I am using Numpy to obtain the roots of polynomials. Numpy provides a module 'polynomial'.
My hand calc for x^2 + 5*x + 6 = 0 is x = -2 & x = -3. (Simple)
But my code shows me the wrong answer: array([-0.5 , -0.33333333]) (Inversed?)
Could anyone please find the culprit in my code? Or is it simply a bug?
from numpy.polynomial import Polynomial as P
p = P([1, 5, 6])
p.roots()
Simply pass it in the other order,
p = P([6, 5, 1])
You could have realized this yourself if you had determined that, for a polynomial P of degree n, R(x) = x^n P(1/x) equals the reversed version of P. So, except for 0, the roots of R are the reciprocals of the roots of P.
Related
I am not pratice in Sympy manipulation.
I need to find roots on particular poly:
-4x**(11/2)-24x**(9/2)-16x**(7/2)+2x**(5/2)+16x**(5)+23x**(4)+5x**(3)-x**(2)
I verified that I have 2 real solution and I find one of them with Sympy function
nsolve(mypoly,x,1).
Why the previous step doesn't look the other?
How can I proceed to find ALL roots?
Thank you to all for assistance
A.
To my knowledge, nsolve looks in the proximity of the provided initial guess to find one root for each equations.
I would plot the expression to find suitable initial guesses:
from sympy import *
from sympy.plotting import PlotGrid
expr = -4*x**(S(11)/2)-24*x**(S(9)/2)-16*x**(S(7)/2)+2*x**(S(5)/2)+16*x**(5)+23*x**(4)+5*x**(3)-x**(2)
p1 = plot(expr, (x, 0, 0.5), adaptive=False, n=1000, ylim=(-0.01, 0.05), show=False)
p2 = plot(expr, (x, 0, 5), adaptive=False, n=1000, ylim=(-200, 200), show=False)
PlotGrid(1, 2, p1, p2)
Now, we can do:
nsolve(expr, x, 0.2)
# out: 0.169003536680445
nsolve(expr, x, 4)
# out: 4.28968831654177
EDIT: to find all roots (even the complex one), we can:
compute the derivative of the expression.
convert both the expression and the derivative to numerical functions with sympy's lambdify.
visually inspect the expression in the complex plane to determine good initial values for the root finding algorithm. I'm going to use this plotting module, SymPy Plotting Backend which exposes a very handy function, plot_complex, to generate domain coloring plots. In particular, I will plot alternating black and white stripes corresponding to modulus.
use scipy's newton method to compute the actual roots. EDIT: I just discovered that nsolve works too :)
# step 1 and 2
f = lambdify(x, expr)
f_der = lambdify(x, expr.diff(x))
# step 3
from spb import plot_complex
r = (x, -1-0.8j, 4.5+0.8j)
w = r[1].real - r[2].real
h = r[1].imag - r[2].imag
# number of discretization points, watch out memory usage
n1 = 1500
n2 = int(h / w * n1)
plot_complex(expr, r, {"interpolation": "spline36"}, grid=False, coloring="e", n1=n1, n2=n2, size=(10, 5))
In the above picture we see circular stripes getting bigger and deforming. The center of these circular stripes represent a pole or a zero. But this is an easy case: there are no poles. So, from the above pictures we count 7 zeros. We already know 3, the two computed above and the value 0. Let's find the others:
from scipy.optimize import newton
r1 = newton(f, x0=-0.9+0.1j, fprime=f_der)
r2 = newton(f, x0=-0.9-0.1j, fprime=f_der)
r3 = newton(f, x0=0.6+0.6j, fprime=f_der)
r4 = newton(f, x0=0.6-0.6j, fprime=f_der)
for r in (r1, r2, r3, r4):
print(r, ": is it a zero?", expr.subs(x, r).evalf())
# out:
# (-0.9202719950522663+0.09010409402273806j) : is it a zero? -8.21787666002984e-15 + 2.06697764417957e-15*I
# (-0.9202719950522663-0.09010409402273806j) : is it a zero? -8.21787666002984e-15 - 2.06697764417957e-15*I
# (0.6323265751497729+0.6785871500619469j) : is it a zero? -2.2103533615688e-15 - 2.77549897301442e-15*I
# (0.6323265751497729-0.6785871500619469j) : is it a zero? -2.2103533615688e-15 + 2.77549897301442e-15*I
As you can see, inserting those values into the original expression get values very very close to zero. It is perfectly normal to see these kind of errors.
