuff in an "implementation" section in your header file:
#ifdef implementation_##TYPE
/* Non-inlines, "static members", global definitions, etc. go here. */
#endif
And then, in one place in all your code per template variant, you have to:
#define TYPE Packet
#define implementation_Packet
#include "Queue.h"
#undef TYPE
Also, this implementation section needs to be outside the standard #ifndef/#define/#endif litany, because you may include the template header file in another header file, but need to instantiate afterward in a .c file.
Yep, it gets ugly fast. Which is why most C programmers don't even try.
RAII.
Especially in functions with multiple return points, e.g. not having to remember to release the mutex on each return point.
Well, forget your pretty code and get used to all your return points (except the end of the function) being gotos:
TYPE * Queue_##TYPE##_Top(Queue_##TYPE##* const this)
{
TYPE * result;
Mutex_Lock(this->lock);
if(this->head == this->tail)
{
result = 0;
goto Queue_##TYPE##_Top_exit:;
}
/* Figure out `result` for real, then fall through to... */
Queue_##TYPE##_Top_exit:
Mutex_Lock(this->lock);
return result;
}
Destructors in general.
I.e. you write a d'tor once for MyClass, then if a MyClass instance is a member of MyOtherClass, MyOtherClass doesn't have to explicitly deinitialize the MyClass instance - its d'tor is called automatically.
Object construction has to be explicitly handled the same way.
Namespaces.
That's actually a simple one to fix: just tack a prefix onto every symbol. This is the primary cause of the source bloat that I talked about earlier (since classes are implicit namespaces). The C folks have been living this, well, forever, and probably won't see what the big deal is.
YMMV
I moved from C++ to C for a different reason (some sort of allergic reaction ;) and there are only a few thing that I miss and some things that I gained. If you stick to C99, if you may, there are constructs that let you program quite nicely and safely, in particular
designated initializers (eventually
combined with macros) make
initialization of simple classes as
painless as constructors
compound literals for temporary variables
for-scope variable may help you to do scope bound resource management, in particular to ensure to unlock of mutexes or free of arrays, even under preliminary function returns
__VA_ARGS__ macros can be used to have default arguments to functions and to do code unrolling
inline functions and macros that combine well to replace (sort of) overloaded functions
The difference between C and C++ is the predictability of the code's behavior.
It is a easier to predict with great accuracy what your code will do in C, in C++ it might become a bit more difficult to come up with an exact prediction.
The predictability in C gives you better control of what your code is doing, but that also means you have to do more stuff.
In C++ you can write less code to get the same thing done, but (at leas for me) I have trouble occasionally knowing how the object code is laid out in memory and it's expected behavior.
Nothing like the STL exists for C.
There are libs available which provide similar functionality, but it isn't builtin anymore.
Think that would be one of my biggest problems... Knowing with which tool I could solve the problem, but not having the tools available in the language I have to use.
In my line of work - which is embedded, by the way - I am constantly switching back & forth between C and C++.
When I'm in C, I miss from C++:
templates (including but not limited to STL containers). I use them for things like special counters, buffer pools, etc. (built up my own library of class templates & function templates that I use in different embedded projects)
very powerful standard library
destructors, which of course make RAII possible (mutexes, interrupt disable, tracing, etc.)
access specifiers, to better enforce who can use (not see) what
I use inheritance on larger projects, and C++'s built-in support for it is much cleaner & nicer than the C "hack" of embedding the base class as the first member (not to mention automatic invocation of constructors, init. lists, etc.) but the items listed above are the ones I miss the most.
Also, probably only about a third of the embedded C++ projects I work on use exceptions, so I've become accustomed to living without them, so I don't miss them too much when I move back to C.
On the flip side, when I move back to a C project with a significant number of developers, there are whole classes of C++ problems that I'm used to explaining to people which go away. Mostly problems due to the complexity of C++, and people who think they know what's going on, but they're really at the "C with classes" part of the C++ confidence curve.
