Making unit tests for project Euler - unit-testing

I'm starting to go through the questions in project Euler, and I'd like to approach it with a TDD style, but I'm having trouble finding the numeric answer to the question that doesn't include the code. Is there any resource with that data so that I can make test cases that will tell me if I've solved the problem correctly?
My motivation for this is that I feel like the algorithm is the answer, not the number. If I look at someone else's code sample, it ruins the challenge of figuring out how to solve the problem.
Edit: I'm looking specifically for the number of the answer with no context or algorithm with it so that I can do something like the following. I know it's more verbose, but I'd like to be able to have a pass/fail result to tell me whether or not my algorithm is correct, rather than looking at someone else's code example to know whether I've done it correctly.
import unittest
class ProblemOneTest(unittest.TestCase):
def test_me(self):
self.assertEquals(solve_problem_one(),233168)
if __name__ == '__main__':
print "Problem 1 possible answer: %d" % solve_problem_one()
sys.exit(unittest.main())

TDD and project Euler assignments don't necessarily go well together. First and foremost, TDD won't help you solve any project Euler (PE) problems. This reminds me of that well known attempt by a guy to "solve Sudoku" by using TDD.
TDD is not a design technique. It can be very useful when applicable, but don't think of it as a silver bullet.
A PE problem usually involves some heavy computation that ends in a single number, which is the answer. To apply TDD mindfully, I recommend using it for the mathematical utilities you will develop as parts of your endeavors to solve PE problems. For example, my utils module for PE consists of functions for computing primes, splitting numbers to digits, checking for palindromes, and so on. This module has a set of tests, because these functions are general enough to be tested. The PE solutions themselves don't have tests - the only real test needed for them is to eventually generate the correct answer.

The problem page on the project Euler website has an input to check your answer. That's all I really need.

Yes, you can setup your unit tests against the test data they give.
It appears that you are using Python to solve the problems (as am I). What I do to validate the different components is to do simple 'assert' statements against the example data. It works well and there is less time overhead. Besides, you don't need to run the entire test suite when you are just needing to know if your new changes for problem 30 are correct.
Using Assertions Effectively

The unit test IS the answer.
The problems are usually so simple (not in terms of difficulty, but at least code layout) that breaking them up into various methods/classes is usually silly.

I know I'm 3 years late to the party but I thought I would share how I am approaching Project Euler via TDD.
I'm working in Python, if that matters to you.
What I do is this:
Every problem gets (at a minimum) its own function that serves as an entry/exit point, no matter how trivial or silly it may feel. Problems may also get helper functions if the problem requires some kind of functionality that you think you might need in the future.
Most Project Euler questions include a smaller demo/test problem in the test itself. This test problem illustrates what you most solve but on a smaller scale.
Plan to set up your entry/exit function with a parameter that allows the function to solve both the toy version of the problem as well as the harder full scale version. For instance, on problem 12 my (ridiculously named) entry point is get_triangle_num_with_n_or_more_divisors(n).
At this point I haven't implemented the function, just named it. Now I will write two tests for this problem: test_example and test_problem. I'll decorate test_problem with #unittest.skip('Unimplemented') for now since we don't know the answer. Your test file might look something like mine:
import unittest
from problems.p0014 import get_triangle_num_with_n_or_more_divisors
class TestHighlyDivisibleTriangleNumber(unittest.TestCase):
def test_example(self):
self.assertEquals(get_triangle_num_with_n_or_more_divisors(1),
1)
self.assertEquals(get_triangle_num_with_n_or_more_divisors(2),
3)
self.assertEquals(get_triangle_num_with_n_or_more_divisors(6),
28)
#unittest.skip('Unimplemented')
def test_problem(self):
self.assertEquals(get_triangle_num_with_n_or_more_divisors(500),
'TODO: Replace this with answer')
Now you are doing Project Euler, TDD style. You are using the example cases given to test your implementation code. Really the only trick to it is to write your implementation in a flexible enough way that it can be used to solve both the practice version and the real version.
I then sit down and write get_triangle_num_with_n_or_more_divisors. Once test_example is passing, I try to solve the real problem; if it works I update my test_problem case with the real answer and bam you've got a full blown regression test to boot.

Despite the fact that these problems are more of a challenge without an answer to steer towards, a quick google search yielded:
http://code.google.com/p/projecteuler-solutions/wiki/ProjectEulerSolutions

Thought I'd share my approach:
Hackerrank, which has a Project Euler section, goes by the TDD paradigm. It scores your algorithm using unknown test cases. They provide one sample test case to get you started. I develop offline and write some other test cases to validate my solution to get quicker and more precise feedback.
Where would one get those cases? You can do them by hand, and perhaps generate them from your own brute forcing code which is run locally. The beauty of this is that you must account for edge cases yourself, which is more typical of a real life scenario.
Example of tests in JavaScript:
var cases = [
{input: '1\n15', output: '45'},
...
];
describe('Multiples of 3 and 5', function() {
cases.forEach((v, i) => {
it('test case #' + i, function () {
assert.equal(unit(v.input), v.output);
})
});
});
Although Hackerrank uses stdin and stdout, I still try to isolate the main code into a function and employ functional programming.

Related

How to approach debugging a huge not so familiar code base?

