Comparison of performance between Scala etc. and C/C++/Fortran? - c++

I wonder if there is any reliable comparison of performance between "modern" multithreading-specialized languages like e.g. scala and "classic" "lower-level" languages like C, C++, Fortran using parallel libs like MPI, Posix or even Open-MP.
Any links and suggestions welcome.

Given that Java, and, therefore, Scala, can call external libraries, and given that those highly specialized external libraries will do most of the work, then the performance is the same as long as the same libraries are used.
Other than that, any such comparison is essentially meaningless. Scala code runs on a virtual machine which has run-time optimization. That optimization can push long-running programs towards greater performance than programs compiled with those other languages -- or not. It depends on the specific program written in each language.

Here's another non-answer: go to your local supercomputer centre and ask what fraction of the CPU load is used by each language you are interested in. This will only give you a proxy answer to your question, it will tell you what the people who are concerned with high performance on such machines use when tackling the kind of problem that they tackle. But it's as instructive as any other answer you are likely to get for such a broad question.
PS The answer will be that Fortran, C and C++ consume well in excess of 95% of the CPU cycles.

I'd view such comparisons as a fraction. The numerator is a constant (around 0.00001, I believe). The denominator is the number of threads multiplied by the number of logical processors.
IOW, for a single thread, the comparison has about a one chance in a million of meaning something. For a quad core processor running an application with (say) 16 threads, you're down to one chance in 64 million of a meaningful result.
In short, there are undoubtedly quite a few people working on it, but the chances of even a single result from any of them providing a result that's useful and meaningful is still extremely low. Worse, even if one of them really did mean something, it would be almost impossible to find, and even more difficult to verify to the point that you actually knew it meant something.

Related

Why don't games use expression templates for math?

I can imagine expression templates doing awful things to compile times for things as pervasive as vectors/matrices/quaternions etc, but if it is such a great speed boost why don't games use it? It's quite obvious that SIMD instructions can exploit data level parallelism to great effect. Expression templates and lazy evaluation together seem to make sense, at least when it comes to eliminating temporaries.
So while libraries like Eigen advertise such features, I don't see this done commonly in middleware (e.g. Havok) or games where things are extremely speed critical. Can anyone shed some light on this? Does it have to do with non-determinism or branch prediction?
I can think of a lot of reasons:
it hurts compile-times. Longer compile-times means that testing any change you made to the code takes longer. It hurts productivity.
it's complex. Most likely, many developers on the team are not familiar with expression templates, and will have a hard time reading and debugging them.
Games often have to work on multiple platforms, with various compilers which may have a wide range of shortcomings, which might for example make advanced template trickery problematic.
It's generally not necessary. You can write efficient code without expression templates. It just gets more verbose, and you have to do more hand-holding for the compiler.
Game developers are extremely skeptical of anything that wasn't already used in games 10 years ago. It's not long ago that several major developers stuck to C: not because C++ wasn't good enough, but because it was "new". Game developers are conservative as hell.
And of course, the obvious question: where would they use expression templates? Is there enough complex math to really make it worthwhile? Games tend to rely on a fairly small number of linear algebra operations, which will typically be heavily hand-tuned in any case.
I want to add one more reason not stated in the above answers. Apologies if it is and I missed it.
Adding templates to math based classes, such as a vec3 class, can change the meaning of operators and lead to functions that are invalid for some template types.
Take for instance,
vec3<int> myVec( 3, 5, 4 );
myVec.Normalize();
What would normalize mean to an integer vector? All of the sudden when we add templates to math constructs, we invalidate many existing functions, such as the example described above.
Also, another thing worth mentioning is that many math constructs are optimized with certain types because optimization is so important in games. GPU's are floating point calculating machines. Doubles take up double the space of floats and are quite a bit slower to compute with, even though it may seem like an obvious use case to a new game developer.
I hope this example makes sense. Templates are a great tool but math constructs in games are just not the right place to use them.
Typically the parts of a game that are both performance sensitive and math heavy and still tend to run on the CPU rather than the GPU are applying the same basic operations to large numbers of elements. Some examples are animation blending, physics calculations, visibility tests, etc.
The best approach to optimizing these sorts of problems on current console hardware is generally to try and batch as much work together as possible and to aim for maximum data locality to avoid expensive cache misses. The actual math can then be optimized using SIMD intrinsics and will typically be carefully hand optimized. The kind of optimizations that expression templates give you can be performed relatively easily during that hand optimization phase but there are various other important optimizations that are also likely to be performed that expression templates won't give you. Often this critical code will have sections with custom optimizations for each target platform and won't be very portable.
I think the reason that expression templates aren't widely used is that they add software complexity (for all the reasons described by jalf) to non performance critical code that doesn't really warrant it while not covering all the optimizations that are necessary for the really performance critical code that shows up at the top of profiles.

