I'm trying to calculate the points in a cuboid given its centre (which is a Vector3) and the lengths of the sides along the x, y and z axis. I found the following on math.stackexchange.com: https://math.stackexchange.com/questions/107778/simplest-equation-for-drawing-a-cube-based-on-its-center-and-or-other-vertices which says I can use the following formulae:
The constructor for the World class is:
World::World(Vector3 o, float d1, float d2, float d3) : origin(o)
{
// If we consider an edge length to be d, we need to find r such that
// 2r = d in order to calculate the positions of each vertex in the world.
float r1 = d1 / 2,
r2 = d2 / 2,
r3 = d3 / 2;
for (int i = 0; i < 8; i++)
{
/* Sets up the vertices of the cube.
*
* #see http://bit.ly/1cc2RPG
*/
float x = o.getX() + (std::pow(-1, i&1) * r1),
y = o.getY() + (std::pow(-1, i&2) * r2),
z = o.getZ() + (std::pow(-1, i&4) * r3);
points[i] = Vector3(x, y, z);
std::cout << points[i] << "\n";
}
}
And I passing the following parameters to the constructor:
Vector3 o(0, 0, 0);
World w(o, 100.f, 100.f, 100.f);
The coordinates being output for all 8 vertices are:
(50, 50, 50)
(-50, 50, 50)
(50, 50, 50)
(-50, 50, 50)
(50, 50, 50)
(-50, 50, 50)
(50, 50, 50)
(-50, 50, 50)
Which cannot be correct. Any guidance would be very much appreciated!
The problem lies in the bitwise & inside your pow calls:
In the y and z components, they always return 0 and 2 or 4, respectively. -1^2 = -1^4 = 1, which is why the sign of these components is always positive. You could try (i&2)!=0 or (i&2) >> 1 for the y component instead. The same goes for the z component.
Change this:
float x = o.getX() + (std::pow(-1, i&1) * r1),
y = o.getY() + (std::pow(-1, i&2) * r2),
z = o.getZ() + (std::pow(-1, i&4) * r3);
To this:
float x = o.getX() + (std::pow(-1, (i ) & 1) * r1), // pow(-1, 0) == 1, pow(-1, 1) == -1
y = o.getY() + (std::pow(-1, (i >> 1) & 1) * r2), // pow(-1, 0) == 1, pow(-1, 1) == -1
z = o.getZ() + (std::pow(-1, (i >> 2) & 1) * r3); // pow(-1, 0) == 1, pow(-1, 1) == -1
Or even to this:
float x = o.getX() + (std::pow(-1, (i )) * r1), // pow(-1, {0, 2, 4, 6}) == 1, pow(-1, {1, 3, 5, 7}) == -1
y = o.getY() + (std::pow(-1, (i >> 1)) * r2), // pow(-1, {0, 2}) == 1, pow(-1, {1, 3}) == -1
z = o.getZ() + (std::pow(-1, (i >> 2)) * r3); // pow(-1, 0) == 1, pow(-1, 1) == -1
The problem is that as written even though the values you mask out identify weather or not the lengths need to be negated. They are not in the correct place value to get the desired properties from the exponentiation of -1.
Rewriting the code as I have above will solve this issue, however it would be more readable and in general more permanent just to unroll the loop and manually write if each one is an addition or subtraction without using the pow function.
Related
I'm a newbie that is driving nuts with a really simple problem :\ How to define a quad that has its center at position x=10 y=11 z=12 with side 5 and it is facing at camera.