Seldom during working on large scale projects, suddenly you are moved on to a project which is already in maintainance phase.You end up with having a huge code C/C++ code base on your hands, with not much doccumentation about the design.The last person who could give you some knowledge transfer about the code has left the company already and to add to your horrors there is not enough time to get acquainted with the code and develop an understanding of the overall module/s.In this scenario when you are expected to fix bugs(core dumps,functionality,performance problems etc) on the module/s what is the approach that you will take?
So the question is:
What are your usual steps for debugging a not so familiar C/C++ code base when trying to fix a bug?
EDIT: Enviornment is Linux, but code is ported on Windows too so suggestions for both will be helpful.
If possible, step through it from main() to the problematic area, and follow the execution path. Along the way you'll get a good idea of how the different parts play together.
It could also be helpful to use a static code analysis tool, like CppDepends or even Doxygen, to figure out the relations between modules and be able to view them graphically.
Use a pen and paper, or images/graphs/charts in general, to figure out which parts belong where and draw some arrows and so on.
This helps you build and see the image that will then be refined in your mind as you become more comfortable with it.
I used a similar approach attacking a hellish system that had 10 singletons all #including each other. I had to redraw it a few times in order to fit everything, but seeing it in front of you helps.
It might also be useful to use Graphviz when constructing dependency graphs. That way you only have to list everything (in a text file) and then the tool will draw the (often unsightly) picture. (This is what I did for the #include dependencies in above syste,)
As others have already suggested, writing unit-tests is a great way to get into the codebase. There are a number of advantages to this approach:
It allows you to test your
assumptions about how the code
works. Adding a passing test proves
that your assumptions about that
small piece of code that you are
testing are correct. The more
passing tests you write, the better
you understand the code.
A failing unit test that reproduces
the bug you want to fix will pass
when you fix the bug and you know
that you have succeeded.
The unit tests that you write act as
documentation for the future.
The unit tests you write act as
regression tests as more bugs are
fixed.
Of course adding unit tests to legacy code is not always an easy task. Happily, a gentleman by the name of Michael Feathers has written an excellent book on the subject, which includes some great 'recipes' on adding tests to code bases without unit tests.
Some pointers:
Debug from the part which seems more
relevant to the workflow.
Use debug
strings
Get appropriate .pdb and attach the
core dump in debuggers like Windbg
or debugdiag to analyze it.
Get a person's help in your
organization who is good at
debugging. Even if he is new to your
codebase, he could be very helpful.
I had prior experience. They would
give you valuable pointers.
Per Assaf Lavie's advice, you could use static code analyzers.
The most important thing: as you
explore and debug, document
everything as you progress. At least
the person succeeding you would
suffer less.
Three things i don't see yet:
write some unit tests which use the libraries/interfaces. demonstrate/verify your understanding of them and promote their maintainability.
sometimes it is nice to create an special assertion macro to check that the other engineer's assumptions are in line with yours. you could:
not commit their uses
commit their uses, converting them to 'real' assertions after a given period
commit their uses, allowing another engineer (more familiar with the project) to dispose or promote them to real assertions
refactoring can also help. code that is difficult to read is an indication.
The first step should be try to read the code. Try to see the code where the bug is. Follow the code from main to that point ans try to see what could be wrong. Read the comments from the code(if any). Normally the function names are useful. Understand what each function does.
Once you get some idea of the code then you can start debugging the code. Put breakpoints where you don't understand the code or where you think the error can be. Start following the code line by line. Debugging is like sex. Initially painful, but slowly you start to enjoy it.
cscope + ctags are available on both Linux and Windows (via Cygwin). If you give them a chance, these tools will become indispensable to you. Although, IDEs like Visual Studio also do an excellent job with code browsing facilities as well.
In a situation like yours, because of time constraints, you are driven by symptoms. I mean that you don't have time to reconstruct the big picture / design / architecture. So you focus on the symptoms and work outwards, and each time reconstruct as much of the big picture as you need for that particular problem. But do not make "local" decisions in a hurry. Have the patience to see as much of the big picture as needed to make a good quality decision. And don't get caught in the band-aid syndrome i.e. put any old fix in that will work. It is your job to preserve the underlying architecture / design (if there is one, and to whatever extent that you can discover it).
It will be a struggle at first, as your mind "hunts" excessively. But soon the main themes in the design / architecture will emerge, and all of it will start to make sense. Think, by not thinking, grasshoppa :)
You have to have a fully reliable IDE which has a lot of debbugging tools (breakpoints, watches, and the like). The best way to familiarize yourself with a huge code is to play around with it and see how data is passed from one method to another. Also, you can reverse engineer the code so could see the relationship of the classes. :D Good Luck!
For me, there is only one way to get to know a process - Interaction. Identify the interfaces of the process/system. Then identify the input/output relationship (these steps maybe not linear). Once you do that, you can start tinkering at the code with a fair amount of confidence because you know what it is "supposed to do" then it's just a matter of finding out "how it is actually being done". For me though, getting to know the interface (Not necessarily the user interface) of the system is the key. To put it bluntly - Never touch the code first!!!
Not sure about C/C++, but coming from Java and C#, unit testing will help. In Java there's JUnit and TestNG libraries for unit testing, in C# there's NUnit and mstest. Not sure about C/C++.
Read the book 'Refactoring: Improving the Design of Existing Code' by Martin Fowler, Kent Beck, et al. Will be quite a few tips in there I'm sure that will help, and give you some guidance to improving the code.
One tip: if it aint broke, don't fix it. Don't bother trying to fix some library or really complicated function if it works. Focus on parts where there's bugs.
Write a unit test to reproduce the scenario where the code should work. The test will fail at first. Fix the code until the unit test passes successfully. Repeat :)
Once a majority of your code, the important bits that are too complex to manually debug and fix, is under automated unit tests, you'll have a safety harness of regression tests that'll make you feel more confident at changing the existing code base.
while (!codeUnderstood)
{
Breakpoints();
Run();
StepInto();
if(needed)
{
StepOver();
}
}
I don't try to get an overview of the whole system as suggested by many here. If there is something which needs fixing I learn the smallest part of the code I can to fix the bug. The next time there is an issue I'm a little more familiar and a little less daunted and I learn a little more. Eventually I'm able to support the whole shebang.
If management suggests I do a major change to something I'm not familiar with I make sure they understand the time scales and if things a really messy suggest a rewrite.
Usually the program in question will produce some kind of output ( log, console printout, dialog box ).
Find the closest place to your
problem in the program output
Search through the code base and look for the text in that output
Start putting your own printouts, nothing fancy, just printf( "Calling xxx\n" );, so you can pinpoint exactly to the point where the problem starts.
Once you pinpointed the problem spot, put a breakpoint
When you hit the breakpoint, print a stacktrace
Now you can see what players you have and start the analysis of how you've got to the wrong place.
Hopefully the names of the methods on the call stack are more meaningful than a, b and c ( seen this ), and there is some sort of comments, method documentation more meaningful than calling a ( seen this many times ).
If the source is poorly documented, don't be afraid to leave your comments once you have figured out what's going on. If program design permits it create a unit test for the problem you've fixed.
Thanks for the nice answers, quite a number of points to take up. I have worked on such situation a number of times and here is the usual procedure i follow:
Check the crash log or trace log. Check relevant trace if just a simple developer mistake if cannot evaluate in one go, then move on to 2.
Reproduce the bug! This is the most important thing to do. Some bugs are rare to occur and if you get to reproduce the bug nothing like it. It means you have a better % of cracking it.
If you cant reproduce a bug, find a alternative use case, situation where in you can actually reproduce the bug. Being able to actually debug a scenario is much more useful than just the crash log.
Head to version control! Check if the same buggy behavior exists on previous few SW versions. If NOT..Voila! You can find between what two versions the bug got introduced and You can easily get the code difference of the two versions and target the relevant area.(Sometimes it is not the newly added code which has the bug but it exposes some old leftovers.Well, We atleast have a start I would say!)
Enable the debug traces. Run the use case of the bug, check if you can find some additional information useful for investigation.
Get hold of the relevant code area through the trace log. Check out there for some code introducing the bug.
Put some breakpoints in the relevant code. Study the flow. Check the data flows.Lookout for pointers(usual culprits). Repeat till you get a hold of the flow.
If you have a SW version which does not reproduce the bug, compare what is different in the flows. Ask yourself, Whats the difference?
Still no Luck!- Arghh...My tricks have exhausted..Need to head the old way. Understand the code..and understand the code and understand it till you know what is happening in the code when that particular use case is being executed.
With newly developed understanding try debugging the code and sure the solution is around the corner.
Most important - Document the understanding you have developed about the module/s. Even small knitty gritty things. It is sure going to help you or someone just like you, someday..sometime!
You can try GNU cFlow tool (http://www.gnu.org/software/cflow/).
It will give you graph, charting control flow within program.