When should I use ASM calls?

I'm planning on writing a game with C++, and it will be extremely CPU-intensive (pathfinding,genetic algorithms, neural networks, ...)
So I've been thinking about how to tackle this situation best so that it would run smoothly.
(let this top section of this question be side information, I don't want it to restrict the main question, but it would be nice if you could give me side notes as well)
Is it worth it to learn how to work with ASM, so I can make ASM calls in C++,
can it give me a significant/notable performance advantage?
In what situations should I use it?
Almost never:
You only want to be using it once you've profiled your C++ code and have identified a particular section as a bottleneck.
And even then, you only want to do it once you've exhausted all C++ optimization options.
And even then, you only want to be using ASM for tight, inner loops.
And even then, it takes quite a lot of effort and skill to beat a C++ compiler on a modern platform.
If your not an experienced assembly programmer, I doubt you will be able to optimize assembly code better than your compiler.
Also note that assembly is not portable. If you decide to go this way, you will have to write different assembly for all the architectures you decide to support.
Short answer: it depends, most likely you won't need it.
Don't start optimizing prematurely. Write code that is also easy to read and to modify. Separate logical sections into modules. Write something that is easy to extend.
Do some profiling.
You can't tell where your bottlenecks are unless you profile your code. 99% of the time you won't get that much performance gain by writing asm. There's a high chance you might even worsen your performance. Optimizers nowadays are very good at what they do. If you do have a bottleneck, it will most probably be because of some poorly chosen algorithm or at least something that can be remedied at a high-level.
My suggestion is, even if you do learn asm, which is a good thing, don't do it just so you can optimize.
Profile profile profile....
A legitimate use case for going low-level (although sometimes a compiler can infer it for you) is to make use of SIMD instructions such as SSE. I would assume that at least some of the algorithms you mention will benefit from parallel processing.
However, you don't need to write actual assembly, instead you can simply use intrinsic functions. See, e.g. this.
Don't get ahead of yourself.
I've posted a sourceforge project showing how a simulation program was massively speeded up (over 700x).
This was not done by assuming in advance what needed to be made fast.
It was done by "profiling", which I put in quotes because the method I use is not to employ a profiler.
Rather I rely on random pausing, a method known and used to good effect by some programmers.
It proceeds through a series of iterations.
In each iteration a large source of time-consumption is identified and fixed, resulting in a certain speedup ratio.
As you proceed through multiple iterations, these speedup ratios multiply together (like compound interest).
That's how you get major speedup.
If, and only if, you get to a point where some code is taking a large fraction of time, and it doesn't contain any function calls, and you think you can write assembly code better than the compiler does, then go for it.
P.S. If you're wondering, the difference between using a profiler and random pausing is that profilers look for "bottlenecks", on the assumption that those are localized things. They look for routines or lines of code that are responsible for a large percent of overall time.
What they miss is problems that are diffuse.
For example, you could have 100 routines, each taking 1% of time.
That is, no bottlenecks.
However, there could be an activity being done within many or all of those routines, accounting for 1/3 of the time, that could be done better or not at all.
Random pausing will see that activity with a small number of samples, because you don't summarize, you examine the samples.
In other words, if you took 9 samples, on average you would notice the activity on 3 of them.
That tells you it's big.
So you can fix it and get your 3/2 speedup ratio.
"To understand recursion, you must first understand recursion." That quote comes to mind when I consider my response to your question, which is "until you understand when to use assembly, you should never use assembly." After you have completely implemented your soution, extensively profiled its performance and determined precise bottlenecks, and experimented with several alternative solutions, then you can begin to consider using assembly. If you code a single line of assembly before you have a working and extensively profiled program, you have made a mistake.
If you need to ask than you don't need it.