My naive implementation:
Eigen::Vector3f quadPosition(10, 11, 12);
Eigen::Vector3f camPos(10, 5, 12);
float sideLength = 5;
Eigen::Affine3f transform = Eigen::Translation3f(position) * Eigen::AngleAxisf(3.141595, (camPos - quadPosition).normalized());
Eigen::Vector3f v0 = transform * Eigen::Vector3f(-sideLength / 2, -sideLength / 2, 0);
Eigen::Vector3f v1 = transform * Eigen::Vector3f(sideLength / 2, -sideLength / 2, 0);
Eigen::Vector3f v2 = transform * Eigen::Vector3f(sideLength / 2, sideLength / 2, 0);
Eigen::Vector3f v3 = transform * Eigen::Vector3f(-sideLength / 2, sideLength / 2, 0);
Eigen::MatrixXd verts;
verts.resize(4, 3);
verts(0, 0) = v0(0);
verts(0, 1) = v0(1);
verts(0, 2) = v0(2);
verts(1, 0) = v1(0);
verts(1, 1) = v1(1);
verts(1, 2) = v1(2);
verts(2, 0) = v2(0);
verts(2, 1) = v2(1);
verts(2, 2) = v2(2);
verts(3, 0) = v3(0);
verts(3, 1) = v3(1);
verts(3, 2) = v3(2);
Eigen::MatrixXi faces;
faces.resize(2, 3);
faces(0, 0) = 0;
faces(0, 1) = 1;
faces(0, 2) = 2;
faces(1, 0) = 0;
faces(1, 1) = 2;
faces(1, 2) = 3;
Any idea? Thank you in advance!
One common approach is to define the quad in terms of two opposed corners like: [0,0,0] and [1,1,1]. Now you know that anything in between 0 and 1 in X, Y and Z axis belong to the box ... as long as there is no rotation. Otherwise, you could also add it.
My function getHeightOfTerrain() is calling a barycentric formula function that is not returning the correct height for the one set test height in : heightMapFromArray[][].
I've tried watching OpenGL JAVA Game tutorials 14,21, 22, by "thin matrix" and I am confused on how to use my array: heightMapforBaryCentric in both of the supplied functions, and how to set the arguments that are passed to the baryCentic() function in some sort of manner so that I can solve the problem.
int creaateTerrain(int height, int width)
{
float holderY[6] = { 0.f ,0.f,0.f,0.f,0.f,0.f };
float scaleit = 1.5f;
float holder[6] = { 0.f,0.f,0.f,0.f,0.f,0.f };
for (int z = 0, z2 =0; z < iterationofHeightMap;z2++)
{
//each loop is two iterations and creates one quad (two triangles)
//however because each iteration is by two (i.e. : x=x+2) om bottom
//the amount of triangles is half the x value
//
//number of vertices : 80 x 80 x 6.
//column
for (int x = 0, x2 = 0; x < iterationofHeightMap;x2++)
{
//relevant - A : first triangle - on left triangle
//[row] [colum[]
holder[0] = heightMapFromArray[z][x];
//holder[0] = (float)imageData[(z / 2 * MAP_Z + (x / 2)) * 3];
//holder[0] = holder[0] / 255;// *scaleit;
vertices.push_back(glm::vec3(x, holder[0], z));
//match height map with online barycentric use
heightMapforBaryCentric[x2][z2] = holder[0];
holder[1] = heightMapFromArray[z+2][x];
//holder[1] = (float)imageData[(((z + 2) / 2 * MAP_Z + ((x) / 2))) * 3];
//holder[1] = holder[1] / 255;// 6 * scaleit;
vertices.push_back(glm::vec3(x, holder[1], z + 2));
//match height map with online barycentric use
heightMapforBaryCentric[x2][z2+1] = holder[1];
holder[2] = heightMapFromArray[z+2][x+2];
//holder[2] = (float)imageData[(((z + 2) / 2 * MAP_Z + ((x + 2) / 2))) * 3];
//holder[2] = holder[2] / 255;// *scaleit;
vertices.push_back(glm::vec3(x + 2, holder[2], z + 2));