How do i really unit test code?

I was reading the Joel Test 2010 and it reminded me of an issue i had with unit testing.
How do i really unit test something? I dont unit test functions? only full classes? What if i have 15 classes that are <20lines. Should i write a 35line unit test for each class bringing 15*20 lines to 15*(20+35) lines (that's from 300 to 825, nearly 3x more code).
If a class is used by only two other classes in the module, should i unit test it or would the test against the other two classes suffice? what if they are all < 30lines of code should i bother?
If i write code to dump data and i never need to read it such as another app is used. The other app isnt command line or it is but no way to verify if the data is good. Do i still need to unit test it?
What if the app is a utility and the total is <500lines of code. Or is used that week and will be used in the future but always need to be reconfiguration because it is meant for a quick batch process and each project will require tweaks because the desire output is unchanged. (i'm trying to say theres no way around it, for valid reasons it will always be tweaked) do i unit test it and if so how? (maybe we dont care if we break a feature used in the past but not in the present or future).
etc.
I think this should be a wiki. Maybe people would like to say an exactly of what they should unit test (or should not)? maybe links to books are good. I tried one but it never clarified what should be unit tested, just the problems of writing unit testing and solutions.
Also if classes are meant to only be in that project (by design, spec or whatever other reason) and the class isnt useful alone (lets say it generates the html using data that returns html ready comments) do i really need to test it? say by checking if all public functions allow null comment objects when my project doesnt ever use null comment. Its those kind of things that make me wonder if i am unit testing the wrong code. Also tons of classes are throwaway when the project. Its the borderline throwaway or not very useful alone code which bothers me.
Here's what I'm hearing, whether you meant it this way or not: a whole litany of issues and excuses why unit testing might not be applicable to your code. In other words: "I don't see what I'll be getting out of unit tests, and they're a lot of bother to write; maybe they're not for me?"
You know what? You may be right. Unit tests are not a panacea. There are huge, wide swaths of testing that unit testing can't cover.
I think, though, that you're misestimating the cost of maintenance, and what things can break in your code. So here are my thoughts:
Should I test small classes? Yes, if there are things in that class that can possibly break.
Should I test functions? Yes, if there are things in this function that can possibly break. Why wouldn't you? Or is your concern over whether it's considered a unit or not? That's just quibbling over names, and shouldn't have any bearing on whether you should write unit tests for it! But it's common in my experience to see a method or function described as a unit under test.
Should I unit test a class if it's used by two other classes? Yes, if there's anything that can possibly break in that class. Should I test it separately? The advantage of doing so is to be able to isolate breakages straight down to the shared class, instead of hunting through the using classes to see if it was they that broke or one of their dependencies.
Should I test data output from my class if another program will read it? Hell yes, especially if that other program is a 3rd-party one! This is a great application of unit tests (or perhaps system tests, depending on the isolation involved in the test): to prove to yourself that the data you output is precisely what you think you should have output. I think you'll find that has the power to simplify support calls immeasurably. (Though please note it's not a substitute for good acceptance testing on that customer's end.)
Should I test throwaway code? Possibly. Will pursuing a TDD strategy get your throwaway code out the door faster? It might. Will having solid unit-tested chunks that you can adapt to new constraints reduce the need to throw code away? Perhaps.
Should I test code that's constantly changing? Yes. Just make sure all applicable tests are brought up to date and pass! Constantly changing code can be particularly susceptible to errors, after all, and enabling safe change is another of unit testing's great benefits. Plus, it probably puts a burden on your invariant code to be as robust as possible, to enable this velocity of change. And you know how you can convince yourself whether a piece of code is robust...
Should I test features that are no longer needed? No, you can remove the test, and probably the code as well (testing to ensure you didn't break anything in the process, of course!). Don't leave unit test rot around, especially if the test no longer works or runs, or people in your org will move away from unit tests and you'll lose the benefit. I've seen this happen. It's not pretty.
Should I test code that doesn't get used by my project, even if it was written in the context of my project? Depends on what the deliverable of your project is, and what the priorities of your project are. But are you sure nobody outside of your project will use it? If they won't, and you aren't, perhaps it's just dead code, in which case see above. From my point of view, I wouldn't feel I'd done a complete job with a class if my testing didn't cover all its important functionality, whether the project used all that functionality or not. I like classes that feel complete, but I keep an eye towards not overengineering a bunch of stuff I don't need. If I put something in a class, then, I intend for it to be used, and will therefore want to make sure it works. It's an issue of personal quality and satisfaction to me.
Don't get fixated on counting lines of code. Write as much test code as you need to convince yourself that every key piece of functionality is being thoroughly tested. As an extreme example, the SQLite project has a tests:source-code ratio of more than 600:1. I use the term "extreme" in a good sense here; the ludicrous amount of testing that goes on is possibly the predominant reason that SQLite has taken over the world.
How can you do all those calculations? Ideally you should never be in a situation where you could count the lines of your completed class and then start writting the unit test from scratch. Those 2 types of code (real code and test code) should be developed and evolved together, and the only LOC metric that should really worry you in the end is 0 LOCs for test code.
Relative LOC counts for code and tests are pointless. What matters more is test coverage. What matters most is finding the bugs.
When I'm writing unit tests, I tend to focus my efforts on testing complicated code that is more likely to contain bugs. Simple stuff (e.g. simple getter and setter methods) is unlikely to contain bugs, and can be tested indirectly by higher-level unit tests.
Some Time ago, i had The same question you have posted in mind. I studied a lot of articles, Tutorials, books and so on... Although These resources give me a good starting point, i still was insecure about how To apply efficiently Unit Testing code. After coming across xUnit Test Patterns: Refactoring Test Code and put it in my shelf for about one year (You know, we have a lot of stuffs To study), it gives me what i need To apply efficiently Unit Testing code. With a lot of useful patterns (and advices), you will see how you can become an Unit Testing coder. Topics as
Test strategy patterns
Basic patterns
Fixture setup patterns
Result verification patterns
Test double patterns
Test organization patterns
Database patterns
Value patterns
And so on...
I will show you, for instance, derived value pattern