What are the functions in the standard library that can be implemented faster with programming hacks? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
I have recently read an article about fast sqrt calculation. Therefore, I have decided to ask SO community and its experts to help me find out, which STL algorithms or mathematical calculations can be implemented faster with programming hacks?
It would be great if you can give examples or links.
Thanks in advance.
System library developers have more concerns than just performance in mind:
Correctness and standards compliance: Critical!
General use: No optimisations are introduced, unless they benefit the majority of users.
Maintainability: Good hand-written assembly code can be faster, but you don't see much of it. Why?
Portability: Decent libraries should be portable to more than just Windows/x86/32bit.
Many optimisation hacks that you see around violate one or more of the requirements above.
In addition, optimisations that will be useless or even break when the next generation CPU comes around the corner are not a welcome thing.
If you don't have profiler evidence on it being really useful, don't bother optimising the system libraries. If you do, work on your own algorithms and code first, anyway...
EDIT:
I should also mention a couple of other all-encompassing concerns:
The cost/effort to profit/result ratio: Optimisations are an investment. Some of them are seemingly-impressive bubbles. Others are deeper and more effective in the long run. Their benefits must always be considered in relation to the cost of developing and maintaining them.
The marketing people: No matter what you think, you'll end up doing whatever they want - or think they want.
Probably all of them can be made faster for a specific problem domain.
Now the real question is, which ones should you hack to make faster? None, until the profiler tells you to.
Several of the algorithms in <algorithm> can be optimized for vector<bool>::[const_]iterator. These include:
find
count
fill
fill_n
copy
copy_backward
move // C++0x
move_backward // C++0x
swap_ranges
rotate
equal
I've probably missed some. But all of the above algorithms can be optimized to work on many bits at a time instead of just one bit at a time (as would a naive implementation).
This is an optimization that I suspect is sorely missing from most STL implementations. It is not missing from this one:
http://libcxx.llvm.org/
This is where you really need to listen to project managers and MBAs. What you're suggesting is re-implementing parts of the STL and or standard C library. There is an associated cost in terms of time to implement and maintenance burden of doing so, so you shouldn't do it unless you really, genuinely need to, as John points out. The rule is simple: is this calculation you're doing slowing you down (a.k.a. you are bound by the CPU)? If not, don't create your own implementation just for the sake of it.
Now, if you're really interested in fast maths, there are a few places you can start. The gnu multi-precision library implements many algorithms from modern computer arithmetic and semi numerical algorithms that are all about doing maths on arbitrary precision integers and floats insanely fast. The guys who write it optimise in assembly per build platform - it is about as fast as you can get in single core mode. This is the most general case I can think of for optimised maths i.e. that isn't specific to a certain domain.
Bringing my first paragraph and second in with what thkala has said, consider that GMP/MPIR have optimised assembly versions per cpu architecture and OS they support. Really. It's a big job, but it is what makes those libraries so fast on a specific small subset of problems that are programming.
Sometimes domain specific enhancements can be made. This is about understanding the problem in question. For example, when doing finite field arithmetic under rijndael's finite field you can, based on the knowledge that the characteristic polynomial is 2 with 8 terms, assume that your integers are of size uint8_t and that addition/subtraction are equivalent to xor operations. How does this work? Well basically if you add or subtract two elements of the polynomial, they contain either zero or one. If they're both zero or both one, the result is always zero. If they are different, the result is one. Term by term, that is equivalent to xor across a 8-bit binary string, where each bit represents a term in the polynomial. Multiplication is also relatively efficient. You can bet that rijndael was designed to take advantage of this kind of result.
That's a very specific result. It depends entirely on what you're doing to make things efficient. I can't imagine many STL functions are purely optimised for cpu speed, because amongst other things STL provides: collections via templates, which are about memory, file access which is about storage, exception handling etc. In short, being really fast is a narrow subset of what STL does and what it aims to achieve. Also, you should note that optimisation has different views. For example, if your app is heavy on IO, you are IO bound. Having a massively efficient square root calculation isn't really helpful since "slowness" really means waiting on the disk/OS/your file parsing routine.
In short, you as a developer of an STL library are trying to build an "all round" library for many different use cases.
But, since these things are always interesting, you might well be interested in bit twiddling hacks. I can't remember where I saw that, but I've definitely stolen that link from somebody else on here.
Almost none. The standard library is designed the way it is for a reason.
Taking sqrt, which you mention as an example, the standard library version is written to be as fast as possible, without sacrificing numerical accuracy or portability.
The article you mention is really beyond useless. There are some good articles floating around the 'net, describing more efficient ways to implement square roots. But this article isn't among them (it doesn't even measure whether the described algorithms are faster!) Carmack's trick is slower than std::sqrt on a modern CPU, as well as being less accurate.
It was used in a game something like 12 years ago, when CPUs had very different performance characteristics. It was faster then, but CPU's have changed, and today, it's both slower and less accurate than the CPU's built-in sqrt instruction.
You can implement a square root function which is faster than std::sqrt without losing accuracy, but then you lose portability, as it'll rely on CPU features not present on older CPU's.
Speed, accuracy, portability: choose any two. The standard library tries to balance all three, which means that the speed isn't as good as it could be if you were willing to sacrifice accuracy or portability, and accuracy is good, but not as good as it could be if you were willing to sacrifice speed, and so on.
In general, forget any notion of optimizing the standard library. The question you should be asking is whether you can write more specialized code.
The standard library has to cover every case. If you don't need that, you might be able to speed up the cases that you do need. But then it is no longer a suitable replacement for the standard library.
Now, there are no doubt parts of the standard library that could be optimized. the C++ IOStreams library in particular comes to mind. It is often naively, and very inefficiently, implemented. The C++ committee's technical report on C++ performance has an entire chapter dedicated to exploring how IOStreams could be implemented to be faster.
But that's I/O, where performance is often considered to be "unimportant".
For the rest of the standard library, you're unlikely to find much room for optimization.