I just discovered that you can use also use nsolve instead of newton to compute complex roots. This makes step 1 and 2 unnecessary.
nsolve(expr, x, -0.9+0.1j)
# out: −0.920271995052266+0.0901040940227375𝑖
Example: let
M = Matrix([[1,2],[3,4]]) # and
p = Poly(x**3 + x + 1) # then
p.subs(x,M).expand()
gives the error :
TypeError: cannot add <class'sympy.matrices.immutable.ImmutableDenseMatrix'> and <class 'sympy.core.numbers.One'>
which is very plausible since the two first terms become matrices but the last term (the constant term) is not a matrix but a scalar. To remediate to this situation I changed the polynomial to
p = Poly(x**3 + x + x**0) # then
the same error persists. Am I obliged to type the expression by hand, replacing x by M? In this example the polynomial has only three terms but in reality I encounter (multivariate polynomials with) dozens of terms.
So I think the question is mainly revolving around the concept of Matrix polynomial:
(where P is a polynomial, and A is a matrix)
I think this is saying that the free term is a number, and it cannot be added with the rest which is a matrix, effectively the addition operation is undefined between those two types.
TypeError: cannot add <class'sympy.matrices.immutable.ImmutableDenseMatrix'> and <class 'sympy.core.numbers.One'>
However, this can be circumvented by defining a function that evaluates the matrix polynomial for a specific matrix. The difference here is that we're using matrix exponentiation, so we correctly compute the free term of the matrix polynomial a_0 * I where I=A^0 is the identity matrix of the required shape:
from sympy import *
x = symbols('x')
M = Matrix([[1,2],[3,4]])
p = Poly(x**3 + x + 1)
def eval_poly_matrix(P,A):
res = zeros(*A.shape)
for t in enumerate(P.all_coeffs()[::-1]):
i, a_i = t
res += a_i * (A**i)
return res
eval_poly_matrix(p,M)
Output:
In this example the polynomial has only three terms but in reality I encounter (multivariate polynomials with) dozens of terms.
The function eval_poly_matrix above can be extended to work for multivariate polynomials by using the .monoms() method to extract monomials with nonzero coefficients, like so:
from sympy import *
x,y = symbols('x y')
M = Matrix([[1,2],[3,4]])
p = poly( x**3 * y + x * y**2 + y )
def eval_poly_matrix(P,*M):
res = zeros(*M[0].shape)
for m in P.monoms():
term = eye(*M[0].shape)
for j in enumerate(m):
i,e = j
term *= M[i]**e
res += term
return res
eval_poly_matrix(p,M,eye(M.rows))
Note: Some sanity checks, edge cases handling and optimizations are possible:
The number of variables present in the polynomial relates to the number of matrices passed as parameters (the former should never be greater than the latter, and if it's lower than some logic needs to be present to handle that, I've only handled the case when the two are equal)
All matrices need to be square as per the definition of the matrix polynomial
A discussion about a multivariate version of the Horner's rule features in the comments of this question. This might be useful to minimize the number of matrix multiplications.
Handle the fact that in a Matrix polynomial x*y is different from y*x because matrix multiplication is non-commutative . Apparently poly functions in sympy do not support non-commutative variables, but you can define symbols with commutative=False and there seems to be a way forward there
About the 4th point above, there is support for Matrix expressions in SymPy, and that can help here:
from sympy import *
from sympy.matrices import MatrixSymbol
A = Matrix([[1,2],[3,4]])
B = Matrix([[2,3],[3,4]])
X = MatrixSymbol('X',2,2)
Y = MatrixSymbol('Y',2,2)
I = eye(X.rows)
p = X**2 * Y + Y * X ** 2 + X ** 3 - I
display(p)
p = p.subs({X: A, Y: B}).doit()
display(p)
Output:
For more developments on this feature follow #18555
As an introduction i want to point out that if one has a matrix A consisting of 4 submatrices in a 2x2 pattern, where the diagonal matrices are square, then if we denote its inverse as X, the submatrix X22 = (A22-A21(A11^-1)A12)^-1, which is quite easy to show by hand.