////match height map with online barycentric use
heightMapforBaryCentric[x2+1][z2+1] = holder[2];
//relevant - B - second triangle (on right side)
holder[3] = heightMapFromArray[z][x];
//holder[3] = (float)imageData[((z / 2)*MAP_Z + (x / 2)) * 3];
//holder[3] = holder[3] / 255;// 256 * scaleit;
vertices.push_back(glm::vec3(x, holder[3], z));
holder[4] = heightMapFromArray[x+2][z+2];
//holder[4] = (float)imageData[(((z + 2) / 2 * MAP_Z + ((x + 2) / 2))) * 3];
//holder[4] = holder[4] / 255;// *scaleit;
vertices.push_back(glm::vec3(x + 2, holder[4], z + 2));
holder[5] = heightMapFromArray[x+2][z];
//holder[5] = (float)imageData[((z / 2)*MAP_Z + ((x + 2) / 2)) * 3];
//holder[5] = holder[5] / 255;// *scaleit;
vertices.push_back(glm::vec3(x + 2, holder[5], z));
x = x + 2;
}
z = z + 2;
}
return(1);
}
float getHeightOfTerrain(float worldX, float worldZ) {
float terrainX = worldX;
float terrainZ = worldZ;
int gridSquareSize = 2.0f;
gridX = (int)floor(terrainX / gridSquareSize);
gridZ = (int)floor(terrainZ / gridSquareSize);
xCoord = ((float)(fmod(terrainX, gridSquareSize)) / (float)gridSquareSize);
zCoord = ((float)(fmod(terrainZ, gridSquareSize)) / (float)gridSquareSize);
if (xCoord <= (1 - zCoord))
{
answer = baryCentric(
//left triangle
glm::vec3(0.0f, heightMapforBaryCentric[gridX][gridZ], 0.0f),
glm::vec3(0.0f, heightMapforBaryCentric[gridX][gridZ+1], 1.0f),
glm::vec3(1.0f, heightMapforBaryCentric[gridX+1][gridZ+1], 1.0f),
glm::vec2(xCoord, zCoord));
// if (answer != 1)
// {
// fprintf(stderr, "Z:gridx: %d gridz: %d answer: %f\n", gridX, gridZ,answer);
//
// }
}
else
{
//right triangle
answer = baryCentric(glm::vec3(0, heightMapforBaryCentric[gridX][gridZ], 0),
glm::vec3(1,heightMapforBaryCentric[gridX+1][gridZ+1], 1),
glm::vec3(1,heightMapforBaryCentric[gridX+1][gridZ], 0),
glm::vec2(xCoord, zCoord));
}
if (answer == 1)
{
answer = 0;
}
//answer = abs(answer - 1);
return(answer);
}
float baryCentric(glm::vec3 p1, glm::vec3 p2, glm::vec3 p3 , glm::vec2 pos) {
float det = (p2.z - p3.z) * (p1.x - p3.x) + (p3.x - p2.x) * (p1.z - p3.z);
float l1 = ((p2.z - p3.z) * (pos.x - p3.x) + (p3.x - p2.x) * (pos.y - p3.z)) / det;
float l2 = ((p3.z - p1.z) * (pos.x - p3.x) + (p1.x - p3.x) * (pos.y - p3.z)) / det;
float l3 = 1.0f - l1 - l2;
return (l1 * p1.y + l2 * p2.y + l3 * p3.y);
}
My expected results were that the center of the test grid's height to be the set value .5 and gradually less as the heights declined. My results were the heights being all the same, varied, or increasing. Usually these heights were under the value of one.
What I try to achieve is to rotate a line around rectangle center so it always stays in its bounds touching them (or having some padding).
Now I have the following routine for this, as you see I use tan calculations dividing my rectangle into 8 parts (red lines)
It works so far, but for some reason I have inconsistency using other calculation for radius drawing (green line), the lines won't always match as expected and I wonder why.
Basically the same could be achieved using just sin/cos calculations and finding cross points between lines and rect borders, but for some reason I could not get it to work.