Will it be possible to run C code emulated on GA144?

This company have an interesting CPU that run at an amazing speed. Will it be possible to emulate C or is the memory too small?
There is C translator for SEAforth40 chip (previous version of GA144 chip)
Presentation:
http://www.asu.ru/files/documents/00002990.pdf
A first cursory glance at the instruction set suggests that "colorForth" can be thought of as a simple machine language. Given that, it may be possible to write a C compiler that compiles to colorForth as its target instruction set.
Of course, it may be easier to write code in colorForth in the first place.
From the looks of it, if someone writes a compiler which can output the machine code (33 instructions, not too complex), you won't need to emulate C, you could just directly compile it.
Of course, it would be extremely limited, since it looks like each chip gets a tiny amount of internal RAM (64 words isn't a lot to work with). There's an 18-bit memory address port attached to one of the cores, so you can have 256MB of external RAM, but it can only be directly accessed by a single one of the cores, and then it would need to be passed to the other.
It's possible that different cores could be used for different functions, but that would complicate the compiler quite a bit.
It could be done, but their interpreter should handle parallel tasks, load distribution, etc. It will probability be best to just go with their Forth interpreter.
Chlorophyll has some ideas of general interest. I also happens to look similar to C:
We developed Chlorophyll, a synthesis-aided programming model and
compiler for the GreenArrays GA144, an extremely minimalist
low-power spatial architecture that requires partitioning the program
into fragments of no more than 256 instructions and 64 words of
data. This processor is 100-times more energy efficient than its
competitors, but currently can only be programmed using a low-level
stack-based language. The Chlorophyll programming model allows
programmers to provide human insight by specifying partial
partitioning of data and computation. The Chlorophyll compiler relies
on synthesis, sidestepping the need to develop classical
optimizations, which may be challenging given the unusual
architecture. To scale synthesis to real problems, we decompose the
compilation into smaller synthesis subproblems—partitioning, layout,
and code generation. We show that the synthesized programs are no more
than 65% slower than highly optimized expert-written programs and are
faster than programs produced by a heuristic, non-synthesizing version
of our compiler.
http://www.eecs.berkeley.edu/~mangpo/www/talks/1311_forthday_handout.pdf
http://www.eecs.berkeley.edu/~nishant/papers/Chlorophyll.pdf
You would need to use external memory, but apart from that, it is certainly doable, according to this white paper by Greg Bailey:
It would not be difficult to build a virtual machine supporting C,
and there are many people and companies in the US alone for whom
building such a machine and completing a “port” of the C language
compiler and library to the virtual machine would be simply a
repetition of something they had done before. Once this has been
done, the GreenArray chip can run any C program which fits in the
external memory and will satisfy any C application requirement that
is met by the resulting execution speed.
-- excerpt from page 4
He also discuss their implementation of a eForth virtual machine in that paper.

