This is a fairly straight forward question but I am unable to find an answer about this specific type of formatting. I'm looking for a way to modify where eclipse places the cursor after using its content assist to complete a method call based on whether or not the method has any parameters.
To illustrate what exactly I'm talking about lets consider a simple c++ class like so:
class Example
{
public:
int voidParams()
{
//do something
return 42;
};
int nonVoidParams(int a)
{
//do something else
return a*a;
};
};
And at some point I created an instance of the class Example ex;
Now within eclipse if I started typing ex.nonV and I told eclipse to auto complete it would enter in ex.nonVoidParams() and after doing this my cursor would be inside the parenthesis like so ex.nonVoidParams(|) where | is my cursor. This makes sense and is useful since I need to give this particular method an argument.
Hopefully none of what I just said is new to anyone and is all pretty straight forward. This is where my question comes in. Having my cursor be placed within the parenthesis of a method call is only useful if that method takes parameters. If I were to type ex.voi and let eclipse auto complete to ex.voidParams() my cursor would be inside the parenthesis like so ex.voidParams(|) where | is my cursor. This isn't very useful since there is nothing for me to enter there.
I would like to know if there is a way to setup eclipse so, given the above examples, if it auto completes a method with void parameters such as ex.voidParams() it places the cursor after the method call like so ex.voidParams()| again where | is my cursor.
I'm not super familiar with customizing eclipse but I feel like there should be a way to do this since if eclipse is auto completing the method call it should know what its parameters are and be able to adjust its formatting from there.
Oh and this will probably be asked at some point, I'm currently using Eclipse CDT version 4.2.0 (Juno service Release 2).
Go to Window->Preferences->C++->Editor->Content Assist->Advanced, pick the "Parsing-based Proposals" instead of "Parsing-based Proposals (Task-Focused)".
Related
This is my first question ever posted, so please let me know if there is anything that needs changes in my post :)
I am currently working on a dialog that is supposed to let the user change the background-color for some signal plotting. The "wxColourPickerCtrl" seems to do exactly what I need. Since there are multiple plots/pictures to be manipulated, the ColourPickerCtrls are initialized in a loop with the chosen background color as the default value:
for (const auto& [signalName, signalProperties] : properties)
{
wxColourPickerCtrl* selectBackgroundColor = new wxColourPickerCtrl(this, signalProperties.first, signalProperties.second.backgroundColor, wxDefaultPosition, wxDefaultSize);
}
"this" is an object of type SignalPropertiesDialog, which is directly inherited from wxDialog.
I have left out all the necessary sizer stuff, since it's not relevant for the problem (at least imo). "properties" is structured as follows:
std::map<std::string, std::pair<int, GraphPicture::Properties>> signalProperties_;
where GraphPicture::Properties contains the properties I want to manipulate:
struct Properties
{
wxColour backgroundColor{ *wxWHITE };
wxColour lineColor{ *wxBLACK };
int linewidth_px{ 1 };
bool isShown{ true };
};
The application successfully builds but immediately crashes on startup while generating those color picker objects.
wxIshiko has uploaded multiple tutorials and code snippets as examples for various wxWidgets controls, including the wxColourPickerCtrl. So I downloaded the sample code and tried to run it. Surprisingly, it worked.
While running through the code step by step I noticed the following difference:
The wxColourPickerCtrl is based on wxPickerBase. The wxPickerBase is created by calling the constructor of wxColourPickerCtrl (what I am actually doing in my code). During the construction of the wxPickerBase, the desired color is called by the name wxColourDataBase::FindName(const wxColour& color) const where the wxColourBase itself is instantiated. This is where the difference is:
When running the code snippet by wxIshiko, wxColourDataBase is instantiated correctly including the member m_map of type wxStringToColourHashMap* which is set to be NULL.
When running the code written by myself, wxColourDataBase is not correctly instantiated, and thus the member m_map is not set to be NULL, which leads to to the crash.
I have the feeling that there is nothing wrong with the way I set up the wxColourPickerCtrls. I somehow think there is a difference in the solution properties of the projects. I checked those but was not able to find any relevant differences.
I would really appreciate any hint or help since I am completely stuck on that problem.
Thank you very much in advance and have a good one,
Alex
EDIT:
I attached a screeny of the call stack.