A derived input is often employed when we need to test a method that takes a complex object as an argument. For example, thorough input validation testing requires we exercise the method with each of the attributes of the object set to one or more possible invalid values. Because The first rejected value could cause Termination of The method, we must verify each bad attribute in a separate call. We can instantiate The invalid object easily by first creating a valid object and then replacing one of its attributes with a invalid value.
A Test organization pattern which is related To your question (Testcase class per feature)
As The number of Test methods grows, we need To decide on which Testcase class To put each Test method... Using a Testcase class per feature gives us a systematic way To break up a large Testcase class into several smaller ones without having To change out Test methods.
But before reading
(source: xunitpatterns.com)
My advice: read carefully
You seem to be concerned that there could be more test-code than the code-under-test.
I think the ratios could we be higher than you say. I would expect any serious test to exercise a wide range of inputs. So your 20 line class might well have 200 lines of test code.
I do not see that as a problem. The interesting thing for me is that writing tests doesn't seem to slow me down. Rather it makes me focus on the code as I write it.
So, yes test everything. Try not to think of testing as a chore.
I am part of a team that have just started adding test code to our existing, and rather old, code base.
I use 'test' here because I feel that it can be very vague as to weather it is a unit test, or a system test, or an integration test, or whatever. The differences between the terms have large grey areas, and don't add a lot of value.
Because we live in the real world, we don't have time to add test code for all of the existing functionality. We still have Dave the test guy, who finds most bugs. Instead, as we develop we write tests. You know how you run your code before you tell your boss that it works? Well, use a unit framework (we use Junit) to do those runs. And just keep them all, rather than deleting them. Whatever you normally do to convince yourself that it works. Do that.
If it is easy to write the code, do it. If not, leave it to Dave until you think of a good way to do automate it, or until you get that spare time between projects where 'they' are trying to decide what to put into the next release.
for java u can use junit
JUnit
JUnit is a simple framework to write repeatable tests. It is an instance of the xUnit architecture for unit testing frameworks.
* Getting Started
* Documentation
* JUnit related sites/projects
* Mailing Lists
* Get Involved
Getting Started
To get started with unit testing and JUnit read the article: JUnit Cookbook.
This article describes basic test writing using JUnit 4.
You find additional samples in the org.junit.samples package:
* SimpleTest.java - some simple test cases
* VectorTest.java - test cases for java.util.Vector
JUnit 4.x only comes with a textual TestRunner. For graphical feedback, most major IDE's support JUnit 4. If necessary, you can run JUnit 4 tests in a JUnit 3 environment by adding the following method to each test class:
public static Test suite() {
return new JUnit4TestAdapter(ThisClass.class);
}
Documentation
JUnit Cookbook
A cookbook for implementing tests with JUnit.
Javadoc
API documentation generated with javadoc.
Frequently asked questions
Some frequently asked questions about using JUnit.
Release notes
Latest JUnit release notes
License
The terms of the common public license used for JUnit.
The following documents still describe JUnit 3.8.
The JUnit 3.8 version of this homepage
Test Infected - Programmers Love Writing Tests
An article demonstrating the development process with JUnit.
JUnit - A cooks tour
JUnit Related Projects/Sites
* junit.org - a site for software developers using JUnit. It provides instructions for how to integrate JUnit with development tools like JBuilder and VisualAge/Java. As well as articles about and extensions to JUnit.
* XProgramming.com - various implementations of the xUnit testing framework architecture.
Mailing Lists
There are three junit mailing lists:
* JUnit announce: junit-announce#lists.sourceforge.net Archives/Subscribe/Unsubscribe
* JUnit users list: junit#yahoogroups.com Archives/Subscribe/Unsubscribe
* JUnit developer list: junit-devel#lists.sourceforge.net Archives/Subscribe/Unsubscribe
Get Involved
JUnit celebrates programmers testing their own software. As a result bugs, patches, and feature requests which include JUnit TestCases have a better chance of being addressed than those without.
JUnit source code is now hosted on GitHub.
One possibility is to reduce the 'test code' to a language that describes your tests, and an interpreter to run the tests. Teams I have been a part of have used this to wonderful ends, allowing us to write significantly more tests than the "lines of code" would have indicated.
This allowed our tests to be written much more quickly and greatly increased the test legibility.
I am going to answer what I believe are the main points of your question. First, how much test-code should you write? Well, Test-Driven Development can be of some help here. I do not use it as strictly as it is proposed in theory, but I find that writing a test first often helps me to understand the problem I want to solve much better. Also, it will usually lead to good test-coverage.
Secondly, which classes should you test? Again, TDD (or more precisely some of the principles behind it) can be of help. If you develop your system top down and write your tests first, you will have tests for the outer class when writing the inner class. These tests should fail if the inner class has bugs.
TDD is also tightly coupled with the idea of Design for Testability.
My answer is not intended to solve all your problems, but to give you some ideas.
I think it's impossible to write a comprehensive guide of exactly what you should and shouldn't unit test. There are simply too many permutations and types of objects, classes, and functions, to be able to cover them all.
I suggest applying personal responsibility to the testing, and determining the answer yourself. It's your code, and you're responsible for it working. If it breaks, you have to pay the consequences of fixing the code, repairing the data, taking responsibility for the lost revenue, and apologizing to the people whose application broke while they were trying to use it. Bottom line - your code should never break. So what do you have to do to ensure this?
Sometimes unit testing can work well to help you test out all of the specific methods in a library. Sometimes unit testing is just busy-work, because you can tell the code is working based on your use of the code during higher-level testing. You're the developer, you're responsible for making sure the code never breaks - what do you think is the best way to achieve that?
If you think unit testing is a waste of time in a specific circumstance - it probably is. If you've tested the code in all of the application use-case scenarios and they all work, the code is probably good.
If anything is happening in the code that you don't understand - even if the end result is acceptable - then you need to do some more testing to make sure there's nothing you don't understand.
To me, this seems like common sense.
Unit testing is mostly for testing your units from aspect of functionality. You can test and see if a specific input come, will we receive the expected value or will we throw the right exception?
Unit tests are very useful. I recommend you to write down these tests. However, not everything is required to be tested. For example, you don't need to test simple getters and setters.
If you want to write your unit tests in Java via Eclipse, please look at "How To Write Java Unit Tests". I hope it helps.