What language/platform would you recommend for CPU-bound application?

I'm developing non-interactive cpu-bound application which does only computations, almost no IO. Currently it works too long and while I'm working on improving the algorithm, I also think if it can give any benefit to change language or platform. Currently it is C++ (no OOP so it is almost C) on windows compiled with Intel C++ compiler. Can switching to ASM help and how much? Can switching to Linux and GCC help?
Just to be thorough: the first thing to do is to gather profile data and the second thing to do is consider your algorithms. I'm sure you know that, but they've got to be #included into any performance-programming discussion.
To be direct about your question "Can switching to ASM help?" the answer is "If you don't know the answer to that, then probably not." Unless you're very familiar with the CPU architecture and its ins and outs, it's unlikely that you'll do a significantly better job than a good optimizing C/C++ compiler on your code.
The next point to make is that significant speed-ups in your code (aside from algorithmic improvements) will almost certainly come from parallelism, not linear increases. Desktop machines can now throw 4 or 8 cores at a task, which has much more performance potential than a slightly better code generator. Since you're comfortable with C/C++, OpenMP is pretty much a no-brainer; it's very easy to use to parallelize your loops (obviously, you have to watch loop-carried dependencies, but it's definitely "the simplest parallelism that could possibly work").
Having said all that, code generation quality does vary between C/C++ compilers. The Intel C++ compiler is well-regarded for its optimization quality and has full support not just for OpenMP but for other technologies such as the Threading Building Blocks.
Moving into the question of what programming languages might be even better than C++, the answer would be "programming languages that actively promote / facilitate concepts of parallelism and concurrent programming." Erlang is the belle of the ball in that regard, and is a "hot" language right now and most people interested in performance programming are paying at least some attention to it, so if you want to improve your skills in that area, you might want to check it out.
It's always algorithm, rarely language. Here's my clue: "while I'm working on improving the algorithm".
Tweaking may not be enough.
Consider radical changes to the algorithm. You've got to eliminate processing, not make the processing go faster. The culprit is often "search" -- looping through data looking for something. Find ways to eliminate search. If you can't eliminate it, replace linear search with some kind of tree search or a hash map of some kind.
Switching to ASM is not going to help much, unless you're very good at it and/or have a specific critical path routine which you know you can do better. As several people have remarked, modern compilers are just better in most cases at taking advantages of caching/etc. than anyone can do by hand.
I'd suggest:
Try a different compiler, and/or different optimization options
Run a code coverage/analysis utility, and figure out where the critical paths are, and work on optimizing those in the code
C++ should be able to give you very near the best possible performance from the code, so I wouldn't recommend switching the language. Depending on the app, you may be able to get better performance on multi code/processor systems using multiple thread, as another suggestion.
While just switching to asm won't give any benefits, since the Intel C++ Compiler is likely better at optimizing than you, you can try one of the following options:
Try a compiler that will parallelize your code, like the VectorC compiler.
Try to switch to asm with heavy use of MMX, 3DNow!, SSE or whatever fits your needs (and your CPU). This will give more of a benefit than pure asm.
You can also try GPGPU, i.e. execute large parts of your algorithm on a GPU instead of a CPU. Depending on your algorithm, it can be dramatically faster.
Edit: I also second the profile approach. I recommend AQTime, which supports the Intel C++ compiler.
Personally I'd look at languages which allow you to take advantage of parallelism most easily, unless it's a thoroughly non-parallelisable situation. Being able to bolt on some extra cores and get (if possible!) near-linear improvement may well be a lot more cost-effective than squeezing the extra few percent of efficiency out.