Call stack
When does this code run exactly? If it is done after the library initialization (which would be the case, for example, for any code executed in your overridden wxApp::OnInit()), then wxTheColourDatabase really should be already initialized and what you observe should be impossible, i.e. if it happens it means that something is seriously wrong with your library build (e.g. it doesn't match the compiler options used when compiling your applications).
As always with such "impossible" bugs, starting with a known working code and doing bisection by copying parts of your code into the working version until it stops working will usually end up by finding a bug in your code.
I'm trying to create simple game in C++. At one point I want to have some setting, save and load from config file.
The config file should be read from the beginning, and should be accessible anywhere it needed.
So far I only see Singleton pattern as a solution.
Another way is to create an object an pass it down, but it can mess
up the current code.
I've also search and found something called Dependency Injection.
Is dependency injection useful in C++
Which design patterns can be applied to the configuration settings problem?
But I don't quite understand it, you still have to create an object in main and pass it down, right?
Singleton is quite simple, but some consider it antipattern, while pass it down the tree can mess up my current code. Is there any other Patterns?
P/S: I'm also curious how games load their setting.
I would suggest something simple as the following example, which circumvents any singleton-related or initialization order issue:
struct global_state
{
config _config;
};
struct game_state
{
global_state& _global_state;
};
int main()
{
global_state globals{load_config_from_file()};
game_state game{globals};
game.run();
}
Since _global_state is a member of game_state, it can be used in member functions without the need of explicitly passing it as a parameter:
void game_state::update_ui()
{
const float text_size = _global_state._config.get_float("text_size");
_some_text.set_size(text_size);
}
Let me elaborate on the title:
I want to implement a system that would allow me to enable/disable/modify the general behavior of my program. Here are some examples:
I could switch off and on logging
I could change if my graphing program should use floating or pixel coordinates
I could change if my calculations should be based upon some method or some other method
I could enable/disable certain aspects like maybe a extension api
I could enable/disable some basic integrated profiler (if I had one)
These are some made-up examples.
Now I want to know what the most common solution for this sort of thing is.
I could imagine this working with some sort of singelton class that gets instanced globally or in some other globally available object. Another thing that would be possible would be just constexpr or other variables floating around in a namespace, again globally.
However doing something like that, globally, feels like bad practise.
second part of the question
This might sound like I cant decide what I want, but I want a way to modify all these switches/flags or whatever they are actually called in a single location, without tying any of my classes to it. I don't know if this is possible however.
Why don't I want to do that? Well I like to make my classes somewhat reusable and I don't like tying classes together, unless its required by the DRY principle and or inheritance. I basically couldn't get rid of the flags without modifying the possible hundreds of classes that used them.
What I have tried in the past
Having it all as compiler defines. This worked reasonably well, however I didnt like that I couldnt make it so if the flag file was gone there were some sort of default settings that would make the classes themselves still operational and changeable (through these default values)
Having it as a class and instancing it globally (system class). Worked ok, however I didnt like instancing anything globally. Also same problem as above
Instancing the system class locally and passing it to the classes on construction. This was kinda cool, since I could make multiple instruction sets. However at the same time that kinda ruined the point since it would lead to things that needed to have one flag set the same to have them set differently and therefore failing to properly work together. Also passing it on every construction was a pain.
A static class. This one worked ok for the longest time, however there is still the problem when there are missing dependencies.
Summary
Basically I am looking for a way to have a single "place" where I can mess with some values (bools, floats etc.) and that will change the behaviour of all classes using them for whatever, where said values either overwrite default values or get replaced by default values if said "place" isnt defined.
If a Singleton class does not work for you , maybe using a DI container may fit in your third approach? It may help with the construction and make the code more testable.
There are some DI frameworks for c++, like https://github.com/google/fruit/wiki or https://github.com/boost-experimental/di which you can use.
If you decide to use switch/flags, pay attention for "cyclometric complexity".
If you do not change the skeleton of your algorithm but only his behaviour according to the objets in parameter, have a look at "template design pattern". This method allow you to define a generic algorithm and specify particular step for a particular situation.
Here's an approach I found useful; I don't know if it's what you're looking for, but maybe it will give you some ideas.
First, I created a BehaviorFlags.h file that declares the following function:
// Returns true iff the given feature/behavior flag was specified for us to use
bool IsBehaviorFlagEnabled(const char * flagName);
The idea being that any code in any of your classes could call this function to find out if a particular behavior should be enabled or not. For example, you might put this code at the top of your ExtensionsAPI.cpp file:
#include "BehaviorFlags.h"
static const enableExtensionAPI = IsBehaviorFlagEnabled("enable_extensions_api");
[...]
void DoTheExtensionsAPIStuff()
{
if (enableExtensionsAPI == false) return;
[... otherwise do the extensions API stuff ...]