Help with TDD approach to a real world problem: linker

I'm trying to learn TDD. I've seen examples and discussions about how it's easy to TDD a coffee vending machine firmware from smallest possible functionality up. These examples are either primitive or very well thought-out, it's hard to tell right away. But here's a real world problem.
Linker.
A linker, at its simplest, reads one object file, does magic, and writes one executable file. I don't think I can simplify it further. I do believe the linker design may be evolved, but I have absolutely no idea where to start. Any ideas on how to approach this?
Well, probably the whole linker is too big a problem for the first unit test. I can envision some rough structure beforehand. What a linker does is:
Represents an object file as a collection of segments. Segments contain code, data, symbol definitions and references, debug information etc.
Builds a reference graph and decides which segments to keep.
Packs remaining segments into a contiguous address space according to some rules.
Relocates references.
My main problem is with bullet 1. 2, 3, and 4 basically take a regular data structure and convert it into a platform-dependent mess based on some configuration. I can design that, and the design looks feasible. But 1, it should pick a platform-dependent mess, in one of the several supported formats, and convert it into a regular structure.
The task looks generic enough. It happens everywhere you need to support multiple input formats, be it image processing, document processing, you name it. Is it possible to TDD ? It seems like either test is too simple and I easily hack it to green, or it's a bit more complex and I need to implement the whole object/image/document format reader which is a lot of code. And there is no middle ground.
First, have a look at "Growing Object Oriented Software Guided By Tests" by Freeman & Pryce.
Now, my attempt to answer a difficult question in a few lines.
TDD does require you to think (i.e. design) what you're going to do. You have to:
Think in small steps. Very small steps.
Write a short test, to prove that the next small piece of behaviour works.
Run the test to show that it fails
Do the simplest thing possible to get the test to pass
Refactor ruthlessly to remove duplication and improve the structure of the code
Run the test(s) again to make sure it all still works
Go back to 1.
An initial idea (design) of how your linker might be structured will guide your initial tests. The tests will enforce a modular design (because each test is only testing a single behaviour, and there should be minimal dependencies on other code you've written).
As you proceed you may find your ideas change. The tests you've already written will allow you to refactor with confidence.
The tests should be simple. It is easy to 'hack' a single test to green. But after each 'hack' you refactor. If you see the need for a new class or algorithm during the refactoring, then write tests to drive out its interface. Make sure that the tests only ever test a single behaviour by keeping your modules loosely coupled (dependency injection, abstract base classes, interfaces, function pointers etc.) and use fakes, stubs and mocks to isolate the code under test from the rest of your system.
Finally use 'customer' tests to ensure that you have delivered functional features.
It's a difficult change in mind-set, but a lot of fun and very rewarding. Honest.
You're right, a linker seems a bit bigger than a 'unit' to me, and TDD does not excuse you from sitting down and thinking about how you're going to break down your problem into units. The Sudoku saga is a good illustration of what goes wrong if you don't think first!
Concentrating on your point 1, you have already described a good collection of units (of functionality) by listing the kinds of things that can appear in segments, and hinting that you need to support multiple formats. Why not start by dealing with a simple case like, say, a file containing just a data segment in the binary format of your development platform? You could simply hard-code the file as a binary array in your test, and then check that it interprets just that correctly. Then pick another simple case, and test for that. Keep going.
Now the magic bit is that pretty soon you'll see repeated structures in your code and in your tests, and because you've got tests you can be quite aggressive about refactoring it away. I suspect this is the bit that you haven't experienced yet, because you say "It seems like either test is too simple and I easily hack it to green, or it's a bit more complex and I need to implement the whole object/image/document format reader which is a lot of code. And there is no middle ground." The point is that you should hack them all to green, but as you're doing that you are also searching out the patterns in your hacks.
I wrote a (very simple) compiler in this fashion, and it mostly worked quite well. For each syntactic construction, I wrote the smallest program that I could think of which used it in some observable way, and had the test compile the program and check that it worked as expected. I used a proper parser generator as you can't plausibly TDD your way into one of them (you need to use a little forethought!) After about three cycles, it became obvious that I was repeating the code to walk the syntax tree, so that was refactored into something like a Visitor.
I also had larger-scale acceptance tests, but in the end I don't think these caught much that the unit tests didn't.
This is all very possible.
A sample from the top of my head is NHAML.
This is ASP.NET ViewEngine that converts plain text to the .NET native code.
You can have a look at source code and see how it is tested.
I guess what I do is come up with layers and blocks and sub-divide to the point where I might be thinking about code and then start writing tests.
I think your tests should be quite simple: it's not the individual tests that are the power of TDD but the sum of the tests.
One of the principles I follow is that a method should fit on a screen - when that's the case, the tests are usually simple enough.
Your design should allow you to mock out lower layers so that you're only testing one layer.
TDD is about specification, not test.
From your simplest spec of a linker, your TDD test has just to check whether an executable file has been created during the linker magic if you feed it with an object file.
Then you write a linker that makes your test succeed, e.g.:
check whether input file is an object file
if so, generate a "Hello World!" executable (note that your spec didn't specify that different object files would produce different executables)
Then you refine your spec and your TDD (these are your four bullets).
As long as you can write a specification you can write TDD test cases.