When it comes to parallelisation, I believe functional languages are often regarded as the best way to go, or you could look at OpenMP for C/C++. (Personally, as a managed language guy, I'd be looking at libraries for Java/.NET, but I quite understand that not everyone has the same preferences!)
Try Fortran 77 - when it comes to computations still nothing beats the granddaddy of programming languages. Also, try it with OpenMP to take advantage of multiple cores.
Hand optimizing your ASM code compared to what C++ can do for you is rarely cost effective.
If you've done anything you can to the algorithm from a traditional algorithmic view, and you've also eliminated excesses, then you may either be SOL, or you can consider optimizing your program from a hardware point of view.
For example, any time you follow a pointer around the heap you are paying a huge cost due to cache misses, possibly paging, etc., which all affect branching predictions. Most programmers (even C gurus) tend to look at the CPU from the functional standpoint rather than what happens behind the scenes. Sometimes reorganizing memory, for example by "flattening" or manually allocating memory to fit on the same page can obtain ENORMOUS speedups. I managed to get 2X speedups on graph traversals just by flattening my structures.
These are not things that your compiler will do for you since they are based on your high-level understanding of the program.
As lobrien said, you haven't given us any information to tell you if hand-optimized ASM code would help... which means the answer is probably, "not yet."
Have you run your code with a profiler?
Do you know if the code is slow because of memory constraints or processor constraints?
Are you using all your available cores?
Have you identified any algorithms you're using that aren't O(1)? Can you get them to O(1)? If not, why not?
If you've done all that, how much control do you have over the environment your program is running in? (presumably a lot if you're thinking of switching operating systems) Can you disable other processes, give your process highest priority, etc? What about just finding a machine with a faster processor, more cores, or more memory (depending on what you're constrained on)
And on and on.
If you've already done all that and more, it's certainly possible you'll get to a point where you think, "I wonder if these few lines of code right here could be optimized better than the assembly that I'm looking at in the debugger right now?" And at that point you can ask specifically.
Good luck! You're solving a problem that's fun to solve.
Sometimes you can find libraries that have optimized implementations of the algorithms you care about. Often times they will have done the multithreading for you.
For example switching from LINPACK to LAPACK got us a 10x speed increase in LU factorization/solve with a good BLAS library.
First, figure out if you can change the algorithm, as S.Lott suggested.
Assuming the algorithm choice is correct, you might look a the memory access patterns, if you have a lot of data you are processing. For a lot of number crunching applications these days, they're bound by the memory bus, not by the ALU(s). I recently optimized some code that was of the form:
// Assume N is a big number
for (int i=0; i<N; i++) {
myArray[i] = dosomething(i);
}
for (int i=0; i<N; i++) {
myArray[i] = somethingElse(myArray[i]);
}
...
and converted it to look like:
for (int i=0; i<N; i++) {
double tmp = dosomething(i);
tmp = somethingElse(tmp);
...
myArray[i] = tmp;
}
...
In this particular case, this yielded about a 2x speedup.
As Oregonghost already hinted - The VectorC compiler might help. It does not really parallelize the code though, instead you can use it to leverage on extended command sets like mmx or sse. I used it for the most time-critical parts in a software rendering engine and it resulted in a speedup of about 150%-200% on most processors.
For an alternative approach, you could look into Distributed Computing which sounds like it could suit your needs.