std::pair<Point, Point>
MathUtils::calculateRotatingLine(Size size, double degrees)
{
auto width = size.width;
auto height = size.height;
double diagonalAngleTopRight = radiansToDegrees(atan((width / 2) / (height / 2)));
double diagonalAngleBottomRight = 90 + (90 - diagonalAngleTopRight);
double diagonalAngleBottomLeft = 180 + diagonalAngleTopRight;
double diagonalAngleTopLeft = 180 + diagonalAngleBottomRight;
double x, y;
/*
* *8*1*
* 7* *2
* 6* *3
* *5*4*
*/
// 1
if (degrees >= 0 && degrees <= diagonalAngleTopRight) {
x = width / 2 + height / 2 * tan(degreesToRadians(degrees));
y = 0;
}
// 2
else if (degrees > diagonalAngleTopRight && degrees <= 90) {
x = width;
y = width / 2 * tan(degreesToRadians(degrees - diagonalAngleTopRight));
}
// 3
else if (degrees > 90 && degrees <= diagonalAngleBottomRight) {
x = width;
y = height / 2 + width / 2 * tan(degreesToRadians(degrees - 90));
}
// 4
else if (degrees > diagonalAngleBottomRight && degrees <= 180) {
x = width - height / 2 * tan(degreesToRadians(degrees - diagonalAngleBottomRight));
y = height;
}
// 5
else if (degrees > 180 && degrees <= diagonalAngleBottomLeft) {
x = width / 2 - height / 2 * tan(degreesToRadians(degrees - 180));
y = height;
}
// 6
else if (degrees > diagonalAngleBottomLeft && degrees <= 270) {
x = 0;
y = height - width / 2 * tan(degreesToRadians(degrees - diagonalAngleBottomLeft));
}
// 7
else if (degrees > 270 && degrees <= diagonalAngleTopLeft) {
x = 0;
y = height / 2 - width / 2 * tan(degreesToRadians(degrees - 270));
}
// 8
else {
x = height / 2 * tan(degreesToRadians(degrees - diagonalAngleTopLeft));
y = 0;
}
return {Point{width / 2, height / 2}, Point{x, y}};
}
Green line calculation
Point
MathUtils::calculateCirclePoint(double radius, double degrees)
{
return {radius * cos(degreesToRadians(degrees)), radius * sin(degreesToRadians(degrees))};
}
EDIT
Awesome, it works thanks to #MBo
Point
MathUtils::calculateCrossPoint(Size size, double degrees)
{
auto x0 = size.width / 2;
auto y0 = size.height / 2;
auto vx = cos(degreesToRadians(degrees - 90));
auto vy = sin(degreesToRadians(degrees - 90));
//potential border positions
auto ex = vx > 0 ? size.width : 0;
auto ey = vy > 0 ? size.height : 0;
//check for horizontal/vertical directions
if (vx == 0) {
return {x0, ey};
}
if (vy == 0) {
return {ex, y0};
}
// in general case find times of intersections with horizontal and vertical edge line
auto tx = (ex - x0) / vx;
auto ty = (ey - y0) / vy;
// and get intersection for smaller parameter value
if (tx <= ty) {
return {ex, y0 + tx * vy};
}
return {x0 + ty * vx, ey};
}
Pseudocode to find intersection of ray emitted from rectangle center (with angle an in radians) with edges. (Works also for other (x0,y0) positions)
x0 = width / 2;
y0 = height / 2;
vx = cos(an);
vy = sin(an);
//potential border positions
ex = vx > 0? width: 0
ey = vy > 0? height: 0
//check for horizontal/vertical directions
if vx = 0 then
return cx = x0, cy = ey
if vy = 0 then
return cx = ex, cy = y0
//in general case find times of intersections with horizontal and vertical edge line
tx = (ex - x0) / vx
ty = (ey - y0) / vy
//and get intersection for smaller parameter value
if tx <= ty then
return cx = ex, cy = y0 + tx * vy
else
return cx = x0 + ty * vx, cy = ey
I am using the triagulatePoints function in opencv. Finally I have it working, after much despair, but the results do not look right. I have read some other questions on this, but I still don't understand it!
I am running:
cv::Mat Q,P1,P2,LP,RP,D1,D2,M1,M2;
char *CALIB_FILE = (char *)"extrinsics.xml";
FileStorage fs(CALIB_FILE, FileStorage::READ);
fs["Q"] >> Q;
fs["P1"] >> P1;
fs["P2"] >> P2;
cv::Mat cam0pnts(1, 5, CV_64FC2); //681 432 479 419 550 320 682 274 495 254
cv::Mat cam1pnts(1, 5, CV_64FC2); //800 466 587 451 657 352 791 311 592 283
cv::Mat points_3D(1, 5, CV_64FC4);
cv::triangulatePoints(P1, P2, cam0pnts, cam1pnts, points_3D);
P1 and P2 are the calculated extrinsics from the stereo_calib function.
There are 5 points, a rough square with a point in each corner and one in the middle.
The resulting Matrix is:
[-0.6620691274599629, 0.6497615623177577, -0.6585234150236594, 0.6529909432980171, -0.6604373884239706;
-0.7091492226203088, 0.7208075295879011, -0.7119285643550911, 0.7174438199266364, -0.710244308941275;
0.242429054072024, -0.2413429417514131, 0.2439357048056051, -0.2426462227979475, 0.2436708320163396;
-6.52928664505207e-005, -4.348043360405063e-005, -5.515313727475824e-005, -6.149577656504346e-005, -5.668087253108842e-005]
Which, when plotted in 3d, gives two positions that look almost correct, if completely scaled wrong, then three duplicates of those two.