Why should I use Test Driven Development? [duplicate]

This question already has answers here:
Closed 13 years ago.
Duplicate:
Why should I practice Test Driven Development and how should I start?
For a developer that doesn't know about Test-Driven Development, what problem(s) will be solved by adopting TDD?
[EDIT] Let's assume that the developer already (ab)uses a unit testing framework.
Here are three reasons that TDD might help a developer/team:
Better understanding of what you're going to write
Enforces the policy of writing tests a little better
Speeds up development
One reason to write the tests first is to have a better understanding of the actual code before you write it. To me, this is the main benefit of test driven development. When you write the test cases first, you think more critically about the corner cases. It's then easier to address them when you write the code and ensure that they're accurate.
Another reason is to actually enforce writing the tests. Often when people do unit-testing without the TDD, they have a testing framework set up, write some new code, and then quit. They think that the code already works just fine, so why write tests? It's simple enough that it won't break, right? But now you've lost the advantages of doing unit-tests in the first place (completely different discussion). Write them first, and they're already there.
Writing these tests first could mean that you don't need to launch the program in a debugging environment (slow — especially for larger projects) to test if a few small things work. Of course there's no excuse for not doing so before committing changes.
Convincing yourself or other people to write the tests first may be difficult. You may have better luck getting them to write both at the same time which may be just as beneficial.
Presumably you test code that you've written before you commit it to a repository.
If that's not true you have other issues to deal with.
If it is true, you can look at writing tests using a framework as a way to automate those main routines or drivers that you currently write so you can run all of them automatically at the push of a button. You don't have to pore over output to decide if the test passed or failed; you embed the success or failure of the test in the code and get a thumbs up or down decision right away. Running all the tests at once reduces the chances of a "whack a mole" situation where you fix something in one class and break something else. All the tests have to pass.
Sounds good so far, yes?
The TDD folks just take it one step further by demanding that you write the test FIRST before you write the class. It fails, of course, because you haven't written the class. It's their way of guaranteeing that you write test classes.
If you're already using a test framework, getting good value out of the tests you write, and have meaningful code coverage up around 70%, then I think you're doing well. I'm not sure that TDD will give you much more value. It's up to you to decide whether or not you go that extra mile. Personally, I don't do it. I write tests after the class and refactor if I feel the need. Some people might find it helpful to write the test first knowing it'll fail, but I don't.
(This is more of a comment agreeing with duffymo's answer than an answer of its own.)
duffymo answers:
The TDD folks just take it one step further by demanding that you write the test FIRST before you write the class. It fails, of course, because you haven't written the class. It's their way of guaranteeing that you write test classes.
I think it's actually to force coders to think about what their code is doing. Having to think about a test makes one consider what the code is supposed to do: what the pre-conditions and post-conditions are, which functions are primitive and which are composed of primitive functions, what the minimal necessary public interface is, and what's an implementation detail.
These are all things I routinely think about, so like you, "test first" doesn't add a whole lot, for me. And frankly (I know this is heresy in some circles) I like to "anchor" the core ideas of a class by sketching out the public interface first; that way I can look at it, mentally use it, and see if it's as clean as I thought it was. (A class or a library should be easy and intuitive for client programmers to use.)
In other words, I do what TDD tries to ensure happens by writing tests first, but like duffymo, I get there a different way.
And the real point of "test first" is to get a coder to pause and think like a designer. It's silly to make a fetish of how the programmer enters that state; for those who don't do it naturally, "test first" serves as a ritual to get them there. For those who do, "test first" doesn't add much -- and can get in the way of the programmer's habitual way of getting into that state.
Again, we want to look at results, not rituals. If a junior guy needs a ritual, a "stations of the cross" or a rosary* to "get in the groove", "test first" serves that purpose. If someone has their own way to get there, that's great too.
Note that I'm not saying that code shouldn't be tested. It should. It gives us a safety net, which in turn allows us to concentrate our attention on writing good code, even audacious code, because we know the net is there to catch errors.
All I am saying is that fetishistic insistence on "test first" confuses the method (one of many) with the goal, making the programmer think about what he's coding.
* To be ecumenical, I'll note that both Catholics and Muslims use rosaries. And again, it's a mechanical, muscle-memory way to put oneself into a certain frame of mind. It's a fetish (in the original sense of a magic object, not the "sexual fetish" meaning) or good-luck charm. So is saying "Om mani padme hum", or sitting zazen, or stroking a "lucky" rabbit's foot, (Not so lucky for the rabbit.) The philosopher Jerry Fodor, when thinking about hard problems, has a similar ritual: he repeats to himself, "C'mon, Jerry, you can do it!" (I tried that too, but since my name is not Jerry, it didn't work for me. ;) )
Ideally:
You won't waste time writing features you don't need. You'll have a comprehensive unit test suite to serve as a safety net for refactoring. You'll have executable examples of how your code is intended to be used. Your development flow will be smoother and faster; you'll spend less time in the debugger.
But most of all, your design will be better. Your code will be better factored - loosely coupled, highly cohesive - and better formed - smaller, better-named methods & classes.
For my current project (which runs on a relatively heavyweight process), I have adopted a peculiar form of TDD that consists of writing skeleton test cases based on requirements documents and GUI mockups. I write dozens, sometimes hundreds of those before starting to implement anything (this runs totally against "pure" TDD which says you should write a few tests, then immediately start on a skeleton implementation).
I have found this to be an excellent way to review the requirements documents. I have to think about the behaviour described in them much more intensively than if I just were to read them . In consequence, I find many more inconsistencies and gaps in them which I would otherwise only have found during implementation. This way, I can ask for clarification earlier and have better requirements when I start implementing.
Then, during implementation, the tests are a way to measure how far I've yet to go. And they prevent me from forgetting anything (don't laugh, that's a real problem when you work on larger use cases).
And the moral is: even when your dev process doesn't really support TDD, it can still be done in a way, and improve quality and productivity.
I personally do not use TDD, but one of the biggest pro's I can see with the methology is that customer satisfaction ensurance. Basically, the idea is that the steps of your development process are these:
1) Talk to customer about what the application is supposed to do, and how it is supposed to react to different situations.
2) Translate the outcome of 1) into Unit Tests, which each test one feature or scenario.
3) Write simple, "sloppy" code that (barely) passes the tests. When this is done, you have met your customer's expectations.
4) Refactor the code you wrote in 3) until you think you've done it in the most effective way possible.
When this is done you have hopefully produced high-quality code, that meets your customer's needs. If the customer now wants a new feature, you start the cycle over - discuss the feature, write a test that makes sure it works, write code that passes the test, refactor.
And as others have said, each time you run your tests you ensure that the old code still works, and that you can add new functionality without breaking old one.
Most of the people I have talked to don't use a complete TDD model. They usually find the best testing model that works for them. Find yours play with TDD and find where you are the most productive.
TDD (Test Driven Development/ Design) provides the following advantages
ensures you know the story card's acceptance criteria before you start
ensures that you know when to stop coding (i.e., when the acceptance criteria has been meet thus prevents gold platting)
As a result you end up with code that is
testable
clean design
able to be refactored with confidence
the minimal code necessary to satisfy the story card
a living specification of how the code works
able to support a sustainable pace of new features
I made a big effort to learn TDD for Ruby on Rails development. It took several days before I really got into it and it. I was very skeptical but I made the effort because programmers I respect support it.
At this point I feel it was definitely worth the effort. There are several benefits which I'm sure others will be happy to list for you. To me the most important advantage is that it helps avoid that nightmare situation late in a project where something suddenly breaks for no apparent reason and then you're spending a day and a half with the debugger. It helps prevent your code base from deteriorating as you add more and more logic to it.
It is common knowledge that writing tests and having a large number of automated tests are a Good Thing.
However, without TDD, it often just becomes tedious. People write tests, and then leave it, and the tests do not get updated as they should, nor do new features get tested as often as they should either.
A big part of this is because the code has become a pain to test - TDD will influence your design so that it is much easier to test. Because you've used TDD, you have a good number of tests, which makes it much easier to find regressions whenever your code or requirements change, simplifying debugging drammatically, causing an appreciation of good TDD and encouraging more tests to be written when changes are needed - and we're back to the start of the cycle.
There are many advantages:
Higher code quality
Fewer bugs
Less wasted time
Any of those alone would be sufficient justification to implement TDD.