If you're sticking with C++ on the intel compiler, take a look at the compiler intrinsics (full reference here). I know that VC++ has similar functionality, and I'm sure you can do the same thing with gcc. These can let you take full advantage of the parallelism built into your CPU. You can use the MMX, SSE and SSE2 instructions to improve performance to a degree. Like others have said, you're probably best looking at the algorithm first.
I suggest you rethink your algorithm, or maybe even better, your approach. On the other hand maybe what you are trying to calculate just takes a lot of computing time. Have you considered to make it distributed so it can run in a cluster of some sort? If you want to focus on pure code optimization by introducing Assembler for your inner loops then often that can be very beneficial (if you know what you're doing).
For modern processors, learning ASM will take you a long time. Further, with all the different versions of SSE around, your code will end up very processor dependant.
I do quite a lot of CPU-bound work, and have found that the difference between intel's C++ compiler and g++ usually isn't that big (at most 15% or so), and there is no measurable difference between Mac OS X, Windows and Linux.
You are going to have to optimise your code and improve your algorithm by hand. There is no "magic fairy dust" which can make existing code that much faster I'm afraid.
If you haven't yet, and you care about performance, you MUST run your code through a good profiler (personally, I like kcachegrind & valgrind on Linux, or Shark on Mac OS X. I don't know what is good for windows I'm afraid).
Based on my past experience, there is a very good chance you'll find some method is taking 95% of your CPU time, and some simple change or addition of caching will make a massive improvement to your performance. On a similar note, if some method is only taking 1% of your CPU time, no amount of optimising is going to gain you anything.
The 2 obvious answers to "CPU-bound" are:
1. Use more CPU (core)s
2. Use something else.
Using 2 threads instead of 1 will cut the time spent by up to 50%. In comparision, C++ to ASM rarely gives you 5% (and for novice ASM programmers, it's often -5%!). Some problems scale well, and may benefit from 8 or 16 cores. That kind of hardware is still pretty mainstream, so see if your problems fall in that category.
The other solution is to throw more specialized hardware at the task. This could be the vector unit of your CPU - considering Windows=x86/x64, that's going to be a flavor of SSE. Another kind of vector hardware is the modern GPU. The GPU also has its own memory bus, which is quite speedy.
First get the lead out. Then if it's as fast as it can possibly be without going to ASM, so be it. But thinking you have to go to ASM assumes you know what's making it slow, and I'll bet a donut that you're guessing.
If you feel you have optimized your code to a point there is no improvement, increase your CPU's. This can be done on different platforms. One I develop with is Appistry. A few links:
http://www.appistry.com/resource-library/index.html
and you can download the product free from here:
http://www.appistry.com/developers/
I work for Appistry and we have done many installations for tasks that were cpu bound by spreading work out over 10's or 100's of machines.
Hope this helps,
-Brett
Probable small help:
Optimization of 64-bit programs
AMD64 (EM64T) architecture
Debugging and optimization of multi-thread OpenMP-programs
Introduction into the problems of developing parallel programs
Development of Resource-intensive Applications in Visual C++
Linux
Switching to Linux can help, if you strip it down to only the parts you actually need.
CrowdProcess has about 2000 workers you can use to compute your algorithm. The API is extremely simple and we've been observing speedups close to the number of workers. Also you can write Javascript which should make you more productive than C++ or ASM.
So if you're in between C++ or ASM, I'd say you should first use all your CPU cores, then if it's not enough, CrowdProcess should be an interesting platform.
Disclaimer: I built CrowdProcess.
It is hard to produce ASM code that is faster than naive C or C++ code. In most cases if you do this job really well, you probably gain not much than few percents and getting like 10% speedup is considered great success but in most cases it is just impossible.
Compilers are capable of understanding how to compile efficiently. You should profile in order to figure out where to optimize.