I was trying to do the same for a matrix of 4x4 submatrices, but its quite tedious by hand. So I thought Sympy would be of some help. But I cannot figure out how (I have started by just trying to reproduce the 2x2 result).
I've tried:
import sympy as s
def blockmatrix(name, sizes, names=None):
if names is None:
names = sizes
ll = []
for i, (s1, n1) in enumerate(zip(sizes, names)):
l = []
for j, (s2, n2) in enumerate(zip(sizes, names)):
l.append(s.MatrixSymbol(name+str(n1)+str(n2), s1, s2))
ll.append(l)
return ll
def eyes(*sizes):
ll = []
for i, s1 in enumerate(sizes):
l = []
for j, s2 in enumerate(sizes):
if i==j:
l.append(s.Identity(s1))
continue
l.append(s.ZeroMatrix(s1, s2))
ll.append(l)
return ll
n1, n2 = s.symbols("n1, n2", integer=True, positive=True, nonzero=True)
M = s.Matrix(blockmatrix("m", (n1, n2)))
X = s.Matrix(blockmatrix("x", (n1, n2)))
I = s.Matrix(eyes(n1, n2))
s.solve(M*X[:, 1:]-I[:, 1:], X[:, 1:])
but it just returns an empty list instead of the result.
I have also tried:
Using M*X==I but that just returns False (boolean, not an Expression)
Entering a list of equations
Using 'ordinary' symbols with commutative=False instead of MatrixSymbols -- this gives an exception with GeneratorsError: non-commutative generators: (x12, x22)
but all without luck.
Can you show how to derive a result with Sympy similar to the one I gave as an example for X22?
The most similar other questions on solving with MatrixSymbols seem to have been solved by working around doing exactly that, by using an array of the inner symbols or some such instead. But since I am dealing with symbolically sized MatrixSymbols, that is not an option for me.
Is this what you mean by a matrix of 2x2 matrices?
>>> a = [MatrixSymbol(i,2,2) for i in symbols('a1:5')]
>>> A = Matrix(2,2,a)
>>> X = A.inv()
>>> print(X[1,1]) # [1,1] instead of [2,2] because indexing starts at 0
a1*(a1*a3 - a3*a1)**(-1)
[You indicated not and pointed out that the above is not correct -- that appears to be an issue that should be resolved.]
I am not sure why this isn't implemented, but we can do the solving manually as follows:
>>> n = 2
>>> v = symbols('b:%s'%n**2,commutative=False)
>>> A = Matrix(n,n,symbols('a:%s'%n**2,commutative=False))
>>> B = Matrix(n,n,v)
>>> eqs = list(A*B - eye(n))
>>> for i in range(n**2):
... s = solve(eqs[i],v[i])[0]
... eqs[i+1:] = [e.subs(v[i],s) for e in eqs[i+1:]]
...
>>> s # solution for v[3] which is B22
(-a2*a0**(-1)*a1 + a3)**(-1)
You can change n to 3 and see a modestly complicated expression. Change it to 4 and check the result by hand to give a new definition to the word "tedious" ;-)
The special structure of the equations to be solved can allow for a faster solution, too: the variable of interest is the last factor in each term containing it:
>>> for i in range(n**2):
... c,d = eqs[i].expand().as_independent(v[i])
... assert all(j.args[-1]==v[i] for j in Add.make_args(d))
... s = 1/d.subs(v[i], 1)*-c
... eqs[i+1:] = [e.subs(v[i], s) for e in eqs[i+1:]]
Motivation. It is well known that generating function for Catalan numbers satisfies quadratic equation. I would like to have first several coefficients of a function, implicitly defined by an algebraic equation (not necessarily a quadratic one!).