Should unit tests be written before the code is written?

I know that one of the defining principles of Test driven development is that you write your Unit tests first and then write code to pass those unit tests, but is it necessary to do it this way?
I've found that I often don't know what I am testing until I've written it, mainly because the past couple of projects I've worked on have more evolved from a proof of concept rather than been designed.
I've tried to write my unit tests before and it can be useful, but it doesn't seem natural to me.
Some good comments here, but I think that one thing is getting ignored.
writing tests first drives your design. This is an important step. If you write the tests "at the same time" or "soon after" you might be missing some design benefits of doing TDD in micro steps.
It feels really cheesy at first, but it's amazing to watch things unfold before your eyes into a design that you didn't think of originally. I've seen it happen.
TDD is hard, and it's not for everybody. But if you already embrace unit testing, then try it out for a month and see what it does to your design and productivity.
You spend less time in the debugger and more time thinking about outside-in design. Those are two gigantic pluses in my book.
There have been studies that show that unit tests written after the code has been written are better tests. The caveat though is that people don't tend to write them after the event. So TDD is a good compromise as at least the tests get written.
So if you write tests after you have written code, good for you, I'd suggest you stick at it.
I tend to find that I do a mixture. The more I understand the requirements, the more tests I can write up front. When the requirements - or my understanding of the problem - are weak, I tend to write tests afterwards.
TDD is not about the tests, but how the tests drive your code.
So basically you are writing tests to let an architecture evolve naturally (and don't forget to refactor !!! otherwise you won't get much benefit out of it).
That you have an arsenal of regression tests and executable documentation afterwards is a nice sideeffect, but not the main reason behind TDD.
So my vote is:
Test first
PS: And no, that doesn't mean that you don't have to plan your architecture before, but that you might rethink it if the tests tell you to do so !!!!
I've lead development teams for the past 6-7 years. What I can tell for sure is that as a developer and the developers I have worked with, it makes a phenomenal difference in the quality of the code if we know where our code fits into the big picture.
Test Driven Development (TDD) helps us answer "What?" before we answer "How?" and it makes a big difference.
I understand why there may be apprehensions about not following it in PoC type of development/architect work. And you are right it may not make a complete sense to follow this process. At the same time, I would like to emphasize that TDD is a process that falls in the Development Phase (I know it sounds obsolete, but you get the point :) when the low level specification are clear.
I think writing the test first helps define what the code should actually do. Too many times people don't have a good definition of what the code is supposed to do or how it should work. They simply start writing and make it up as they go along. Creating the test first makes you focus on what the code will do.
Not always, but I find that it really does help when I do.
I tend to write them as I write my code. At most I will write the tests for if the class/module exists before I write it.
I don't plan far enough ahead in that much detail to write a test earlier than the code it is going to test.
I don't know if this is a flaw in my thinking or method's or just TIMTOWTDI.
I start with how I would like to call my "unit" and make it compile.
like:
picker = Pick.new
item=picker.pick('a')
assert item
then I create
class Pick
def pick(something)
return nil
end
end
then I keep on using the Pick in my "test" case so I could see how I would like it to be called and how I would treat different kinds of behavior. Whenever I realize I could have trouble on some boundaries or some kind of error/exception I try to get it to fire and get an new test case.
So, in short. Yes.
The ratio doing test before is a lot higher than not doing it.
Directives are suggestion on how you could do things to improve the overall quality or productivity or even both of the end product. They are in no ways laws to be obeyed less you get smitten in a flash by the god of proper coding practice.
Here's my compromise on the take and I found it quite useful and productive.
Usually the hardest part to get right are the requirements and right behind it the usability of your class, API, package... Then is the actual implementation.
Write your interfaces (they will change, but will go a long way in knowing WHAT has to be done)
Write a simple program to use the interfaces (them stupid main). This goes a long way in determining the HOW it is going to be used (go back to 1 as often as needed)
Write tests on the interface (The bit I integrated from TDD, again go back to 1 as often as needed)
write the actual code behind the interfaces
write tests on the classes and the actual implementation, use a coverage tool to make sure you do not forget weid execution paths
So, yes I write tests before coding but never before I figured out what needs to be done with a certain level of details. These are usually high level tests and only treat the whole as a black box. Usually will remain as integration tests and will not change much once the interfaces have stabilized.
Then I write a bunch of tests (unit tests) on the implementation behind it, these will be much more detailed and will change often as the implementation evolves, as it get's optimized and expanded.
Is this strictly speaking TDD ? Extreme ? Agile...? whatever... ? I don't know, and frankly I don't care. It works for me. I adjust it as needs go and as my understanding of software development practice evolve.
my 2 cent
I've been programming for 20 years, and I've virtually never written a line of code that I didn't run some kind of unit test on--Honestly I know people do it all the time, but how someone can ship a line of code that hasn't had some kind of test run on it is beyond me.
Often if there is no test framework in place I just write a main() into each class I write. It adds a little cruft to your app, but someone can always delete it (or comment it out) if they want I guess. I really wish there was just a test() method in your class that would automatically compile out for release builds--I love my test method being in the same file as my code...
So I've done both Test Driven Development and Tested development. I can tell you that TDD can really help when you are a starting programmer. It helps you learn to view your code "From outside" which is one of the most important lessons a programmer can learn.
TDD also helps you get going when you are stuck. You can just write some very small piece that you know your code has to do, then run it and fix it--it gets addictive.