Where am I going wrong here? DO I need to do something to the resulting matrix to get an xyz coordinate? Or have I implemented the function incorrectly?
cancel that, i managed to do it by ignoring the cv::triangulate function and using this method here:
http://www.morethantechnical.com/2012/01/04/simple-triangulation-with-opencv-from-harley-zisserman-w-code/
with a small change to fix some code that was in wrong place...
Mat_<double> IterativeLinearLSTriangulation(Point3d u, //homogenous image point (u,v,1)
Matx34d P, //camera 1 matrix
Point3d u1, //homogenous image point in 2nd camera
Matx34d P1 //camera 2 matrix
) {
double wi = 1, wi1 = 1;
Mat_<double> X(4, 1);
for (int i = 0; i < 10; i++) { //Hartley suggests 10 iterations at most
Mat_<double> X_ = LinearLSTriangulation(u, P, u1, P1);
X(0) = X_(0); X(1) = X_(1); X(2) = X_(2); X(3) = 1.0;
//recalculate weights
double p2x = Mat_<double>(Mat_<double>(P).row(2)*X)(0);
double p2x1 = Mat_<double>(Mat_<double>(P1).row(2)*X)(0);
//breaking point
if (fabsf(wi - p2x) <= EPSILON && fabsf(wi1 - p2x1) <= EPSILON) break;
wi = p2x;
wi1 = p2x1;
//reweight equations and solve
Matx43d A((u.x*P(2, 0) - P(0, 0)) / wi, (u.x*P(2, 1) - P(0, 1)) / wi, (u.x*P(2, 2) - P(0, 2)) / wi,
(u.y*P(2, 0) - P(1, 0)) / wi, (u.y*P(2, 1) - P(1, 1)) / wi, (u.y*P(2, 2) - P(1, 2)) / wi,
(u1.x*P1(2, 0) - P1(0, 0)) / wi1, (u1.x*P1(2, 1) - P1(0, 1)) / wi1, (u1.x*P1(2, 2) - P1(0, 2)) / wi1,
(u1.y*P1(2, 0) - P1(1, 0)) / wi1, (u1.y*P1(2, 1) - P1(1, 1)) / wi1, (u1.y*P1(2, 2) - P1(1, 2)) / wi1
);
Mat_<double> B = (Mat_<double>(4, 1) << -(u.x*P(2, 3) - P(0, 3)) / wi,
-(u.y*P(2, 3) - P(1, 3)) / wi,
-(u1.x*P1(2, 3) - P1(0, 3)) / wi1,
-(u1.y*P1(2, 3) - P1(1, 3)) / wi1
);
solve(A, B, X_, DECOMP_SVD);
X(0) = X_(0); X(1) = X_(1); X(2) = X_(2); X(3) = 1.0;
}
return X;
}
and this:
Mat_<double> LinearLSTriangulation(Point3d u, //homogenous image point (u,v,1)
Matx34d P, //camera 1 matrix
Point3d u1, //homogenous image point in 2nd camera
Matx34d P1 //camera 2 matrix
)
{
//build matrix A for homogenous equation system Ax = 0
//assume X = (x,y,z,1), for Linear-LS method
//which turns it into a AX = B system, where A is 4x3, X is 3x1 and B is 4x1
Matx43d A(u.x*P(2, 0) - P(0, 0), u.x*P(2, 1) - P(0, 1), u.x*P(2, 2) - P(0, 2),
u.y*P(2, 0) - P(1, 0), u.y*P(2, 1) - P(1, 1), u.y*P(2, 2) - P(1, 2),
u1.x*P1(2, 0) - P1(0, 0), u1.x*P1(2, 1) - P1(0, 1), u1.x*P1(2, 2) - P1(0, 2),
u1.y*P1(2, 0) - P1(1, 0), u1.y*P1(2, 1) - P1(1, 1), u1.y*P1(2, 2) - P1(1, 2)
);
Mat_<double> B = (Mat_<double>(4, 1) << -(u.x*P(2, 3) - P(0, 3)),
-(u.y*P(2, 3) - P(1, 3)),
-(u1.x*P1(2, 3) - P1(0, 3)),
-(u1.y*P1(2, 3) - P1(1, 3)));
Mat_<double> X;
solve(A, B, X, DECOMP_SVD);
return X;
}
This question already has an answer here:
Conway's Game of Life, counting neighbors [closed]
(1 answer)
Closed 9 years ago.