Given the choice, I'd prefer using C++ on a project, but only if the team is pretty solid on the language. Also of course assuming it's not an 8K μC project where I'm effectively writing "C" anyway.
Couple of observations
Unless you plan to use your c++ compiler to build your C (which is possible if you stick to a well define subset of C++) you will soon discover things that your compiler allows in C that would be a compile error in C++.
No more cryptic template errors (yay!)
No (language supported) object oriented programming
Pretty much the same reasons I have for using C++ or a mix of C/C++ rather than pure C. I can live without namespaces but I use them all the time if the code standard allows it. The reasons is that you can write much more compact code in C++. This is very usefull for me, I write servers in C++ which tend to crash now and then. At that point it helps a lot if the code you are looking at is short and consist. For example consider the following code:
uint32_t
ScoreList::FindHighScore(
uint32_t p_PlayerId)
{
MutexLock lock(m_Lock);
uint32_t highScore = 0;
for(int i = 0; i < m_Players.Size(); i++)
{
Player& player = m_Players[i];
if(player.m_Score > highScore)
highScore = player.m_Score;
}
return highScore;
}
In C that looks like:
uint32_t
ScoreList_getHighScore(
ScoreList* p_ScoreList)
{
uint32_t highScore = 0;
Mutex_Lock(p_ScoreList->m_Lock);
for(int i = 0; i < Array_GetSize(p_ScoreList->m_Players); i++)
{
Player* player = p_ScoreList->m_Players[i];
if(player->m_Score > highScore)
highScore = player->m_Score;
}
Mutex_UnLock(p_ScoreList->m_Lock);
return highScore;
}
Not a world of difference. One more line of code, but that tends to add up. Nomally you try your best to keep it clean and lean but sometimes you have to do something more complex. And in those situations you value your line count. One more line is one more thing to look at when you try to figure out why your broadcast network suddenly stops delivering messages.
Anyway I find that C++ allows me to do more complex things in a safe fashion.
yes! i have experienced both of these languages and what i found is C++ is more friendly language. It facilitates with more features. It is better to say that C++ is superset of C language as it provide additional features like polymorphism, interitance, operator and function overloading, user defined data types which is not really supported in C. The thousand lines of code is reduce to few lines with the help of object oriented programming that's the main reason of moving from C to C++.
I think the main problem why c++ is harder to be accepted in embedded environment is because of the lack of engineers that understand how to use c++ properly.
Yes, the same reasoning can be applied to C as well, but luckily there aren't that many pitfalls in C that can shoot yourself in the foot. C++ on the other hand, you need to know when not to use certain features in c++.
All in all, I like c++. I use that on the O/S services layer, driver, management code, etc.
But if your team doesn't have enough experience with it, it's gonna be a tough challenge.
I had experience with both. When the rest of the team wasn't ready for it, it was a total disaster. On the other hand, it was good experience.
Certainly, the desire to escape complex/messy syntax is understandable. Sometimes C can appear to be the solution. However, C++ is where the industry support is, including tooling and libraries, so that is hard to work around.
C++ has so many features today including lambdas.
A good approach is to leverage C++ itself to make your code simpler. Objects are good for isolating things under the hood so that at a higher level, the code is simpler. The core guidelines recommend concrete (simple) objects, so that approach can help.
The level of complexity is under the engineer's control. If multiple inheritance (MI) is useful in a scenario and one prefers that option, then one may use MI.
Alternatively, one can define interfaces, inherit from the interface(s), and contain implementing objects (composition/aggregation) and expose the objects through the interface using inline wrappers. The inline wrappers compile down to nothing, i.e., compile down to simple use of the internal (contained) object, yet the container object appears to have that functionality as if multiple inheritance was used.
C++ also has namespaces, so one should leverage namespaces even if coding in a C-like style.
One can use the language itself to create simpler patterns and the STL is full of examples: array, vector, map, queue, string, unique_ptr,... And one can control (to a reasonable extent) how complex their code is.
So, going back to C is not the way, nor is it necessary. One may use C++ in a C-like way, or use C++ multiple inheritance, or use any option in-between.