On the other hand, when you are adding to existing code and know pretty much exactly what you want, it's a toss-up. Your "Other code" often tests your new code in place. You still need to be sure you test each path, but you get a good coverage just by running the tests from the front-end (except for dynamic languages--for those you really should have unit tests for everything no matter what).
By the way, when I was on a fairly large Ruby/Rails project we had a very high % of test coverage. We refactored a major, central model class into two classes. It would have taken us two days, but with all the tests we had to refactor it ended up closer to two weeks. Tests are NOT completely free.
I'm not sure, but from your description I sense that there might be a misunderstanding on what test-first actually means. It does not mean that you write all your tests first. It does mean that you have a very tight cycle of
write a single, minimal test
make the test pass by writing the minimal production code necessary
write the next test that will fail
make all the existing tests pass by changing the existing production code in the simplest possible way
refactor the code (both test and production!) so that it doesn't contain duplication and is expressive
continue with 3. until you can't think of another sensible test
One cycle (3-5) typically just takes a couple of minutes. Using this technique, you actually evolve the design while you write your tests and production code in parallel. There is not much up front design involved at all.
On the question of it being "necessary" - no, it obviously isn't. There have been uncountable projects successfull without doing TDD. But there is some strong evidence out there that using TDD typically leads to significantly higher quality, often without negative impact on productivity. And it's fun, too!
Oh, and regarding it not feeling "natural", it's just a matter of what you are used to. I know people who are quite addicted to getting a green bar (the typical xUnit sign for "all tests passing") every couple of minutes.
There are so many answers now and they are all different. This perfectly resembles the reality out there. Everyone is doing it differently. I think there is a huge misunderstanding about unit testing. It seems to me as if people heard about TDD and they said it's good. Then they started to write unit tests without really understanding what TDD really is. They just got the part "oh yeah we have to write tests" and they agree with it. They also heard about this "you should write your tests first" but they do not take this serious.
I think it's because they do not understand the benefits of test-first which in turn you can only understand once you've done it this way for some time. And they always seem to find 1.000.000 excuses why they don't like writing the tests first. Because it's too difficult when figuring out how everything will fit together etc. etc. In my opinion, it's all excuses for them to hide away from their inability to once discipline themselve, try the test-first approach and start to see the benefits.
The most ridicoulous thing if they start to argue "I'm not conviced about this test-first thing but I've never done it this way" ... great ...
I wonder where unit testing originally comes from. Because if the concept really originates from TDD then it's just ridicoulous how people get it wrong.
Writing the tests first defines how your code will look like - i.e. it tends to make your code more modular and testable, so you do not create a "bloat" methods with very complex and overlapping functionality. This also helps to isolate all core functionality in separate methods for easier testing.
Personally, I believe unit tests lose a lot of their effectiveness if not done before writing the code.
The age old problem with testing is that no matter how hard we think about it, we will never come up with every possibly scenario to write a test to cover.
Obviously unit testing itself doesn't prevent this completely, as it restrictive testing, looking at only one unit of code not covering the interactions between this code and everything else, but it provides a good basis for writing clean code in the first place that should at least restrict the chances for issues of interaction between modules. I've always worked to the principle of keeping code as simple as it possibly can be - infact I believe this is one of the key principles of TDD.
So starting off with a test that basically says you can create a class of this type and build it up, in theory, writing a test for every line of code or at least covering every route through a particular piece of code. Designing as you go! Obviously based on a rough-up-front design produced initially, to give you a framework to work to.
As you say it is very unnatural to start with and can seem like a waste of time, but I've seen myself first hand that it pays off in the long run when defects stats come through and show the modules that were fully written using TDD have far lower defects over time than others.
Before, during and after.
Before is part of the spec, the contract, the definition of the work
During is when special cases, bad data, exceptions are uncovered while implementing.
After is maintenance, evolution, change, new requirements.
I don't write the actual unit tests first, but I do make a test matrix before I start coding listing all the possible scenarios that will have to be tested. I also make a list of cases that will have to be tested when a change is made to any part of the program as part of regression testing that will cover most of the basic scenarios in the application in addition to fully testing the bit of code that changed.
Remember with Extreme programming your tests effectly are you documenation. So if you don't know what you're testing, then you don't know what you want your application is going to do?
You can start off with "Stories" which might be something like
"Users can Get list of Questions"
Then as you start writing code to solve the unit tests. To solve the above you'll need at least a User and question class. So then you can start thinking about the fields:
"User Class Has Name DOB Address TelNo Locked Fields"
etc.
Hope it helps.
Crafty
Yes, if you are using true TDD principles. Otherwise, as long as you're writing the unit-tests, you're doing better than most.
In my experience, it is usually easier to write the tests before the code, because by doing it that way you give yourself a simple debugging tool to use as you write the code.
I write them at the same time. I create the skeleton code for the new class and the test class, and then I write a test for some functionality (which then helps me to see how I want the new object to be called), and implement it in the code.
Usually, I don't end up with elegant code the first time around, it's normally quite hacky. But once all the tests are working, you can refactor away until you end up with something pretty neat, tidy and proveable to be rock solid.
It helps when you are writing something that you are used writing to write first all the thing you would regularly check for and then write those features. More times then not those features are the most important for the piece of software you are writing. Now , on the other side there are not silver bullets and thing should never be followed to the letter. Developer judgment plays a big role in the decision of using test driven development versus test latter development.