I am working on project containing cellular automat methods. What I am trying to figure is how to write function helping to find all the neighbours in a 2d array.
for example i ve got size x size 2d array [size = 4 here]
[x][n][ ][n]
[n][n][ ][n]
[ ][ ][ ][ ]
[n][n][ ][n]
Field marked as x [0,0 index] has neighbours marked as [n] -> 8 neighbours. What Im trying to do is to write a function which can find neighbours wo writting tousands of if statements
Does anybody have an idea how to do it ?
thanks
For the neighbours of element (i,j) in NxM matrix:
int above = (i-1) % N;
int below = (i+1) % N;
int left = (j-1) % M;
int right = (j+1) % M;
decltype(matrix[0][0]) *indices[8];
indices[0] = & matrix[above][left];
indices[1] = & matrix[above][j];
indices[2] = & matrix[above][right];
indices[3] = & matrix[i][left];
// Skip matrix[i][j]
indices[4] = & matrix[i][right];
indices[5] = & matrix[below][left];
indices[6] = & matrix[below][j];
indices[7] = & matrix[below][right];
Suppose you are in cell (i, j). Then, on an infinite grid, your neighbors should be [(i-1, j-1), (i-1,j), (i-1, j+1), (i, j-1), (i, j+1), (i+1, j-1), (i+1, j), (i+1, j+1)].
However, since the grid is finite some of the above values will get outside the bounds. But we know modular arithmetic: 4 % 3 = 1 and -1 % 3 = 2. So, if the grid is of size n, m you only need to apply %n, %m on the above list to get the proper list of neighbors: [((i-1) % n, (j-1) % m), ((i-1) % n,j), ((i-1) % n, (j+1) % m), (i, (j-1) % m), (i, (j+1) % m), ((i+1) % n, (j-1) % m), ((i+1) % n, j), ((i+1) % n, (j+1) % m)]
That works if your coordinates are between 0 and n and between 0 and m. If you start with 1 then you need to tweak the above by doing a -1 and a +1 somewhere.
For your case n=m=4 and (i, j) = (0, 0). The first list is [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)]. Applying the modulus operations you get to [(3, 3), (3, 0), (3, 1), (0, 3), (0, 1), (1, 3), (1, 0), (1, 1)] which are exactly the squares marked [n] in your picture.
Add and subtract one from the coordinates, in all possible permutations. Results outside the boundaries wrap around (e.g. -1 becomes 3 and 4 becomes 0). Just a couple of simple loops needed basically.
Something like
// Find the closest neighbours (one step) from the coordinates [x,y]
// The max coordinates is max_x,max_y
// Note: Does not contain any error checking (for valid coordinates)
std::vector<std::pair<int, int>> getNeighbours(int x, int y, int max_x, int max_y)
{
std::vector<std::pair<int, int>> neighbours;
for (int dx = -1; dx <= 1; ++dx)
{
for (int dy = -1; dy <= 1; ++dy)
{
// Skip the coordinates [x,y]
if (dx == 0 && dy == 0)
continue;
int nx = x + dx;
int ny = y + dy;
// If the new coordinates goes out of bounds, wrap them around
if (nx < 0)
nx = max_x;
else if (nx > max_x)
nx = 0;
if (ny < 0)
ny = max_y;
else if (ny > max_y)
ny = 0;
// Add neighbouring coordinates to result
neighbours.push_back(std::make_pair(nx, ny));
}
}
return neighbours;
}
Example use for you:
auto n = getNeighbours(0, 0, 3, 3);
for (const auto& p : n)
std::cout << '[' << p.first << ',' << p.second << "]\n";
Prints out
[3,3]
[3,0]
[3,1]
[0,3]
[0,1]
[1,3]
[1,0]
[1,1]
which is the correct answer.