}
Note that the IsBehaviorFlagEnabled() call is only executed once at program startup, for best run-time efficiency; but you also have the option of calling IsBehaviorFlagEnabled() on every call to DoTheExtensionsAPIStuff(), if run-time efficiency is less important that being able to change your program's behavior without having to restart your program.
As far as how the IsBehaviorFlagEnabled() function itself is implemented, it looks something like this (simplified version for demonstration purposes):
bool IsBehaviorFlagEnabled(const char * fileName)
{
// Note: a real implementation would find the user's home directory
// using the proper API and not just rely on ~ to expand to the home-dir path
std::string filePath = "~/MyProgram_Settings/";
filePath += fileName;
FILE * fpIn = fopen(filePath.c_str(), "r"); // i.e. does the file exist?
bool ret = (fpIn != NULL);
fclose(fpIn);
return ret;
}
The idea being that if you want to change your program's behavior, you can do so by creating a file (or folder) in the ~/MyProgram_Settings directory with the appropriate name. E.g. if you want to enable your Extensions API, you could just do a
touch ~/MyProgram_Settings/enable_extensions_api
... and then re-start your program, and now IsBehaviorFlagEnabled("enable_extensions_api") returns true and so your Extensions API is enabled.
The benefits I see of doing it this way (as opposed to parsing a .ini file at startup or something like that) are:
There's no need to modify any "central header file" or "registry file" every time you add a new behavior-flag.
You don't have to put a ParseINIFile() function at the top of main() in order for your flags-functionality to work correctly.
You don't have to use a text editor or memorize a .ini syntax to change the program's behavior
In a pinch (e.g. no shell access) you can create/remove settings simply using the "New Folder" and "Delete" functionality of the desktop's window manager.
The settings are persistent across runs of the program (i.e. no need to specify the same command line arguments every time)
The settings are persistent across reboots of the computer
The flags can be easily modified by a script (via e.g. touch ~/MyProgram_Settings/blah or rm -f ~/MyProgram_Settings/blah) -- much easier than getting a shell script to correctly modify a .ini file
If you have code in multiple different .cpp files that needs to be controlled by the same flag-file, you can just call IsBehaviorFlagEnabled("that_file") from each of them; no need to have every call site refer to the same global boolean variable if you don't want them to.
Extra credit: If you're using a bug-tracker and therefore have bug/feature ticket numbers assigned to various issues, you can creep the elegance a little bit further by also adding a class like this one:
/** This class encapsulates a feature that can be selectively disabled/enabled by putting an
* "enable_behavior_xxxx" or "disable_behavior_xxxx" file into the ~/MyProgram_Settings folder.
*/
class ConditionalBehavior
{
public:
/** Constructor.
* #param bugNumber Bug-Tracker ID number associated with this bug/feature.
* #param defaultState If true, this beheavior will be enabled by default (i.e. if no corresponding
* file exists in ~/MyProgram_Settings). If false, it will be disabled by default.
* #param switchAtVersion If specified, this feature's default-enabled state will be inverted if
* GetMyProgramVersion() returns any version number greater than this.
*/
ConditionalBehavior(int bugNumber, bool defaultState, int switchAtVersion = -1)
{
if ((switchAtVersion >= 0)&&(GetMyProgramVersion() >= switchAtVersion)) _enabled = !_enabled;
std::string fn = defaultState ? "disable" : "enable";
fn += "_behavior_";
fn += to_string(bugNumber);
if ((IsBehaviorFlagEnabled(fn))
||(IsBehaviorFlagEnabled("enable_everything")))
{
_enabled = !_enabled;
printf("Note: %s Behavior #%i\n", _enabled?"Enabling":"Disabling", bugNumber);
}
}
/** Returns true iff this feature should be enabled. */
bool IsEnabled() const {return _enabled;}
private:
bool _enabled;
};
Then, in your ExtensionsAPI.cpp file, you might have something like this:
// Extensions API feature is tracker #4321; disabled by default for now
// but you can try it out via "touch ~/MyProgram_Settings/enable_feature_4321"
static const ConditionalBehavior _feature4321(4321, false);
// Also tracker #4222 is now enabled-by-default, but you can disable
// it manually via "touch ~/MyProgram_Settings/disable_feature_4222"
static const ConditionalBehavior _feature4222(4222, true);
[...]
void DoTheExtensionsAPIStuff()
{
if (_feature4321.IsEnabled() == false) return;
[... otherwise do the extensions API stuff ...]