Example.
import sympy as sp
sp.init_printing() # math as latex
from IPython.display import display
z = sp.Symbol('z')
F = sp.Function('F')(z)
equation = 1 + z * F**2 - F
display(equation)
solution = sp.solve(equation, F)[0]
display(solution)
display(sp.series(solution))
Question. The approach where we explicitly solve the equation and then expand it as power series, works only for low-degree equations. How to obtain first coefficients of formal power series for more complicated algebraic equations?
Related.
Since algebraic and differential framework may behave differently, I posted another question.
Sympy: how to solve differential equation in formal power series?
I don't know a built-in way, but plugging in a polynomial for F and equating the coefficients works well enough. Although one should not try to find all coefficients at once from a large nonlinear system; those will give SymPy trouble. I take iterative approach, first equating the free term to zero and solving for c0, then equating 2nd and solving for c1, etc.
This assumes a regular algebraic equation, in which the coefficient of z**k in the equation involves the k-th Taylor coefficient of F, and does not involve higher-order coefficients.
from sympy import *
z = Symbol('z')
d = 10 # how many coefficients to find
c = list(symbols('c:{}'.format(d))) # undetermined coefficients
for k in range(d):
F = sum([c[n]*z**n for n in range(k+1)]) # up to z**k inclusive
equation = 1 + z * F**2 - F
coeff_eqn = Poly(series(equation, z, n=k+1).removeO(), z).coeff_monomial(z**k)
c[k] = solve(coeff_eqn, c[k])[0]
sol = sum([c[n]*z**n for n in range(d)]) # solution
print(series(sol + z**d, z, n=d)) # add z**d to get SymPy to print as a series
This prints
1 + z + 2*z**2 + 5*z**3 + 14*z**4 + 42*z**5 + 132*z**6 + 429*z**7 + 1430*z**8 + 4862*z**9 + O(z**10)
I'm attempting to solve some simple Boolean satisfiability problems in Sympy. Here, I tried to solve a constraint that contains the Or logic operator:
from sympy import *
a,b = symbols("a b")
print(solve(Or(Eq(3, b*2), Eq(3, b*3))))
# In other words: (3 equals b*2) or (3 equals b*3)
# [1,3/2] was the answer that I expected
Surprisingly, this leads to an error instead:
TypeError: unsupported operand type(s) for -: 'Or' and 'int'
I can work around this problem using Piecewise, but this is much more verbose:
from sympy import *
a,b = symbols("a b")
print(solve(Piecewise((Eq(3, b*2),Eq(3, b*2)), (Eq(3, b*3),Eq(3, b*3)))))
#prints [1,3/2], as expected
Unfortunately, this work-around fails when I try to solve for two variables instead of one:
from sympy import *
a,b = symbols("a b")
print(solve([Eq(a,3+b),Piecewise((Eq(b,3),Eq(b,3)), (Eq(b,4),Eq(b,4)))]))
#AttributeError: 'BooleanTrue' object has no attribute 'n'
Is there a more reliable way to solve constraints like this one in Sympy?
To expand on zaq's answer, SymPy doesn't recognize logical operators in solve, but you can use the fact that
a*b = 0
is equivalent to
a = 0 OR b = 0
That is, multiply the two equations
solve((3 - 2*b)*(3 - 3*b), b)
As an additional note, if you wanted to use AND instead of OR, you can solve for a system. That is,
solve([eq1, eq2])
is equivalent to solving
eq1 = 0 AND eq2 = 0
Every equation can be expressed as something being equated to 0. For example, 3-2*b = 0 instead of 3 = 2*b. (In Sympy, you don't even have to write the =0 part, it's assumed.) Then you can simply multiply equations to express the OR logic:
>>> from sympy import *
>>> a,b = symbols("a b")
>>> solve((3-b*2)*(3-b*3))
[1, 3/2]
>>> solve([a-3-b, (3-b*2)*(3-b*3)])
[{b: 1, a: 4}, {b: 3/2, a: 9/2}]