}
... or if you know that you are planning to make your Extensions API enabled-by-default starting with version 4500 of your program, you can set it so that Extensions API will be enabled-by-default only if GetMyProgramVersion() returns 4500 or greater:
static ConditionalBehavior _feature4321(4321, false, 4500);
[...]
... also, if you wanted to get more elaborate, the API could be extended so that IsBehaviorFlagEnabled() can optionally return a string to the caller containing the contents of the file it found (if any), so that you could do shell commands like:
echo "opengl" > ~/MyProgram_Settings/graphics_renderer
... to tell your program to use OpenGL for its 3D graphics, or etc:
// In Renderer.cpp
std::string rendererType;
if (IsDebugFlagEnabled("graphics_renderer", &rendererType))
{
printf("The user wants me to use [%s] for rendering 3D graphics!\n", rendererType.c_str());
}
else printf("The user didn't specify what renderer to use.\n");
I've written my own access layer to a game engine. There is a GameLoop which gets called every frame which lets me process my own code. I'm able to do specific things and to check if these things happened. In a very basic way it could look like this:
void cycle()
{
//set a specific value
Engine::setText("Hello World");
//read the value
std::string text = Engine::getText();
}
I want to test if my Engine-layer is working by writing automated tests. I have some experience in using the Boost Unittest Framework for simple comparison tests like this.
The problem is, that some things I want the engine to do are just processed after the call to cycle(). So calling Engine::getText() directly after Engine::setText(...) would return an empty string. If I would wait until the next call of cycle() the right value would be returned.
I now am wondering how I should write my tests if it is not possible to process them in the same cycle. Are there any best practices? Is it possible to use the "traditional testing" approach given by Boost Unittest Framework in such an environment? Are there perhaps other frameworks aimed at such a specialised case?
I'm using C++ for everything here, but I could imagine that there are answers unrelated to the programming language.
UPDATE:
It is not possible to access the Engine outside of cycle()
In your example above, std::string text = Engine::getText(); is the code you want to remember from one cycle but execute in the next. You can save it for later execution. For example - using C++11 you could use a lambda to wrap the test into a simple function specified inline.
There are two options with you:
If the library that you have can be used synchronously or using c++11 futures like facility (which can indicate the readyness of the result) then in your test case you can do something as below
void testcycle()
{
//set a specific value
Engine::setText("Hello World");
while (!Engine::isResultReady());
//read the value
assert(Engine::getText() == "WHATEVERVALUEYOUEXPECT");
}
If you dont have the above the best you can do have a timeout (this is not a good option though because you may have spurious failures):
void testcycle()
{
//set a specific value
Engine::setText("Hello World");
while (Engine::getText() != "WHATEVERVALUEYOUEXPECT") {
wait(1 millisec);
if (total_wait_time > 1 sec) // you can put whatever max time
assert(0);
}
}
I think this would increase the quality of life when devving, but google came up with nothing and I couldn't find anything specific inside inside Netbeans either.
What I want is to start with this header:
class bla
{
public:
static void gfg(somearg asd);
};
Then I open the blank bla.cpp and pressed 'autoimplement'. After that, it would look like this:
#include "bla.h"
static void bla::gfg(somearg asd)
{
//TODO: implement
throw unimplemented("void bla::gfg(somearg) is unimplemented");
}
Anyone know of a tool like this?
I found http://www.radwin.org/michael/projects/stubgen/
"stubgen is a C++ development tool that keeps code files in sync with their associated headers. When it finds a member function declaration in a header file that doesn't have a corresponding implementation, it creates an empty skeleton with descriptive comment headers."
This looks like it does exactly what you want it to do.
Some time has passed and in the meantime the requested feature seems to have been implemented in netbeans. Refer to https://netbeans.org/bugzilla/show_bug.cgi?id=213811 , which also gives a description on how to use it:
Note:
Implemented CTRL+SPACE.
IDE suggest implementing of class method if CTRL+SPACE was pressed:
- inside file that already has at least one method definition
- between method declarations